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Abstract
We propose a new statistical estimation framework for a large family of global

sensitivity analysis indices. Our approach is based on rank statistics and uses an
empirical correlation coefficient recently introduced by Chatterjee [9]. We show
how to apply this approach to compute not only the Cramér-von-Mises indices,
directly related to Chatterjee’s notion of correlation, but also first-order Sobol’
indices, general metric space indices and higher-order moment indices. We establish
consistency of the resulting estimators and demonstrate their numerical efficiency,
especially for small sample sizes. In addition, we prove a central limit theorem for
the estimators of the first-order Sobol’ indices.

1 Introduction
The use of complex computer models for the analysis of applications from the sciences,
engineering and other fields is by now routine. Often, the models are expensive to run in
terms of computational time. It is thus crucial to understand, with just a few runs, the
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global influence of one or several inputs on the output of the system under study [33].
When these inputs are regarded as random elements, this problem is generally referred
to as Global Sensitivity Analysis (GSA). We refer to [12, 32, 35] for an overview of the
practical aspects of GSA.
A popular and highly useful tool to quantify input influence is the Sobol’ indices. These
indices were first introduced in [36] and are well tailored to the case of scalar outputs (and
even to the case of vectorial and functional outputs). Thanks to the Hoeffding decomposi-
tion [24], the Sobol’ indices compare the conditional variance of the output knowing some
of the input variables to the total variance of the output. Since Sobol’ indices are variance
based, they only quantify the second-order influence of the inputs. Many authors proposed
other criteria to compare the conditional distribution of the output knowing some of the
inputs to the distribution of the output (see, e.g., higher moments indices in [29, 31, 30],
indices using divergences or distances between measures in [4, 5, 10], goal-oriented indices
using contrast functions in [15], distribution-based indices as Cramér-von-Mises indices
in [19]).
Many different estimation procedures of the Sobol’ indices have been proposed and stud-
ied. Some estimation procedures are based on different designs of experiment using for
example polynomial chaos (see [37] and the reference therein for more details). Some other
natural procedures are based on Monte-Carlo or quasi Monte-Carlo design of experiments
(see [26, 29] and references therein for more details). In particular, an efficient estimation
of the Sobol’ indices can be performed through the so-called Pick-Freeze method. See
Section 2.1 below for its description. Observe that the Pick-Freeze estimation procedure
allows the estimation of several sensitivity indices: the classical Sobol’ indices for real-
valued outputs, as well as their generalization for vectorial-valued codes, but also the
indices based on higher moments [31] and the Cramér-von-Mises indices which take into
account on the whole distribution (see [19, 16] and Section 2.2 below for more details on
such indices). In addition, the Pick-Freeze estimators have desirable statistical properties
such as consistency, central limit theorem (CLT) with a rate of convergence in

√
n, con-

centration inequalities and Berry-Esseen bounds, and asymptotic efficiency (see [25, 18]
and Section 2.1 below for more details). However, the Pick-Freeze scheme has two major
drawbacks. First, it relies on a particular experimental design that may be unavailable
in practice. Second, its cost may be prohibitive when estimating several indices. Natu-
rally, the cost of an estimator depends on the cost of each evaluation of the code and on
the number of evaluations. The number of model calls to estimate all first-order Sobol’
indices grows linearly with the number of input parameters. For example, if we consider
p = 99 input parameters and only n = 1000 calls are allowed, then only a sample of size
n/(p + 1) = 10 is available to estimate each single first-order Sobol’ index. It is a poor
amount of information to get a satisfying estimation of the Sobol’ indices.
In a recent work [9], Chatterjee studies the dependence between two variables by intro-
ducing an empirical correlation coefficient based on rank statistics, see Section 3.1 below
for the precise definition. Further, the quantification of the dependence has also been
investigated in the bivariate case (namely, in the copula setting), see [38, 13, 3]. The
striking point of [9] is that this empirical correlation coefficient converges almost surely
(a.s.) to the Cramér-von-Mises index priorly introduced in [19] as the sample size goes to
infinity.
In this paper, we show how to embed Chatterjee’s method in the GSA framework, thereby
eliminating the two drawbacks of the classical Pick-Freeze estimation mentioned above.
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Thus no particular design of experiment is needed for the estimation that can be done
with a unique n-sample. In addition, we generalize Chatterjee’s approach to allow the
estimation of a large class of GSA indices which includes the Sobol’ indices and the higher-
order moment indices proposed by Owen [29, 31, 30] (see Section 2.1 below). Using a single
sample of size n, it is now possible to estimate at the same time all the first-order Sobol’
indices, the Cramér-von-Mises indices, and other useful sensitivity indices. Furthermore,
we show that this new procedure provides estimators also converging at rate

√
n by

proving a CLT in the estimation of the first-order Sobol’ indices.
The paper is organized as follows. In Section 2, we recall the context of GSA, the definition
of the Sobol’ indices and Cramér-von-Mises indices, and their classical Pick-Freeze estima-
tions. Section 3 focuses on Chatterjee’s method, called rank-based method in this paper.
More precisely, we show how the Cramér-von-Mises indices can be also estimated using the
rank-based method (Section 3.1) and we present its generalization to estimate sensitivity
indices together with the consistency of the estimation procedure (Section 3.2). Section
4 is dedicated to Sobol’ indices. We prove the asymptotic normality of their estimators
based on rank statistics. In addition, we propose a comparison of the different estimation
procedures in Section 4.3 while Section 4.4 considers other classical sensitivity indices.
Section 5 is dedicated to a numerical comparison between the Pick-Freeze estimation pro-
cedure and the rank-based method. We first compare the numerical performances of both
estimators on a linear model. Finally, we consider a real life application. As expected,
the rank-based estimation method outperforms the classical Pick-Freeze procedure, even
for small sample sizes (which are common in practice). Conclusions and perspectives are
offered in Section 6.
After a first submission of this paper, we have been aware of the very nice work of Broto
et al [8] concerning the statistical estimation of Shapley effect where the use of closest
neighbors is also put in action to built consistent estimates. We also notice that there is
actually a strong scientific interest around asymptotic behavior for the statistical method
introduced in [9]. Indeed, during the revision of this paper, we have a look on the very
nice paper [2] where an asymptotic contiguity study is performed.

2 Global sensitivity analysis and Pick-Freeze estima-
tion

2.1 Sobol’ indices
Context and definition of the Sobol’ indices The quantity of interest (QoI) Y is
obtained from the numerical code and is regarded as a function f of the vector of the
distributed input (Xi)i=1,...,p

Y = f(X1, . . . , Xp), (1)

where f is defined on the state space E1 × . . . × Ep, Xi ∈ Ei, i = 1, . . . , p. Classically,
the Xi’s are assumed to be independent random variables and a sensitivity analysis is
performed using the Hoeffding decomposition [1, 39] leading to the standard Sobol’ indices
[35]. This assumption is made throughout the paper, unless explicitly stated otherwise.
More precisely, assume f to be real-valued and square integrable and let u be a subset
of {1, . . . , p} and ∼u its complementary set in {1, . . . , p}. Setting Xu = (Xi, i ∈ u) and
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X∼u = (Xi, i ∈∼u), the corresponding Sobol’ indices take the form

Su = Var (E[Y |Xu])
Var(Y ) and S∼u = Var (E[Y |X∼u])

Var(Y ) . (2)

By definition, the Sobol’ indices quantify the fluctuations of the output Y around its
mean. When the practitioner is not interested in the mean behavior of Y but rather in
its median, in its tail, or even in its quantiles, the Sobol’ indices become less appropriate
to quantify sensitivity. GSA must then be performed in a framework which takes into
account more than one specific moment, such as the variance for Sobol’ indices.

Pick-Freeze estimation procedure of the Sobol’ indices A Monte-Carlo scheme
can be used to estimate the Sobol’ indices. The corresponding Pick-Freeze approach from
[18, 19, 25] relies on expressing the variances of the conditional expectations in terms of
covariances which are easily and well estimated by their empirical versions. To that end,
we define, for any subset u of {1, . . . , p}

Y u := f(Xu). (3)

where Xu is such that Xu
u = Xu and Xu

i = X ′i if i ∈∼ u, X ′i being an independent copy
of Xi. The estimation procedure relies on the following result

Var(E[Y |Xu]) = Cov(Y, Y u). (4)

The reader is referred to [25, Lemma 1.2] for its proof.
The natural estimator of Su is then given by

Su
n =

1
n

∑n
j=1 YjY

u
j −

(
1
n

∑n
j=1 Yj

) (
1
n

∑n
j=1 Y

u
j

)
1
n

∑n
j=1(Yj)2 −

(
1
n

∑n
j=1 Yj

)2 . (5)

A slightly different estimator that uses all the information available is introduced in [25]:

Tu
n =

1
n

∑n
j=1 YjY

u
j −

(
1
n

∑n
j=1

Yj+Y u
j

2

)2

1
n

∑n
j=1

(Yj)2+(Y u
j )2

2 −
(

1
n

∑n
j=1

Yj+Y u
j

2

)2 . (6)

Asymptotic study Such estimation procedures have been proved to be consistent and
asymptotically normal (i.e. the rate of convergence is

√
n) in [25, 18]. The limiting vari-

ances can be computed explicitly, allowing the practitioner to build confidence intervals.
In addition, the sequence of estimators (Tu

n )n is asymptotically efficient to estimate Su

from such a design of experiment (see, [39] for the definition of the asymptotic efficiency
and [18] for the details of the result).

2.2 Cramér-von-Mises indices
Definition of the Cramér-von-Mises indices The Cramér-von-Mises indices intro-
duced in [19] provide alternative indices based on the whole distribution rather than on
the second moment of the output Y only. The main idea of Cramér-von-Mises indices is
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to compare the conditional cumulative distribution function (c.d.f.) to the unconditional
one via the L2-norm. As for the Sobol’ indices, they compare the conditional expectation
of the output to the unconditional one. Notably, they are constructed following a similar
scheme so that any procedure that estimates one index can be adapted to estimate the
other.
More precisely, the Cramér-von-Mises indices are defined by

Su
2,CVM =

∫
R E

[
(F (t)− Fu(t))2

]
dF (t)∫

R F (t)(1− F (t))dF (t) (7)

where F is the cumulative distribution function of Y

F (t) = P (Y 6 t) = E
[
1{Y 6t}

]
(t ∈ R)

and Fu is its Pick-Freeze version:

Fu(t) = P (Y 6 t|Xu) = E
[
1{Y 6t}|Xu

]
(t ∈ R).

This definition stems from the Hoeffding decomposition of the collection of r.v. (1{Y 6t})t∈R.

Pick-Freeze estimation procedure of the Cramér-von-Mises indices The esti-
mation procedure relies on (4) with Y ← 1{Y 6t}:

Var(E[1{Y 6t}|Xu]) = Cov(1{Y 6t},1{Y u6t}). (8)

Consequently, the Monte-Carlo estimation can be done as follows. In addition to the clas-
sical design of experiment required to estimate the Sobol’ indices (an n-sample (Y1, . . . , Yn)
of the output Y and an n-sample (Y u

1 , . . . , Y
u
n ) of its Pick-Freeze version Y u), a third in-

dependent n sample (W1, . . . ,Wn) of the output Y is necessary in order to deal with the
integral with respect to dF (t) in (7). Then the empirical estimator of Su

2,CVM is

1
n

∑n
k=1

(
1
n

∑n
j=1 1{Yj6Wk}1{Y u

j 6Wk} − 1
n

∑n
j=1 1{Yj6Wk}

1
n

∑n
j=1 1{Y u

j 6Wk}
)

1
n

∑n
k=1

(
1
n

∑n
j=1 1{Yj6Wk} −

(
1
n

∑n
j=1 1{Yj6Wk}

)2
) . (9)

Asymptotic study As showed in [19], this estimator is consistent and asymptotically
Gaussian (i.e. the rate of convergence is

√
n). The limiting variance can be computed

explicitly, allowing the practitioner to build confidence intervals.

3 A novel generation of estimators based on rank
statistics

3.1 Chatterjee’s correlation coefficient
In [9], Chatterjee considers a pair of real-valued random variables (V, Y ) and an i.i.d.
sample (Vj, Yj)16j6n. In order to simplify the presentation, we assume that the laws of
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V and Y are both diffuse (ties are excluded). The pairs (V(1), Y(1)), . . . , (V(n), Y(n)) are
rearranged in such a way that

V(1) < . . . < V(n).

Then let π(j) be the rank of Vj in the sample (V1, . . . , Vn) of V and define

N ′(j) =

π−1(π(j) + 1) if π(j) + 1 6 n,

j if π(j) = n.
(10)

The new correlation coefficient defined by Chatterjee in [9] is denoted ξn(V, Y ) and given
by

1
n

n∑
j=1

( 1
n

n∑
k=1

1{Yk6Yj}1{Yk6YN′(j)} −
( 1
n

n∑
k=1

1{Yj6Yk}

)2)/ 1
n

n∑
j=1

Fn(Yj)(1− Fn(Yj)) (11)

where Fn stands for the empirical distribution function of Y : Fn(t) = 1
n

∑n
k=1 1{Yk6t}.

The author proves that ξn(V, Y ) converges a.s. to a deterministic limit ξ(V, Y ) which is
equal to the Cramér-von-Mises sensitivity index SV2,CVM with respect to V as soon as
V is one of the random variables X1, ..., Xp in the model (1) that are assumed to be
real-valued. Further, he also proves a CLT when V and Y are independent.
Observe that the analogue of the Pick-Freeze version Y V with respect to V of Y becomes
YN and (8) is replaced by the formula

E[1{Yj>t}1{YN′(j)>t}|V1, . . . , Vn] = GVj(t)GVN′(j)(t) (12)

for all j = 1, . . . , n that is mentioned in the proof of Lemma 7.10 in [9, p.24], with GV

the conditional survival function: GV (t) = P(Y > t|V ).
It is worth noticing that a unique n sample of input-output provides consistent estimations
of the p first-order Cramér-von-Mises indices.

3.2 Generalization of Chatterjee’s method
In this section, we propose a universal estimation procedure of expectations of the form

E[E[g(Y )|V ]E[h(Y )|V ]],

for two integrable functions g and h. In fact, we consider a more general random element
V (no longer assumed to be real) and a more general permutation denoted by τn. This
result is a generalization of (12) and can be interpreted as an approximation of (4). To
this end, we introduce the function ΨV defined by

ΨV (g) = E[g(Y )|V ] (13)

for any integrable function g. Let Fn be the σ-algebra generated by {V1, . . . , Vn}. Note
that in Section 3.1, we have considered g(x) = gt(x) = 1{x>t} so that ΨV (g) = P(Y >
t|V ) = GV (t).

Lemma 3.1. Let g and h be two integrable functions such that gh is also integrable. Let
(Vj, Yj)16j6n be an n-sample of (V, Y ). Consider a Fn-measurable random permutation τn
such that τn(j) 6= j, for all j = 1, . . . , n. Then

E
[
g(Yj)h(Yτn(j))|V1, . . . , Vn

]
= ΨVj(g)ΨVτn(j)(h). (14)
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The previous lemma (the proof of which has been postponed to Appendix A) leads to
a generalization of the first part of the numerator of ξn defined in (11). Following the
same lines as in [9], one may prove that such a quantity converges a.s. as n → ∞ under
some mild conditions. The reader is referred to Appendix A for the detailed proof of
Proposition 3.2.

Proposition 3.2. Let g and h be two bounded measurable functions. Consider a Fn-
measurable random permutation τn with no fix point (i.e. τn(j) 6= j for all j = 1, . . . , n)
and such that Vτn(i)

L= Vτn(j) for any i and j = 1, . . . , n. In addition, we assume that for
any j = 1, . . . , n, Vτn(j) → Vj as n→∞ a.s. Then χn(V, Y ; g, h) defined by

χn(V, Y ; g, h) = 1
n

n∑
j=1

g(Yj)h(Yτn(j)) (15)

converges a.s. as n → ∞ to χ(V, Y ; g, h) = E[ΨV (g)ΨV (h)], where ΨV has been defined
in (13).

Notice that the permutation τn = N defined by

N(j) =

π−1(π(j) + 1) if π(j) + 1 6 n,

π−1(1) if π(j) = n.
(16)

satisfies the assumptions of Lemma 3.1 and Proposition 3.2. Observe that N only differs
from N ′ defined in (10) at j such that π(j) = n.

4 The rank estimator of the first-order Sobol’ indices

4.1 Estimation procedure based on rank statistics
We can now leverage the above results and construct a new family of estimators for Sobol’
indices. More precisely, let us consider the model (1) and assume we want to estimate
the first-order Sobol’ index S1 defined in (2) with respect to V = X1 assumed to be real-
valued. We then define N as in (16) where π is the rank of X1. Taking g(x) = h(x) = x
and τn = N , (14) provides the analogue to ξn to estimate the classical Sobol’ indices:

ξSobol’n (X1, Y ) :=
1
n

∑n
j=1 YjYN(j) −

(
1
n

∑n
j=1 Yj

)2

1
n

∑n
j=1(Yj)2 −

(
1
n

∑n
j=1 Yj

)2 , (17)

where the denominator is reduced to the empirical variance of Y . As the functions g
and h are here unbounded, Proposition 3.2 does not apply and thus offers no asymptotic
information. However, the quantity of interest Y being generally bounded in practice,
appropriately truncated versions of g and h could be considered.

4.2 A central limit theorem
We establish a CLT for the estimator ξSobol’n (X1, Y ) of the first-order Sobol’ index with
respect to X1 (assumed to be real-valued) under some mild assumptions on the model f
and the random input X1 in (1). The proof of the theorem is given in Appendix B.
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Theorem 4.1. Assume that X1 is uniformly distributed on [0, 1] and f in (1) is a twice
differentiable function with respect to its first coordinate. Further, we suppose that f and
its two first derivatives (with respect to its first coordinate) are bounded. Then

√
n
(
ξSobol’
n (X1, Y )− S1

)
is asymptotically Gaussian with zero mean and explicit variance σ2 given in Appendix
B.4.

Remark 4.2. The boundedness of f implies that f has a fourth moment, that is the
minimal assumption to get a CLT.
Moreover, let us observe that Theorem 4.1 only implies the convergence in probability.
Nevertheless, under the assumptions of Theorem 4.1 (f bounded so is Y ), Proposition 3.2
applies to derive the almost sure convergence of ξSoboln (X1, Y ).
The assumption on the distribution of X1 can be relaxed as stated in the following corol-
lary.

Corollary 4.3. Let FX1 be the cumulative distribution function of X1. Assume that
f ◦ F−1

X1 is a twice differentiable function such that f ◦ F−1
X1 and its two first derivatives

are bounded. Then the conclusion of Theorem 4.1 still holds.

Theorem 4.1 and Corollary 4.3 naturally allow to build statistical tests for testing H0 :
S1 = 0 against H1 : S1 6= 0. One can note that Chatterjee [9] result allows to test the
independence of the input X1 with respect to the output Y which is a stronger assumption
than S1 = 0, this was for example studied in [34]. In addition, our result allows to compute
the power of the statistical test against any alternative of the kind H1,0 : S1 > s1

0 for any
s1

0 > 0.
Remark 4.4. A careful reading of the different steps of the proof shows that Theorem 4.1
can be slightly extended to more general situations involving more than two successive
order statistics and with more general second variable (X2, . . . , Xp). See the forthcoming
paper [20].
The proof of our CLT is a bit long and technical and is postponed to the Appendix B. In
a nutshell, this proof stands on three main ingredients. First, the regularity assumption
on the function f allows to expand the statistic under study as a quadratic functional
of the two independent sequences of random variables. The quadratic part for the first
sequence involves order statistics of the uniform distribution and may be linearized. The
second ingredient is the distribution representation of uniform order statistics by ratios of
exponential convolution. The third ingredient is less classical and involves a conditional
trick to show a central limit theorem for an empirical mean of a product. Let sketch the
idea on a simple example. Let (ξn)n and (δn)n be two independent sequences of centered
square integrable random variables. We set Mn = n−1/2∑n

j=1 ξjδj and let T be the σ-field
generated by the sequence (δn). Of course, the classical CLT gives that Mn converges
in distribution towards a centered Gaussian distribution with variance Var(ξ1)Var(δ1).
A less classical proof of this result consists in showing that, a.s., conditionally to T the
same convergence in distribution holds. Indeed, this last result follows directly from the
Lindeberg CLT and the strong law of large numbers for n−1∑n

j=1 δ
2
j .
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4.3 Comparison of the different estimation procedures
The estimator based on rank statistics ξSobol’n (X1, Y ) defined in (17) can be compared to
the classical Pick-Freeze estimators S1

n and T 1
n given in (5) and (6) respectively (with

u = {1}) but also to a sequence of estimators involving the estimators T̂n introduced in
[11].

Required sample sizes With the rank-based procedure, a unique n-sample of input-
output provides consistent and asymptotically normal estimations of the p first-order
Sobol’ indices (together with consistent and asymptotically normal estimations of the p
first-order Cramér-von-Mises indices with no extra cost). In contrast, using the Pick-
Freeze estimation, if one wants to estimate all the p first-order Sobol’ indices and the p
Cramér-von-Mises indices, (p+ 2)n calls of the computer code are required. The number
of calls grows linearly with respect to the number of input parameters. This is a practical
issue for large input dimension domains. A second drawback of the Pick-Freeze estima-
tion scheme comes from the need of the particular Pick-Freeze design that is not always
available.

Limiting variances Since the empirical mean and variance are already known to be
asymptotically efficient in the statistical sense1 to estimate the expectation and the vari-
ance of the output, we restrict our study to the comparison of the limiting variances ob-
tained via the Pick-Freeze and the rank-based procedures in the estimation of E[E[Y |X1]2]
only.
In view of the proof of [25, Proposition 2.2], the Pick-Freeze limiting variance obtained
using both S1

n and T 1
n in estimating E[E[Y |X1]2] = E[Y Y 1] is simply given by Var(Y Y 1),

where Y 1 = f(X1,W
1) is the Pick-Freeze version of Y = f(X1, X2, . . . , Xp) = f(X1,W ).

Using the above Lemmas B.1 and B.2 together with (41) leads to the rank-based limiting
variance obtained using ξSobol’n (X1, Y ):

Σ1,1
B + Σ1,1

C = E
[
Var

(
Y Y 1|X1

)]
+ E

[
Cov

(
Y Y 1, Y Y 11|X1

)]
− E[(Y + Y 1)fx(X1,W )X1]2

+ E[(Y + Y 1)(Ỹ + Ỹ 1)fx(X1,W )fx(X̃1, W̃ )(X1 ∧ X̃1)], (18)

where Y = f(X1, X2, . . . , Xp) = f(X1,W ), Y 1 = f(X1,W
1), Y 11 = f(X1,W

11), Ỹ =
f(X̃1, W̃ ), and Ỹ 1 = f(X̃1, W̃

1) with X1 and X̃1 i.i.d., W , W̃ , W 1, and W 11 i.i.d. also
independent of X1 and X̃1. Note that Y 1 and Y 11 (respectively Ỹ 1) are Pick-Freeze
versions of Y (resp. Ỹ ). The paragraph’s aim is to compare the limiting variances
obtained by the two methods (Pick-Freeze and rank-based).
To do so, we recall that the Pick-Freeze experiment requires n(p + 1) observations (or
computations of the black-box code) to estimate the p first-order Sobol’ indices. In order
to have a fair comparison of both estimation methods, we then consider that we have
n(p + 1) i.i.d. observations of Y given by model (1) to estimate the p first-order Sobol’
indices using the rank statistics. With n(p+ 1) observations instead of n, the asymptotic
variance obtained using the rank-based methodology is divided by (p + 1), so that we
want to compare

VPF := (p+ 1)(Var(Y Y 1), . . . ,Var(Y Y p))> to VRank := (Σ1,1
B + Σ1,1

C , . . . ,Σp,p
B + Σp,p

C )>

1The reader is referred to [39, Section 25] for the definition of the asymptotic efficiency and related
results.
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where Y i is the Pick-Freeze version of Y with respect to Xi (for i = 2, . . . , p) and Σi,i
B +Σi,i

C

has the same expression as Σ1,1
B +Σ1,1

C in (18) replacing the superscripts and the subscripts
1 by i (for i = 2, . . . , p).
Example. We consider the following linear model

Y = f(X1, . . . , Xp) = αX1 +X2 + . . .+Xp, (19)

where α > 0 is a fixed constant, X1, X2, . . ., and Xp are p independent and uniformly
distributed random variables on [0, 1].
We denote by m1,p and m2,p the two first moments of Zp := X2 + . . .+Xp and m1,p,α and
m2,p,α the two first moments of Zp,α := αX1 +X3 + . . .+Xp. In addition, let vp and vp,α
be the variances of Zp of Zp,α. Hence vp = m2,p −m2

1,p, vp,α = m2,p,α −m2
1,p,α,

m1,p = 1
2(p− 1), m2,p = 1

12(p− 1)(3p− 2), m1,p,α = 1
2(α +m1,p−1) = 1

2(α + p− 2),

m2,p,α = 1
3α

2 + αm1,p−1 +m2,p−1 = 1
3α

2 + 1
2(p− 2)α + 1

12(p− 2)(3p− 5).

By symmetry, after obvious computations, one gets, for i = 2, . . . , p,

Var(Y Y 1) = 4
45α

4 + 1
3m1,pα

3 + 1
3

(
2vp +m2

1,p

)
α2 + 2m1,pvpα + vp(vp + 2m2

1,p),

Var(Y Y i) = 4
45 + 1

3m1,p,α + 1
3

(
2vp,α +m2

1,p,α

)
+ 2m1,p,αvp,α + vp,α(vp,α + 2m2

1,p,α)

while

V 1
Rank = 4

45α
4 + 1

3m1,pα
3 + 1

3

(
4vp +m2

1,p

)
α2 + 4m1,pvpα + vp

(
vp + 4m2

1,p

)
,

V i
Rank = 4

45 + 1
3m1,p,α + 1

3

(
4vp,α +m2

1,p,α

)
+ 4m1,p,αvp,α + vp,α

(
vp,α + 4m2

1,p,α

)
.

We compare these limiting variances in Figures 1 and 2. The results are clear and illustrate
the fact that the rank-based methodology works much better for all value of p > 2. In
addition, the more the value of p increases the greater the gain, as expected.
Remark 4.5. Observe that a more precise comparison should consists in comparing (via
definite-positiveness) the limiting covariance-variance matrices involving both the limiting
variances and the limiting covariances. If it is straightforward to compute the covariance
terms for the Pick-Freeze methodology: for i = 2, . . . , p,

Cov(Y Y 1, Y Y i) = 1
24α

4 + 1
12m1,p−1α

3 +
( 7

144 + 1
4vp−1 + 1

6

(
m1,p−1 + 1

2

)2)
α2

+
(1

8 + 1
12m1,p−1 + 1

2vp−1 + vp−1m1,p−1

)
α + vp−1

(
m1,p−1 + 1

2

)2
,

it is much more tricky to deal with the rank-based procedure. Indeed, to do so a joint
CLT is required for the vector of all p first-order Sobol’ indices whose proof is not a
direct generalization of the proof of Theorem 4.1. Such an extension will be done in a
forthcoming paper.
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Figure 1: Linear model defined in (19). The limiting variances with respect to X1 (plain
lines) and to X2 (plain lines with +) are plotted. The rank-based estimation procedure
is represented in blue while the Pick-Freeze estimation procedure is represented in red.
As explained, the Pick-Freeze estimation procedure has been weighted by (p+ 1) to have
a fair comparison. The number of variables involved in the model varies from p = 2 to
p = 7.

Figure 2: Linear model defined in (19). The difference between the limiting variances
with respect to X1 (left panel) and to X2 (right panel) are plotted. As explained, the
Pick-Freeze estimation procedure has been weighted by (p+ 1) to have a fair comparison.
The number of variables involved in the model varies from p = 2 to p = 7.

Asymptotic efficiency The two previous procedures do not rely on the same design
of experiment so that it is not possible to determine which one is the more efficient in the
sense of [39, Section 25].
By [18, Proposition 2.5], the sequence of estimators (T 1

n)n is asymptotically efficient to
estimate S1 when the distribution P of (Y, Y 1) belongs to P , the set of all c.d.f. of

11



exchangeable random vectors in L2(R2).
Using a unique n-sample, one may compare the rank-based estimators introduced in
this paper and the procedure involving the estimators T̂n defined in [11, page 11]. Such
estimator is particularly tricky to compute and not easily tractable in practice. More
precisely, the initial n-sample is split into two samples of sizes n1 and n2 = n − n1. The
first sample is dedicated to the estimation of the joint density of (X, Y ) while the second
one is used to compute a Monte-Carlo estimation of the integral involved in the quantity
of interest. In a work under progress [22], another estimator based on kernels and the
same design of experiment is proposed. This estimator is more tractable in practice.
By [11, Theorems 3.4 and 3.5], the sequence of estimators (T̂n)n is asymptotically efficient
to estimate E[E[Y |X]2] leading to an asymptotically efficient sequence of estimators of
S1. The proof of the following proposition has been postponed in Appendix C.

Proposition 4.6. Consider the sequence of estimators T̂n introduced in [11, page 11].
Assume that the joint distribution P of (X, Y ) is absolutely continuous with respect to
the product probability PX ⊗ PY , namely P (dx, dy) = f(x, y)PX(dx)PY (dy). Then the
sequence (R1

n)n

R1
n =

T̂n −
(

1
n

∑n
i=1 Yi

)2

1
n

∑n
i=1 Y

2
i −

(
1
n

∑n
i=1 Yi

)2

is asymptotically efficient in estimating S1. In addition, its (minimal) variance σ2
min is

σ2
min := 1

Var(Y )2Var
(
2E[Y ](1− S1)Y + S1Y 2 + E[Y |X](E[Y |X]− 2Y )

)
.

Thus we are interested in the comparison of σ2
min and σ2 given in Theorem 4.1. Let us

consider again the example of the linear model (19) introduced in the previous paragraph.
Example (continued). We consider the model defined in (19). As done in the previous
paragraph, we only compare V 1

Eff := Var(E[Y |X1](2Y − E[Y |X1])) to Σ1,1
B + Σ1,1

C and
V i
Eff := Var(E[Y |Xi](2Y − E[Y |Xi])) to Σi,i

B + Σi,i
C for i = 2, . . . , p. After some trivial

computations, one gets

V 1
Eff = 4

45α
4 + 1

3m1,pα
3 + 1

3

(
4vp +m2

1,p

)
α2 + 4m1,pvpα + 4vpm2

1,p,

V i
Eff = 4

45 + 1
3m1,p,α + 1

3

(
4vp,α +m2

1,p,α

)
+ 4m1,p,αvp,α + 4vp,αm2

1,p,α.

We compare these limiting variances in Figure 3. We observe that the limiting variances
obtained with the rank methodology do not differ much from the efficient variances.

4.4 Recovering other classical indices
In [16], the authors considered computer codes of the form (1) valued on a compact Rie-
mannian manifold. In this framework, they proposed a sensitivity index in the flavour of
the Cramé-von-Mises index and they used the Pick-Freeze scheme to provide a consistent
estimator. The authors of [21] extend the previous indices to the context of general met-
ric spaces and propose U-statistics-based estimators improving the classical Pick-Freeze

12



Figure 3: Linear model defined in (19). The limiting variances with respect to X1 (plain
lines) and to X2 (plain lines with +) are plotted. The rank-based estimation procedure
is represented in blue while the efficient variances are represented in red. The number of
variables involved in the model varies from p = 2 to p = 7.

procedure. In light of Section 3.2, one may introduce a novel estimation of the indices
introduced in [21] requiring a unique n-sample. The reader is referred to [14] for more
details on the procedure.
Following [30, 31], extensions to Sobol’ indices are obtained by replacing their numerator
by higher-order moments. In [19], the authors construct a Pick-Freeze estimator for such
extensions. One again, we are now able to propose another estimation scheme based on a
unique n-sample. The reader is referred to [20] for the generalization of Lemma 3.1 and
the corresponding asymptotic study.

5 Numerical experiments

5.1 Numerical comparison on the Sobol’ g-function: conven-
tional Pick-Freeze estimators vs rank estimators

In this section, we compare the performances of both estimation procedures on an analytic
function: the so-called Sobol’ g-function, that is defined by

g(X1, . . . , Xp) =
p∏
i=1

|4Xi − 2|+ ai
1 + ai

, (20)

where (ai)i∈N is a sequence of real numbers and the Xi’s are i.i.d. random variables uni-
formly distributed on [0, 1]. In this setting, one may easily compute the exact expression
of the first-order Sobol’ indices:

Si = (1 + a2
i )−1/3

3−p∏p
i=1(1 + a2

i )−1 − 1 .

13



As expected, the lower the coefficient ai, the more significant the variableXi. In the sequel,
we simply fix ai = i. Due to its complexity (non-linear and non-monotonic correlations)
and the analytical expression of the Sobol’ indices, the Sobol’ g-function is a classical test
example commonly used in GSA (see e.g. [32]).

Convergence as the sample size increases In Figure 4, we compare the estimations
of the six first-order Sobol’ indices given by both methods (p = 6). In the Pick-Freeze
estimations given by (6), several sizes of sample N have been considered: N = 100,
500, 1000, 5000, 10000, 50000, 100000, and 500000. The Pick-Freeze procedure requires
(p+ 1) = 7 samples of size N . To have a fair comparison, the sample sizes considered in
the estimation of ξSobol’n are n = (p+ 1)N = 7N . Both methods converge and give precise
results for large sample sizes.

Figure 4: The Sobol’ g-function model (20). Convergence of both methods when N
increases. The sixth first-order Sobol’ indices have been represented from left to right
and up to bottom. Several sample sizes have been considered: N = 100, 500, 1000, 5000,
10000, 50000, 100000, and 500000 for the Pick-Freeze estimation procedure (in blue) and
correspondingly (p+1)N for the rank estimation procedure (in red). The true indices are
displayed in black plain line. The x-axis is in log. scale.

Comparison of the mean square errors We now compare the efficiency of both
methods at a fixed sample size. In that view, we assume that only n = 700 calls of the
computer code f are allowed to estimate the six first-order Sobol’ indices. We repeat the
estimation procedure 500 times. The boxplot of the mean square errors for the estimation
of the first-order Sobol’ index S1 with respect to X1 has been represented in Figure 5.
We observe that, for a fixed sample size n = 700 (corresponding to a Pick-Freeze sample
size N = 100), the rank estimation procedure performs much better than the Pick-Freeze
method with significantly lower mean errors. The same behavior can be observed for all
the first Sobol’ indices as can be seen in Table 1 that provides some characteristics of the
mean squares errors.
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Figure 5: The Sobol’ g-function model (20). Boxplot of the mean square errors of the
estimation of S1 with a fixed sample size and 500 replications. The results of the rank
methodology with n = 700 are provided in the left panel. The results of the Pick-Freeze
estimation procedure with N = 100 are provided in the right panel.

Performances for small sample sizes or for large number of input variables As
expected, we can observe in Table 2 that the rank estimation procedure proceeds much
better than the Pick-Freeze methodology for small sample sizes. Similarly, if the number
of input variables increases drastically, we can observe the same behavior as can be seen
in Figure 6. In that case, we consider the model (20) for several values of p: 6, 10, 15, 20,
30, 40, and 50.

5.2 An application in biology
Here, we illustrate the nature and the performance of the Cramér-von-Mises indices and
their corresponding rank estimators as a screening mechanism for high-dimensional prob-
lems. To do so, we consider the neurovascular coupling model from [23]. Mathematically,
this corresponds to the following differential-algebraic equation (DAE) system

dW

dt
= G(W,Z,X), 0 = H(W,Z,X), (21)

where W = (W1, . . . ,WN) and Z = (Z1, . . . , ZM) correspond respectively to the differen-
tial and algebraic state variables of the models. The variables X = (X1, . . . , Xp) corre-
spond to the uncertain parameters of the model. Our quantity of interest corresponds to
the time average over [0, T ] of W ∗ (which is one of the differential state variables W1, ...,
WN), i.e.

Y = 1
T

∫ >
0
W ∗(t) dt. (22)

As above, we regard Y as a function of the unknown parameters, i.e., Y = f(X1, . . . , Xp).
In our implementation, the values of W ∗ are obtained by solving the above DAE system
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Pick-Freeze Rank
Mean Median Stdev Mean Median Stdev

mse S1 0.0095548 0.0039458 0.0145033 0.0010218 0.0004498 0.0013999
mse S2 0.0105727 0.0046104 0.0148873 0.0017314 0.0006870 0.0027436
mse S3 0.0101785 0.0041789 0.0143846 0.0016667 0.0006409 0.0024392
mse S4 0.0105463 0.0047284 0.0178064 0.0018522 0.0008126 0.0025296
mse S5 0.0097979 0.0042995 0.0135533 0.0016285 0.0006855 0.0024264
mse S6 0.0096109 0.0046822 0.0134822 0.0015590 0.0007080 0.0021333

Table 1: The Sobol’ g-function model (20). Characteristics of the mean square errors
for the estimation of the six first-order Sobol’ indices with a fixed sample size and 500
replications. In the rank methodology, the sample size is n = 700 while in the Pick-Freeze
estimation procedure, it is N = 100.

Pick-Freeze Rank
N = 10 N = 50 N = 100 n = 70 n = 350 n = 700

mse S1 0.1128686 0.0172275 0.0095548 0.0116790 0.0022941 0.0010218
mse S2 0.1509575 0.0223196 0.0105727 0.0177522 0.0033719 0.0017314
mse S3 0.1469124 0.0220015 0.0101785 0.0175517 0.0032474 0.0016667
mse S4 0.1591130 0.0196357 0.0105463 0.0159360 0.0033948 0.0018522
mse S5 0.1646339 0.0240353 0.0097979 0.0158563 0.0032230 0.0016285
mse S6 0.1466408 0.0217638 0.0096109 0.0166701 0.0029653 0.0015590

Table 2: The Sobol’ g-function model (20). Mean squares errors of the estimation of the
six first-order Sobol’ indices with small sample sizes and with both methods.

(Equation (21)) by the MATLAB routine ode15s (it can be checked that (21) form an
index one system). Further, in the current example, N = 67 and p = 160 and the
distributions of most of the Xi’s are uniform and allowed to vary ±10% from nominal
values (see [23] for additional details).
We compare the results from the rank estimators as described above to those resulting
from the linear regression

f(X1, . . . , X160) ≈ λ0 +
160∑
j=1

λjXj.

As shown in [23], the above approximation performs well for the considered QoI. We
assign to each variable X1, . . . , X160 a relative importance Lj where

Lj = |λj|∑160
`=1 |λ`|

, j = 1, . . . , 160.

Figure 7 displays the results. Both screening approaches identify the same to three in-
fluential parameters. More parameters are identified as being non-influential through the
linear regression approach than using the Cramér-von-Mises indices.

6 Conclusion
In this paper, we explain how to use the estimator proposed by Chatterjee in [9] to provide
a very nice and mighty procedure to estimate both all the first-order Sobol’ indices and
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Figure 6: The Sobol’ g-function model (20). Mean square errors of the estimation of
the six first-order Sobol’ indices with respect to the number of input variables with a
fixed sample size and 500 replications. We consider the sample sizes n = 200 in the rank
methodology (in red) and N = n/(p + 1) in the Pick-Freeze procedure (in blue). The
number of input variables considered are p = 6, 10, 15, 20, 30, 40, and 50.

Figure 7: Rank estimators corresponding to the Cramér-von-Mises indices as a screening
mechanics for the DAE system given by (21) and (21).

the so-called Cramér-von-Mises indices [19] at a small cost (only n calls of the computer
code). We emphasize on the fact that this estimation procedure requires a unique sample
contrary to the Pick-Freeze procedure based on a particular design of experiment, the size
of which is 2n when estimating a single index and increases with the number of indices
to estimate. We also extend Chatterjee’s method to estimate more general quantities.
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Furthermore, we show a CLT for our estimations of Sobol’ indices. As examples, we
consider two indices already introduced in sensitivity analysis: the indices adapted to
output valued in general metric spaces defined in [21] and the higher-moment indices
[30, 31]. A general CLT will be established soon in [20].
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A Proof of the consistency
Proof of Lemma 3.1. Since τn has no fix point, and using the measurability of τn and the
independence, we have

E
[
g(Yj)h(Yτn(j))|Fn

]
= E

[
g(Yj)

n∑
l=1,
l 6=j

h(Yl)1{τn(j)=l}|Fn
]

=
n∑
l=1,
l 6=j

1{τn(j)=l}E
[
g(Yj)h(Yl)|Fn

]

=
n∑
l=1,
l 6=j

1{τn(j)=l}E
[
g(Yj)|Fn

]
E
[
h(Yl)|Fn

]
= E

[
g(Yj)|Vj

] n∑
l=1,
l 6=j

1{τn(j)=l}E
[
h(Yl)|Vl

]

= ΨVj(g)
n∑
l=1,
l 6=j

1{τn(j)=l}ΨVl(h) = ΨVj(g)ΨVτn(j)(h).

Proof of Proposition 3.2. We follow the steps of the proof of Corollary 7.12 in [9]. Our
proof is significantly simpler since τn is assumed to have no fix points and V is continuous
so that there are no ties in the sample. To simplify the notation, we denote χn(V, Y ; g, h)
and χ(V, Y ; g, h) by χn and χ respectively.
We first prove that, for any measurable function ϕ,

ϕ(V1)− ϕ(Vτn(1))→ 0 (23)

in probability as n → ∞. Let ε > 0. By the special case of Lusin’s theorem (see [9,
Lemma 7.5]), there exists a compactly supported continuous function ϕ̃ : R → R such
that P({x; ϕ(x) 6= ϕ̃(x)}) < ε, where P stands for the distribution of V . Then for any
δ > 0,

P
( ∣∣∣ϕ(V1)− ϕ(Vτn(1))

∣∣∣ > δ
)
6 P

(∣∣∣ϕ̃(V1)− ϕ̃(Vτn(1))
∣∣∣ > δ

)
+ P

(
ϕ(V1) 6= ϕ̃(V1)) + P(ϕ(Vτn(1)) 6= ϕ̃(Vτn(1))

)
. (24)

By continuity of ϕ̃ and since Vτn(1) → V1 as n → ∞ with probability one, the first term
in the right hand side of (24) converges to 0 as n→∞. By construction of ϕ̃, the second
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term is lower than ε. Turning to the third one, we have thus

E[ϕ(Vτn(1))] = 1
n

n∑
j=1

E[ϕ(Vτn(j))] = 1
n

n∑
j=1

n∑
l=1
l 6=j

E[ϕ(Vl)1{τn(j)=l}]

= 1
n

n∑
l=1

n∑
j=1
j 6=l

E[ϕ(Vl)1{τn(j)=l}] = 1
n

n∑
l=1

E[ϕ(Vl)
n∑
j=1
j 6=l

1{τn(j)=l}] = 1
n

n∑
l=1

E[ϕ(Vl)] = E[ϕ(V1)]

where we have used the fact that τn has no fix point, Vτn(i)
L= Vτn(j) for any i and j =

1, . . . , n, and the Vi’s have no ties. This yields

P(ϕ(Vτn(1)) 6= ϕ̃(Vτn(1))) = P(ϕ(V1) 6= ϕ̃(V1)) < ε,

and, since ε and δ are arbitrary, (23) is therefore proved. Now, since x 7→ Ψx is a
measurable and bounded function and applying (23), we have{

ΨV1(g)−ΨVτn(1)(g) → 0,
ΨV1(h)−ΨVτn(1)(h) → 0, in probability as n→∞. (25)

Lemma 3.1 and the dominated convergence theorem lead to

E[χn] = 1
n

n∑
j=1

E[g(Yj)h(Yτn(j))] = E[g(Y1)h(Yτn(1))] = E[ΨV1(g)ΨVτn(1)(h)]→ E[ΨV (g)ΨV (h)] = χ (26)

where we have taken into account the fact that ΨV (g) and ΨV (h) are bounded (due to
the boundedness of g and h) and used (25).
The last step of the proof consists in comparing χn with E[χn] using Mc Diarmid’s concen-
tration inequality [27]. Sharper constants can be obtained in Mc Diarmid’s inequality by
using the inequalities from [6, 7]. As we are interested in asymptotic results the accuracy
of the constant has no impact on the result. Following the same lines as in the proof of
[9, Lemma 7.11], Mc Diarmid’s concentration inequality in [27] then implies

P(|χn − E[χn]| > t) 6 2 exp{−2n2t2/C2}, (27)

where C is a universal constant and we conclude the proof by combining (26) and (27).

B Proof of the asymtotic normality
Framework and goal We consider the model defined in (1) that can be rewritten as
Y = f(X,W ) where X = X1 and W = (X2, . . . , Xp) are two independent inputs of the
numerical code f that is assumed to be bounded.
The random variables X and W are defined on a product space Ω = ΩX × ΩW ; so
that for any ω ∈ Ω, there exists ωX ∈ ΩX and ωW ∈ ΩW and we have (X,W )(ω) =
(X(ωX),W (ωW )). Further, we consider πW the projection on ΩW and the product measure
P = PX ⊗ PW = LX ⊗LW , where LX is the distribution of X and LW is the distribution
of W . Naturally, PW = P ◦ π−1

W .
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We aim to prove a CLT for the estimator ξSobol’n (X, Y ) of the classical first-order Sobol’
index with respect to X given by (2), the estimator of which defined in (17) is given by

ξSobol’n (X1, Y ) =
1
n

∑n
j=1 YjYN(j) −

(
1
n

∑n
j=1 Yj

)2

1
n

∑n
j=1 Y

2
j −

(
1
n

∑n
j=1 Yj

)2

where N is defined in (16). Notice that the denominator is reduced to the empirical
variance of Y . As explained in Section 3.1, we denote by Y(j) the output associated to
X(j) where X(j) stands for the j-th order statistics of (X1, . . . , Xn). Then observing that

n∑
j=1

YjYN(j) =
n∑
j=1

Y(j)Y(j+1) =:
n∑
j=1

Yσn(j)Yσn(j+1)

where, to avoid any confusion, σn stands for the permutation that rearranges the sample
(X1, . . . , Xn), the estimator ξSobol’n (X1, Y ) can be written as

ξSobol’n (X1, Y ) =
1
n

∑n−1
j=1 Yσn(j)Yσn(j+1) −

(
1
n

∑n
j=1 Yσn(j)

)2

1
n

∑n
j=1 Y

2
σn(j) −

(
1
n

∑n
j=1 Yσn(j)

)2 . (28)

B.1 Proof of Theorem 4.1
The proof will proceed as follows. First, in view of (28), we prove a CLT for 1

n

n−1∑
j=1

Yσn(j)Yσn(j+1),
1
n

n∑
j=1

Yσn(j),
1
n

n∑
j=1

Y 2
σn(j)

 .
that amounts to prove a CLT for 1

n

n−1∑
j=1

Yσn(j)Yσn(j+1),
1
n

n−1∑
j=1

Yσn(j),
1
n

n−1∑
j=1

Y 2
σn(j)

 ,
since f is bounded. Secondly, we use the so-called delta method [39, Theorem 3.1] to
conclude to Theorem 4.1.
It is worth noticing that the permutation on the W ’s do not affect the result as seen in
the sequel. For j = 1, . . . n− 1, introducing

∆n,j := f
(
Xσn(j),Wj

)
− f

(
j

n+ 1 ,Wj

)
, Wn,j :=

( j

n+ 1 ,Wj

)
(29)

leads to Yσn(j) = f
(
Xσn(j),Wσn(j)

) L= f
(
Xσn(j),Wj

)
= ∆n,j + f (Wn,j) and

Yσn(j)Yσn(j+1) = f
(
Xσn(j),Wσn(j)

)
f
(
Xσn(j+1),Wσn(j+1)

)
L= f

(
Xσn(j),Wj

)
f
(
Xσn(j+1),Wj+1

)
=
(
f (Wn,j) + ∆n,j

)(
f (Wn,j+1) + ∆n,j+1

)
= f (Wn,j) f (Wn,j+1) + ∆n,jf (Wn,j+1) + ∆n,j+1f (Wn,j) + ∆n,j∆n,j+1.
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Thus we are led to establish a CLT for

Zn = 1
n

n−1∑
j=1


f(Wn,j)f(Wn,j+1) + ∆n,jf (Wn,j+1) + ∆n,j+1f (Wn,j) + ∆n,j∆n,j+1

f(Wn,j) + ∆n,j(
f(Wn,j) + ∆n,j

)2

 . (30)

Let us discard the negligible terms in the CLT for Zn. In that view, noticing that

E
[
Xσn(j)

]
= j

n+ 1 and Var(Xσn(j)) = j(n− j + 1)
(n+ 1)2(n+ 2) = E

[(
Xσn(j) −

j

n+ 1

)2]
6

4
n+ 2 ,

we first establish

Xσn(j) −
j

n+ 1 = OP

(
1√
n

)
. (31)

As explained below, (31) will imply

1
n

n−1∑
j=1

∆2
n,j = OP

( 1
n

)
and 1

n

n−1∑
j=1

∆n,j∆n,j+1 = OP

( 1
n

)
. (32)

First of all, we expand ∆n,j (resp. ∆n,j+1) using the Taylor-Lagrange formula, for any
j = 1, . . . n− 1 and we obtain

∆n,j =
(
Xσn(j) −

j

n+ 1

)
fx (Wn,j) + 1

2

(
Xσn(j) −

j

n+ 1

)2
fxx

(
δn,j,Wσn(j)

)
, (33)

where δn,j (resp. δn,j+1) lies in the unordered segment (Xσn(j), j/(n+1)) (resp. (Xσn(j+1), (j+
1)/(n + 1))) and where fx and fxx are the first and second derivatives of f with respect
to the first coordinate. This leads to expansions for ∆2

n,j and ∆n,j∆n,j+1:

∆2
n,j =

(
Xσn(j) −

j

n+ 1

)2(
fx (Wn,j) + 1

2

(
Xσn(j) −

j

n+ 1

)
fxx

(
δn,j,Wσn(j)

))2

∆n,j∆n,j+1 =
(
Xσn(j) −

j

n+ 1

)(
Xσn(j+1) −

j + 1
n+ 1

)
×
(
fx (Wn,j) + 1

2

(
Xσn(j) −

j

n+ 1

)
fxx

(
δn,j,Wσn(j)

))
×
(
fx (Wn,j+1) + 1

2

(
Xσn(j+1) −

j + 1
n+ 1

)
fxx

(
δn,j+1,Wσn(j+1)

))
.

Finally, using the boundedness of f , fx, and fxx, together with (31), (32) follows.
Remark that the proof of (32) yields also

1
n

n−1∑
j=1

∆n,j = OP

(
1√
n

)
, (34)

from which it is clear that this term will contribute in the CLT on Zn. Then (32) entails
that the asymptotic study reduces to that of the empirical mean of Zn,j = Bn,j + Cn,j
where

Bn,j :=

f (Wn,j) f (Wn,j+1)
f(Wn,j)
f(Wn,j)2

 and Cn,j :=

∆n,jf (Wn,j+1) + ∆n,j+1f (Wn,j)
∆n,j

2∆n,jf(Wn,j)

 . (35)

First, we consider Bn,j in (35) and we establish the following result, the proof of which
has been postponed to Appendix B.2.
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Lemma B.1. As n→∞, the random vector Bn given by

1
n

n−1∑
j=1

Bn,j = 1
n

n−1∑
j=1

(
f (Wn,j) f (Wn,j+1) , f (Wn,j) , f (Wn,j)2

)>

satisfies a CLT. More precisely,
√
n
(
Bn −mB

) L−→
n→∞

N3(0,ΣB), where

mB :=
(
E[Y Y ′],E[Y ],E[Y 2]

)>
, (36)

Y ′ = f(X,W ′), W ′ is an independent copy of W , and ΣB has an explicit expression given
in Appendix B.2.

Remark that Y ′ is the so-called Pick-Freeze version of Y with respect to X. Secondly,
we establish a conditional CLT for the empirical mean of the Cn,j’s defined in (35). The
reader is referred to Appendix B.3 for the proof of this result.

Lemma B.2. There exists a measurable set Π ∈ ΩW having PW -probability one such that,
for any ωW ∈ Π, we have

√
nCn(·, ωW ) LX−→

n→∞
N3(0,ΣC).

Moreover, ΣC does not depend on ωW and has an explicit expression given Appendix B.3.

Considering the characteristic function of the vector
√
n(Bn − E[Bn], Cn), one may write

E
[
ei(
√
n〈s,(Bn−E[Bn])〉+

√
n〈t,Cn〉)

]
= E

[
ei
√
n〈s,(Bn−E[Bn])〉E

[
ei
√
n〈t,Cn〉

∣∣∣FW ]]
for any s and t ∈ R3. On the one hand, E

[
ei
√
n〈t,Cn〉

∣∣∣FW ] converges a.s. to exp{−t>ΣCt/2}
which is not random. On the other hand,

√
n〈s, (Bn − E[Bn])〉 converges in distribution

to a Gaussian random variable denoted by Bs. By Slutsky’s lemma,(√
n〈s, (Bn − E[Bn])〉,E

[
ei
√
n〈t,Cn〉

∣∣∣FW ])
converges in distribution to (Bs, exp{−t>ΣCt/2}). We consider the application h : (u, v) ∈
R × D(0, 1) 7→ eiuv ∈ C where D(0, 1) is the unit disc in C. The continuity and the
boundedness of h lead to the convergence in distribution of ei

√
n〈s,(Bn−E[Bn])〉

[
ei
√
n〈t,Cn〉

∣∣∣FW ]
and we conclude to the asymptotic normality of

√
n(Bn−E[Bn], Cn) to a six-dimensional

Gaussian random vector with zero mean and variance-covariance matrix
(

ΣB 0
0 ΣC

)
. It

remains to apply the so-called delta method [39, Theorem 3.1] and Slutsky’s lemma to
get the required result. The details of the computation of the asymptotic variance σ2 can
be found in Appendix B.4.

B.2 Proof of Lemma B.1
One has

E[Bn] = 1
n

n−1∑
j=1

(
E [f (Wn,j) f (Wn,j+1)] ,E [f (Wn,j)] ,E

[
f (Wn,j)2

])>
,
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the first coordinate of which converges as n→∞ to∫
E [f (x,W ) f (x′,W ′)] dL(X,X)(x, x′) =

∫ 1

0
E [f (x,W ) f (x,W ′)] dx

= E [E [f (X,W ) f (X,W ′) |X]]
= E [f (X,W ) f (X,W ′)] = E [Y Y ′] .

The two other coordinates can be handled similarly leading to

E[Bn] →
n→∞

(
E[Y Y ′],E[Y ],E[Y 2]

)>
= mB.

We apply the CLT for dependent variables proved in [28] to B̃1
n,j, the centered version

of the random variables f
(
Wn,j

)
f
(
Wn,j+1

)
/
√
n with m = 1, α = 0, and because f is

bounded (so is B̃1
n,j). Assumptions (1) and (2) in [28] obviously hold, the assumption (3)

is naturally fulfilled and assumption (4) is a mere consequence of Chebyshev’s inequality
and the boundedness of f . Now, it remains to check that assumption (5) holds. We have

n−1∑
i,j=1

Cov(B̃1
n,i, B̃

1
n,j) = 1

n

n−1∑
i,j=1

Cov (f (Wn,i) f (Wn,i+1) , f (Wn,j) f (Wn,j+1))

= 1
n

n−1∑
j=1

Var (f (Wn,j) f (Wn,j+1)) + 2
n

n−2∑
j=1

Cov (f (Wn,j) f (Wn,j+1) , f (Wn,j+1) f (Wn,j+2)) .

On the one hand, by [17, Lemma 1.1],

1
n

n−1∑
j=1

Var (f (Wn,j) f (Wn,j+1)) →
n→∞

∫
Var (f (x,W ) f (x′,W ′)) dL(X,X)(x, x′)

=
∫ 1

0
Var (f (x,W ) f (x,W ′)) dx = E [Var (f (X,W ) f (X,W ′) |X)] = E [Var (Y Y ′|X)] ,

where W ′ is an independent copies of W , Y = f(X,W ), and Y ′ = f(X,W ′). On the
other hand, by [17, Lemma 1.1],

1
n

n−2∑
j=1

Cov (f (Wn,j) f (Wn,j+1) , f (Wn,j+1) f (Wn,j+2))

→
n→∞

E [Cov (f (X,W ) f (X,W ′) , f (X,W ′) f (X,W ′′) |X)] = E [Cov (Y Y ′, Y Y ′′|X)] ,

where W ′ and W ′′ are two independent copies of W . Further, Y = f(X,W ), Y ′ =
f(X,W ′), and Y ′′ = f(X,W ′′). Actually, notice that all linear combination of the coor-
dinates of (

f(Wn,j)f(Wn,j+1), f(Wn,j), f(Wn,j)2
)>

(37)

is a one-dependent random variable. In addition, following the same lines as above, one
may check that any linear combination still satisfies the assumptions of [28]. Hence, any
linear combination of the coordinates of Bn satisfies a CLT so that Lemma B.1 is proved,
up to the computation of the asymptotic variance-covariance matrix ΣB done in what
follows.
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Computation of the asymptotic covariance matrix ΣB

We consider a linear combination of the random vector in (37) given by

uf(Wn,j)f(Wn,j+1) + vf(Wn,j) + wf(Wn,j)2,

where (u, v, w) ∈ R3. This one-dimensional random vector is one-dependent and its
centered version normalized by

√
n, denoted by B̃n,j, satisfies the assumptions of [28]. To

calculate the asymptotic variance-covariance matrix ΣB, we compute explicitly the limit
of

n−1∑
i,j=1

Cov(B̃n,i, B̃n,j),

as n → ∞ using [17, Lemma 1.1]. It remains to take (1, 0, 0), (0, 1, 0) and (0, 0, 1)
to get the diagonal terms of the asymptotic variance-covariance matrix and to solve a
three-dimensional system of equations to get the remaining terms. Finally, as computed
previously and using notation of [17, Lemma 1.1], the first diagonal term of ΣB is :

Σ1,1
B =

∫
Var (f (x,W ) f (x′,W ′)) dL(X,X)(x, x′)

+ 2
∫

Cov (f (x,W ) f (x′,W ′) , f (x′,W ′) f (x′′,W ′′)) dL(X,X,X)(x, x′, x′′)

=
∫ 1

0
Var (f (x,W ) f (x,W ′)) dx+ 2

∫ 1

0
Cov (f (x,W ) f (x,W ′) , f (x,W ′) f (x,W ′′)) dx

= E [Var (f (X,W ) f (X,W ′) |X)] + 2E [Cov (f (X,W ) f (X,W ′) , f (X,W ′) f (X,W ′′) |X)]
= E [Var (Y Y ′|X)] + 2E [Cov (Y Y ′, Y Y ′′|X)] ,

where we remind that Y = f(X,W ), Y ′ = f(X,W ′), and Y ′′ = f(X,W ′′) with W ′ and
W ′′ independent copies of W . The other terms are

Σ2,2
B =

∫ 1

0
Var (f (x,W )) dx = E [Var (f (X,W ) |X)] = E [Var(Y |X)] ,

Σ3,3
B =

∫ 1

0
Var

(
f (x,W )2

)
dx = E

[
Var

(
Y 2|X

)]
,

Σ1,2
B = Σ2,1

B = 2
∫ 1

0
Cov (f (x,W ) f (x,W ′) , f (x,W )) dx = 2E [Cov (Y Y ′, Y |X)] ,

Σ1,3
B = Σ3,1

B = 2
∫ 1

0
Cov

(
f (x,W ) f (x,W ′) , f (x,W )2

)
dx = 2E

[
Cov

(
Y Y ′, Y 2|X

)]
,

Σ2,3
B = Σ3,2

B =
∫ 1

0
Cov

(
f (x,W ) , f (x,W )2

)
dx = E

[
Cov(Y, Y 2|X)

]
.

B.3 Proof of Lemma B.2
Let ωW ∈ Π as defined in [17, Lemma 1.1]. The aim is to establish a CLT for

√
nCn,j(·, ωW ).

To ease the reading, we omit the notation (·, ωW ) as classically done in probability. First,
dealing with the first coordinate f (Wn,j+1) ∆n,j + f (Wn,j) ∆n,j+1 of Cn,j defined in (35),
one has

f (Wn,j+1) ∆n,j =
(
Xσn(j) −

j

n+ 1

)
f (Wn,j+1) fx (Wn,j)

+ 1
2

(
Xσn(j) −

j

n+ 1

)2
f (Wn,j+1) fxx (δn,j,Wj)
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using the expansion of ∆n,j given in (33). By (31) and using the boundedness of f and
fxx, we get that

1
n

n−1∑
j=1

(
Xσn(j) −

j

n+ 1

)2
f (Wn,j+1) fxx (δn,j,Wj)

is OP (1/n). We follow the same lines to treat the term f (Wn,j) ∆n,j+1 and thus

1
n

n−1∑
j=1

f (Wn,j+1) ∆n,j + f (Wn,j) ∆n,j+1 = 1
n

n−1∑
j=1

(
Xσn(j) −

j

n+ 1

)
f (Wn,j+1) fx (Wn,j)

+ 1
n

n−1∑
j=1

(
Xσn(j+1) −

j + 1
n+ 1

)
f (Wn,j) fx (Wn,j+1) +OP

( 1
n

)

= 1
n

n−1∑
j=1

(
Xσn(j) −

j

n+ 1

)
fx (Wn,j) (f (Wn,j−1) + f (Wn,j+1)) +OP

( 1
n

)
.

So that, using again the expansion of ∆n,j given in (33), (31), and the boundedness of
f and fxx to handle the second and third coordinate of Cn,j, the study of Cn reduces to
that of the random vector

1
n

n−1∑
j=1

(
Xσn(j) −

j

n+ 1

)
fx (Wn,j)

f (Wn,j−1) + f (Wn,j+1)
1

2f (Wn,j+1)

 (38)

by the independence between σn and W1, . . . ,Wn. In that view, let us consider the
following linear combination u(f(Wn,j−1)+f(Wn,j+1))+v+2wf(Wn,j+1), where (u, v, w) ∈
R3 and the empirical mean

1
n

n−1∑
j=1

(
Xσn(j)−

j

n+ 1
)
fx (Wn,j)× (u(f(Wn,j−1) + f(Wn,j+1)) + v + 2wf(Wn,j+1)) . (39)

Now it remains to apply [17, Lemma 1.4] 2 with χj = (Wj−1,Wj,Wj+1) and ψ = ψuvw
with

ψuvw

(
j − 1
n+ 1 ,

j

n+ 1 ,
j + 1
n+ 1 , χj

)
= fx (Wn,j) (u(f(Wn,j−1) + f(Wn,j+1)) + v + 2wf(Wn,j+1)) ,

(40)

noticing that, as n → ∞, (1/n)∑n−1
j=1 δ(j−1)/(n+1),j/(n+1),(j+1)/(n+1),χj converges in distri-

bution to Q = L(X,X,X) ⊗ LW ⊗ LW ⊗ LW by [17, Lemma 1.1]. Thus we deduce that
the empirical mean in (39) converges in distribution for any 3-uplet (u, v, w). Since any
linear combination of the components of the random vector defined in (38) satisfies a
CLT, so does the random vector itself. The proof of Lemma B.2 is now complete, up to
the computation of the asymptotic variance-covariance matrix ΣC done in the paragraph
that follows.

2A slightly generalization of this lemma is required to handle the pair (j/(n+1), (j+1)/(n+1)) rather
than the quantity j/n. Its proof comes directly following the same lines as in the proof of this lemma
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Computation of the asymptotic covariance matrix ΣC

We use the explicit expression (4) in the proof of [17, Lemma 1.4] of the asymptotic
variance σ2

ψ (actually a slightly generalized version of the lemma) with Q = L(X,X,X) ⊗
LW ⊗ LW ⊗ LW and with ψ given by (40). Then taking the values (1, 0, 0), (0, 1, 0)
and (0, 0, 1) leads to the diagonal terms of the asymptotic variance-covariance matrix ΣC

while solving a three-dimensional system of equations provides the remaining terms. For
instance, reminding that χj = (Wj−1,Wj,Wj+1) and Wn,j = (j/(n+ 1),Wj) and

ψ100

(
j − 1
n+ 1 ,

j

n+ 1 ,
j + 1
n+ 1 , χj

)
= fx (Wn,j) (f(Wn,j−1) + f(Wn,j+1))

(namely, ψuvw with (u, v, w) = (1, 0, 0)), we have

Σ1,1
C =

∫
ψ100(x1, x

′
1, x
′′
1, χ1)ψ100(x2, x

′
2, x
′′
2, χ2)x1 ∧ x2 ∧ x′1 ∧ x′2 ∧ x′′1 ∧ x′′2

× dQ(x1, x
′
1, x
′′
1, χ1)dQ(x2, x

′
2, x
′′
2, χ2)−

(∫
ψ100(x, x′, x′′, χ)x ∧ x′ ∧ x′′dQ(x, x′, x′′, χ)

)2

=E[(Y1 + Y ′1)(Y2 + Y ′2)fx(X1,W1)fx(X2,W2)(X1 ∧X2)]− E[(Y + Y ′)fx(X,W )X]2,

where we remind that Y = f(X,W ) and Y ′ = f(X,W ′) with W ′ an independent copy of
W (and analogously for Y1 and Y2). Finally, the remaining terms of ΣC are:

Σ2,2
C = E[fx(X1,W1)fx(X2,W2)(X1 ∧X2)]− E[fx(X,W )X]2

Σ3,3
C = 4E[Y ′1Y ′2fx(X1,W1)fx(X2,W2)(X1 ∧X2)]− 4E[Y ′fx(X,W )X]2

Σ1,2
C = Σ2,1

C = E[(Y1 + Y ′1)fx(X1,W1)fx(X2,W2)(X1 ∧X2)]− E[(Y + Y ′)fx(X,W )X]E[fx(X,W )X]
Σ1,3
C = Σ3,1

C = 2E[(Y1 + Y ′1)fx(X1,W1)Y ′2fx(X2,W2)(X1 ∧X2)]− 2E[(Y + Y ′)fx(X,W )X]E[Y ′fx(X,W )X]
Σ2,3
C = Σ3,2

C = 2E[fx(X1,W1)Y ′2fx(X2,W2)(X1 ∧X2)]− 2E[fx(X,W )X]E[Y ′fx(X,W )X].

B.4 Asymptotic variance σ2 of Theorem 4.1
We have proved yet that

√
n

((
Bn

Cn

)
−
(
mB

0

))
L−→

n→∞
N6

(
0,
(

ΣB 0
0 ΣC

))
,

where the explicit expressions of mB, ΣB and ΣC are given in (36) of Lemma B.1, Appen-
dices B.2 and B.3 respectively. Applying the so-called delta method [39, Theorem 3.1] to
the linear function f(x, y) = x+ y, we conclude that

√
n(Zn −mB) L−→

n→∞
N3 (0,ΣB + ΣC) (41)

Further, we notice that ξSobol’n (X, Y ) L= Ψ(Zn) with Ψ(x, y, z) = (x − y2)/(z − y2). The
so-called delta method [39, Theorem 3.1] then gives

√
N
(
ξSobol’n (X, Y )− SX

) L−→
n→∞

N1(0, σ2)

where SX = Var(E[Y |X])/Var(Y ) is the first-order Sobol’ index with respect to X and
σ2 = g>(ΣB + ΣC)g with g = ∇Ψ(mB). By assumption Var(Y ) 6= 0, Ψ is differentiable

26



at mB and we will see in the sequel that g>(ΣB + ΣC)g 6= 0, so that the application of
the delta method is justified. By differentiation, we get that, for any x, y, and z so that
z 6= y2:

∇Ψ(x, y, z) =
(

1
z − y2 ,−2y z − x

(z − y2)2 ,−
x− y2

(z − y2)2

)>
(42)

so that

g = ∇Ψ(mB) =
(

1
Var(Y ) , 2E[Y ]E[Y Y ′]− E[Y 2]

Var(Y )2 ,− SX

Var(Y )

)>
= 1

Var(Y )
(
1, 2E[Y ](SX − 1),−SX

)>
.

Hence the asymptotic variance σ2 in Theorem 4.1 is finally given by σ2 = g> (ΣB + ΣC) g
where ΣB and ΣC have been defined in Appendices B.2 and B.3 respectively. The matrix
ΣB rewrites as

ΣB =

v01 + 2c01,02 2c01,03 2c01,00
2c01,03 Var(Y )(1− SX) 2c03,00
2c01,00 2c03,00 v00


where vij = E[Var(AiAj|X)], cij,kl = E[Cov(AiAj, AkAl|X)], A0 = Y , A1 = Y ′, A2 = Y ′′,
and A3 = 1 (Y and Y ′′ have been defined just before (37)). The matrix ΣC rewrites as

ΣC =

s
2
ψ100 s2

ψ110 s2
ψ101

s2
ψ110 s2

ψ010 s2
ψ011

s2
ψ101 s2

ψ011 s2
ψ001


where s2

ψ and ψuvw have been defined in [17, Equation (4)] and (40) respectively.

C Proof of the asymtotic efficiency of R1
n

Proof of Proposition 4.6. By [11, Theorems 3.4 and 3.5] and classical results on efficiency,
observe that

Un =
(
T̂n,

1
n

n∑
i=1

Yi,
1
n

n∑
i=1

Y 2
i

)>

is asymptotically efficient, componentwise, for estimating U = (E[E[Y |X]2],E[Y ],E[Y 2])>.
The efficiency in product space [39, Theorem 25.50] yields the joint efficiency from this
componentwise efficiency. Now, we consider once again the function Ψ introduced in the
proof of Theorem 4.1. Since Ψ is differentiable on R3 \

{
(x, y, z)

∣∣∣ z 6= y2
}
, the efficiency

and delta method result [39, Theorem 25.47] implies that (Ψ (Un))n is asymptotically
efficient for estimating Ψ(U). The conclusion follows as Ψ(U) = SX .
Let us compute the minimal variance. To do so, assume that the joint distribution P of
(X, Y ) is absolutely continuous with respect to the Cartesian product PX ⊗ PY , namely
P (dx, dy) = f(x, y)PX(dx)PY (dy). Then

E[Y |X = x] =
∫
yfY |X=x(y)PY (dy) =

∫
y

f(x, y)∫
f(x, y)PY (dy)PY (dy).
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For any t ∈ (0, 1), let us introduce ft(x, y) := (1 + th(x, y))f(x, y) and

Pt(dx, dy) := (1 + th(x, y))f(x, y)PX(dx)PY (dy)

where h(x, y) > −1 and
∫
h(x, y)f(x, y)Px(dx)PY (dy) = 0. Now we consider the function

F (t) :=
∫∫

x,y′

(∫
yft(x, y)PY (dy)∫
ft(x, y)PY (dy)

)2

Pt(dx, dy′).

Denoting by G(x, t) :=
∫
yft(x, y)PY (dy)/

∫
ft(x, y)PY (dy), one gets

F ′(t) =
∫∫

x,y′

[
2G(x, t) ∂

∂t
G(x, t)ft(x, y′) +G(x, t)2h(x, y′)f(x, y′)

]
PX(dx)PY (dy′)

so that F ′(0) = 〈E[Y |X = x](2y − E[Y |X = x]), h〉P . The interest function I :=
E[Y |X](2Y − E[Y |X]) has E[E[Y |X]2] and variance Var(E[Y |X](2Y − E[Y |X])). Hence
it remains to apply the delta method to get the final (minimal) variance

g>

 Var(I) Cov(I, Y ) Cov(I, Y 2)
Cov(I, Y ) Var(Y ) Cov(Y, Y 2)
Cov(I, Y 2) Cov(Y, Y 2) Var(Y 2)

 g
where g := ∇Ψ(U), and by (42),

g =
(

1
Var(Y ) , 2E[Y ]E[E[Y |X]2]− E[Y 2]

Var(Y )2 ,− SX

Var(Y )

)>
= 1

Var(Y )
(
1, 2E[Y ](SX − 1),−SX

)>
.

Finally, one gets the minimal variance mentioned in Proposition 4.6.

Remark C.1. This result can be also obtained making a LAN perturbation of the func-
tional derivative on the tangent space. In this setting and following the notation of [39,
Chapitre 25], let us consider the functional Φ defined by

Φ(P ) := EP [EP [Y |X]]− EP [Y ]2
EP [Y 2]− EP [Y ]2 .

Then, with the notation Pt for t ∈ (0, 1) introduced in the above proof, one gets

d

dt
Φ(Pt)|t=0

= 1
Var(Y )〈E[Y |X](2Y − E[Y |X])− 2E[Y ]Y − SX(Y 2 − 2E[Y ]Y ), h〉P

leading to Φ̃ := 1
Var(Y )

(
2E[Y ]Y (1− SX) + SXY 2 − E[Y |X](E[Y |X]− 2Y )

)
and the min-

imal variance is given by σ2
min = Var(Φ̃) = 1

Var(Y )2Var
(
2E[Y ](1− SX)Y + SXY 2 + E[Y |X](E[Y |X]− 2Y )

)
that coincides with the expression obtained via the delta method in Proposition 4.6.
Supplement: Technical results
We present and prove technical results that will be used in the proofs of the main results.
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