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Abstract

We propose a new statistical estimation framework for a large family of global
sensitivity analysis indices. Our approach is based on rank statistics and uses an
empirical correlation coefficient recently introduced by Chatterjee [9]. We show how
to apply this approach to compute not only the Cramér-von-Mises indices, which
are directly related to Chatterjee’s notion of correlation, but also first-order Sobol
indices, general metric space indices and higher-order moment indices. We establish
consistency of the resulting estimators and demonstrate their numerical efficiency,
especially for small sample sizes. In addition, we prove a central limit theorem for
the estimators of the first-order Sobol indices.

Key words Global sensitivity analysis, Cramér-von-Mises distance, Pick-Freeze method,
Chatterjee’s coefficient of correlation, Sobol indices estimation.

AMS subject classification 62G05, 62G20, 62G30.

1 Introduction
The use of complex computer models for the analysis of applications from the sciences,
engineering and other fields is by now routine. Often, the models are expensive to run in
terms of computational time. It is thus crucial to understand, with just a few runs, the
global influence of one or several inputs on the output of the system under study [33].
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When these inputs are regarded as random elements, this problem is generally referred
to as Global Sensitivity Analysis (GSA). We refer to [11, 32, 35] for an overview of the
practical aspects of GSA.
A popular and highly useful tool to quantify input influence is the Sobol indices. These
indices were first introduced in [36] and are well tailored to the case of scalar outputs.
Thanks to the Hoeffding decomposition [21], the Sobol indices compare the conditional
variance of the output knowing some of the input variables to the total variance of the
output. Many different estimation procedures of the Sobol indices have been proposed
and studied. Some are based on Monte-Carlo or quasi Monte-Carlo design of experiments
(see [23, 27] and references therein for more details). In particular, an efficient estimation
of the Sobol indices can be performed through the so-called Pick-Freeze method. For the
description of this method and its theoretical study (consistency, Central Limit Theorem
(CLT), concentration inequalities and Berry-Esseen bounds), we refer to [22, 16] and
references therein. Some other estimation procedures are based on different designs of
experiment using for example polynomial chaos (see [37] and the reference therein for
more details).
Various generalizations of the Sobol indices have been developed. The issue of vectorial
outputs, as in the case with time dependent or functional quantities of interest, is ad-
dressed in [1, 15, 24]. In particular, in [15], the authors recover the indices from [24]
and show that they are a proper generalization of the classical Sobol indices in higher
dimension. Moreover, they provide the theoretical study of their Pick-Freeze estimators
and extend their definitions to the case of outputs valued in a separable Hilbert space.
Since Sobol indices are variance based, they only quantify the second-order influence of the
inputs. Many authors proposed other criteria to compare the conditional distribution of
the output knowing some of the inputs to the distribution of the output. In [27, 29, 28], the
authors use higher moments to define new indices while, in [4, 5, 10], the use of divergences
or distances between measures allows to define new indices. In [13], contrast functions
are exploited to build indices that are goal oriented. Although these works define nice
theoretical indices, the existence of a relevant statistical estimation procedure is still in
most cases an open question. The case of vectorial-valued computer codes is considered
in [17] where a sensitivity index based on the whole distribution is defined. Within
this framework, the authors show that the Pick-Freeze estimation procedure provides
an asymptotically Gaussian estimator of the index. The cost of an estimator naturally
depends on the cost of each evaluation of the code and on the number of evaluations.
The Pick-Freeze scheme requires 3N evaluations of the output code for the evaluation
of a single index and leads to a convergence rate

√
N . Hence, if the number of input

variables is p, the total number of calls of the code is (p + 3)N that grows linearly with
p. This approach has been generalized in [14], where the authors considered computer
codes valued on a compact Riemannian manifold. They use the Pick-Freeze scheme to
provide a consistent estimator requiring 4N evaluations of the output code. The authors
of [19] extend the previous indices to general metric spaces and propose U-statistics-based
estimators improving the classical Pick-Freeze procedure.
We emphasize that the Pick-Freeze estimation procedure allows the estimation of several
sensitivity indices: the classical Sobol indices for real-valued outputs, as well as their
generalization for vectorial-valued codes, but also the indices based on higher moments
[29] and the Cramér-von-Mises indices which take into account on the whole distribution
[17, 14]. In addition, the Pick-Freeze estimators have desirable statistical properties such
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as consistency, fixed rate of convergence and exponential inequalities. They have, however,
two major drawbacks. First, they rely on a particular experimental design that may be
unavailable in practice. Second, the number of model calls to estimate all first-order Sobol
indices grows linearly with the number of input parameters. For example, if we consider
p = 99 input parameters and only n = 1000 calls are allowed, then only a sample of size
n/(p+ 1) = 10 is available to estimate each single first-order Sobol index.
In a recent work [9], Chatterjee studies the dependence between two variables by intro-
ducing an empirical correlation coefficient based on rank statistics, see Section 2.3 below
for the precise definition. Further, the quantification of the dependence has also been
investigated in the bivariate case (namely, in the copula setting), see [38, 12, 3]. The
striking point of [9] is that this empirical correlation coefficient converges almost surely
to the Cramér-von-Mises index introduced in [17] as the sample size goes to infinity. In
this paper, we show how to embed Chatterjee’s method in the GSA framework, thereby
eliminating the two drawbacks of the classical Pick-Freeze estimation mentioned above.
In addition, we generalize Chatterjee’s approach to allow the estimation of a large class
of GSA indices which includes the Sobol indices and the higher-order moment indices
proposed by Owen [27, 29, 28]. Using a single sample of size n, it is now possible to
estimate at the same time all the first-order Sobol indices, the Cramér-von-Mises indices,
and other useful sensitivity indices. Furthermore, we show here that this new procedure
provides estimators also converging at rate

√
n by proving a CLT.

The paper is organized as follows. In Section 2, we recall the definition of the Cramér-von-
Mises indices and their classical Pick-Freeze estimation. Further, we show how they can
be also estimated using Chatterjee’s method. In Section 3, we present the generalization
of Chatterjee’s method to estimate sensitivity indices together with the consistency of the
estimation procedure. In addition, we recover the first-order Sobol indices and prove the
asymptotic normality of their estimators. Section 4 considers other classical sensitivity
indices while Section 5 is dedicated to a numerical comparison between the Pick-Freeze
estimation procedure and Chatterjee’s method. We first compare the numerical perfor-
mances of both estimators on a linear model. Finally, we consider a real life application.
As expected, Chatterjee’s estimation method outperforms the classical Pick-Freeze pro-
cedure, even for small sample sizes (which are common in practice). Conclusions and
perspectives are offered in Section 6.
After a first submission of this paper, we have been aware of the very nice work of Broto
et al ([8]) concerning the statistical estimation of Shapley effect where the use of closest
neighbors is also put in action to built consistent estimates.

2 Sensitivity analysis based on Cramér-von-Mises in-
dices

2.1 Definition of Sobol and Cramér-von-Mises indices
The quantity of interest (QoI) Y is obtained from the numerical code and is regarded as
a function f of the vector of the distributed input (Xi)i=1,··· ,p

Y = f(X1, . . . , Xp), (1)

3



where f is defined on the state space E1 × . . . × Ep, Xi ∈ Ei, i = 1, . . . , p. Classically,
the Xi’s are assumed to be independent random variables and a sensitivity analysis is
performed using the Hoeffding decomposition [2, 39] leading to the standard Sobol indices
[35]. This assumption is made throughout the paper, unless explicitly stated otherwise.
More precisely, assume f to be real-valued and square integrable and let u be a subset
of {1, . . . , p} and ∼u its complementary set in {1, . . . , p}. Setting Xu = (Xi, i ∈ u) and
X∼u = (Xi, i ∈∼u), the corresponding Sobol indices take the form

Su = Var (E[Y |Xu])
Var(Y ) and S∼u = Var (E[Y |X∼u])

Var(Y ) . (2)

By definition, the Sobol indices quantify the fluctuations of the output Y around its mean.
When the practitioner is not interested in the mean behavior of Y but rather in its median,
in its tail, or even in its quantiles, the Sobol indices become less appropriate to quantify
sensitivity. GSA must then be performed in a framework which takes into account more
than one specific moment, such as the variance for Sobol indices. The Cramér-von-Mises
indices introduced in [17] provide alternative indices based on the whole distribution.
They are defined by

Su
2,CVM =

∫
R E

[
(F (t)− Fu(t))2

]
dF (t)∫

R F (t)(1− F (t))dF (t) (3)

where F is the cumulative distribution function of Y

F (t) = P (Y 6 t) = E
[
1{Y 6t}

]
(t ∈ R)

and Fu is its Pick-Freeze version, namely the conditional distribution function of Y con-
ditionally on Xu:

Fu(t) = P (Y 6 t|Xu) = E
[
1{Y 6t}|Xu

]
(t ∈ R).

Such a definition stems from the Hoeffding decomposition of the collection of the indicator
random variables (1{Y 6t})t∈R. It is worth noting that this definition naturally extends to
multivariate outputs.

2.2 Classical estimation of Cramér-von-Mises indices using the
Pick-Freeze method

The estimation of the Cramér-von-Mises index (3) reduces to the estimation of both its
numerator and its denominator. The numerator of Su

2,CVM can be rewritten as∫
R
E
[
(F (t)− Fu(t))2

]
dF (t) = E

[
E
[
(F (Y ′)− Fu(Y ′))2 |Y ′

]]
= E

[
Var

(
E
[
1{Y 6Y ′}|Xu, Y

′
]
|Y ′
)]

where Y ′ is an independent copy of Y . A Monte-Carlo scheme can be used to estimate
the Cramér-von-Mises indices. The corresponding Pick-Freeze approach from [16, 17, 22]
relies on expressing the variances of the conditional expectations in terms of covariances
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which are easily and well estimated by their empirical versions. To that end, we define,
for any subset u of {1, . . . , p}

Y u := f(Xu). (4)

where Xu is such that Xu
u = Xu and Xu

i = X ′i if i ∈∼ u, X ′i being an independent copy
of Xi. The estimation procedure relies on the following lemma which is still valid for any
function g ∈ L2 (not only g(y) = 1{y6t}).

Lemma 2.1.

Var(E[1{Y 6t}|Xu]) = Cov(1{Y 6t},1{Y u6t}). (5)

Proof. Let Z = 1{Y 6t} and Zu = 1{Y u6t}. Since, Z and Zu share the same distribution
and are independent conditionally to Xu, we have

Var(E[Z|Xu]) = E[E[Z|Xu]2]− E[E[Z|Xu]]2

= E[E[Z|Xu]E[Zu|Xu]]− E[E[Z|Xu]]E[E[Zu|Xu]]
= E[E[ZZu|Xu]]− E[Z]E[Zu]
= E[ZZu]− E[Z]E[Zu]
= Cov(Z,Zu).

Consequently, the Monte-Carlo estimation can be done as follows. An n-sample (Y1, . . . , Yn)
of the output Y and an n-sample (Y u

1 , . . . , Y
u
n ) of its Pick-Freeze version Y u are required.

In addition, in order to deal with the integral with respect to dF (t) in (3), a third indepen-
dent n sample (W1, . . . ,Wn) of the output Y is necessary. Then the empirical estimator
of S1

2,CVM is

1
n

∑n
k=1

(
1
n

∑n
j=1 1{Yj6Wk}1{Y u

j 6Wk} − 1
n

∑n
j=1 1{Yj6Wk}

1
n

∑n
j=1 1{Y u

j 6Wk}
)

1
n

∑n
k=1

(
1
n

∑n
j=1 1{Yj6Wk} −

(
1
n

∑n
j=1 1{Yj6Wk}

)2
) . (6)

As showed in [17], this estimator is consistent and asymptotically Gaussian (i.e. the rate
of convergence is

√
n). The limiting variance can be computed explicitly, allowing the

practitioner to build confidence intervals. In particular, if one wants to estimate all the
first-order indices (that is the p first-order Sobol indices) and the p Cramér-von-Mises
indices, (p + 2)n calls of the computer code are required. The number of calls grows
linearly with respect to the number of input parameters. This is a practical issue for large
input dimension domains. A second drawback of this estimation scheme comes from the
need of the particular Pick-Freeze design that is not always available.

2.3 Chatterjee’s method
In [9], Chatterjee considers a pair of real-valued random variables (V, Y ) and an i.i.d.
sample (Vj, Yj)16j6n. In order to simplify the presentation, we assume that the laws of
V and Y are both diffuse (ties are excluded). The pairs (V(1), Y(1)), . . . , (V(n), Y(n)) are
rearranged in such a way that

V(1) < . . . < V(n).
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Let rj be the rank of Y(j), that is,

rj = #{j′ ∈ {1, . . . , n}, Y(j′) 6 Y(j)}.

The new correlation coefficient defined by Chatterjee in [9] is

ξn(V, Y ) := 1−
3∑n−1

j=1 |rj+1 − rj|
n2 − 1 . (7)

The author proves that ξn(V, Y ) converges almost surely to a deterministic limit ξ(V, Y )
which is equal to the Cramér-von-Mises sensitivity index SV2,CVM with respect to V as
soon as V is one of the random variables X1, ..., Xp in the model (1) that are assumed to
be real-valued. Further, he also proves a CLT when V and Y are independent.
Chatterjee also provides a rank statistics analogue to Lemma 2.1. More precisely, let π(j)
be the rank of Vj in the sample (V1, . . . , Vn) of V and define

N(j) =

π−1(π(j) + 1) if π(j) + 1 6 n,

π−1(1) if π(j) = n.
(8)

Observe that ξn(V, Y ) can be rewritten as Qn/Sn where

Qn = 1
n

n∑
j=1

(
min{Fn(Yj), Fn(YN(j))} − (1− Fn(Yj))2

)

= 1
n

n∑
j=1

( 1
n

n∑
k=1

1{Yk6Yj}1{Yk6YN(j)} −
( 1
n

n∑
k=1

1{Yj6Yk}

)2)
,

Sn = 1
n

n∑
j=1

Fn(Yj)(1− Fn(Yj)),

where Fn stands for the empirical distribution function of Y : Fn(t) = 1
n

∑n
k=1 1{Yk6t}. The

analogue of the Pick-Freeze version Y V with respect to V of Y becomes YN and Lemma
2.1 is replaced by the formula

E[1{Yj>t}1{YN(j)>t}|V1, . . . , Vn] = GVj(t)GVN(j)(t) (9)

for all j = 1, . . . , n that is mentioned in the proof of Lemma 7.10 in [9, p.24], with GV

the conditional survival function: GV (t) = P(Y > t|V ).
Remark 2.2. In [9], the author considers also the random variables Vn,j due to the fact
that ties are possible. In our paper, we assume that the distributions of V and Y are
diffuse rendering the introduction of the Vn,j’s unworthy since in this case, Vn,j = VN(j).
It is worth noticing that a unique n sample of input-output provides consistent estimations
of the p first-order Cramér-von-Mises indices.

3 Generalization of Chatterjee’s method

3.1 A universal estimation procedure of sensitivity indices
In this section, we propose a universal estimation procedure of expectations of the form

E[E[g(Y )|V ]E[h(Y )|V ]],
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for two integrable functions g and h. This result is a generalization of (9) and can be
interpreted as an approximation of (5). To this end, we introduce the function ΨV defined
by

ΨV (g) = E[g(Y )|V ] (10)

for any integrable function g. Let Fn be the σ-algebra generated by {V1, . . . , Vn}. Note
that in Section 2.3, we have considered g(x) = gt(x) = 1{x>t} so that ΨV (g) = P(Y >
t|V ) = GV (t).

Lemma 3.1. Let g and h be two integrable functions such that gh is also integrable. Let
(Vj, Yj)16j6n be an n-sample of (V, Y ). Consider a Fn-measurable random permutation
σn such that σn(j) 6= j, for all j = 1, . . . , n. Then

E
[
g(Yj)h(Yσn(j))|V1, . . . , Vn

]
= ΨVj(g)ΨVσn(j)(h). (11)

The previous lemma (the proof of which has been postponed to Appendix A) leads to a
generalization of the first part of the numerator of ξn defined in (7). Following the same
lines as in [9], one may prove that such a quantity converges almost surely as n → ∞
under some mild conditions.

Proposition 3.2. Let g and h be two bounded measurable functions. Consider a Fn-
measurable random permutation σn with no fix point (i.e. σn(j) 6= j), for all j = 1, . . . , n.
In addition, we assume that for any j = 1, . . . , n, Vσn(j) → Vj as n→∞ with probability
one. Then χn(V, Y ; g, h) defined by

χn(V, Y ; g, h) = 1
n

n∑
j=1

g(Yj)h(Yσn(j)) (12)

converges almost surely as n→∞ to

χ(V, Y ; g, h) = E[ΨV (g)ΨV (h)], (13)

where ΨV has been defined in (10).

The reader is referred to Appendix A for the detailed proof of Proposition 3.2.

3.2 Recovering the first-order Sobol indices
We can now leverage the above results and construct a new family of estimators for Sobol
indices. More precisely, let us consider the model (1) and assume we want to estimate
the first-order Sobol index S1 defined in (2) with respect to V = X1 assumed to be real-
valued. We then define N as in (8) where π is the rank of X1. Taking g(x) = h(x) = x
and σn = N , (11) provides the analogue to ξn to estimate the classical Sobol indices:

ξSobol
n (X1, Y ) :=

1
n

∑n
j=1 YjYN(j) −

(
1
n

∑n
j=1 Yj

)2

1
n

∑n
j=1(Yj)2 −

(
1
n

∑n
j=1 Yj

)2 , (14)

where the denominator is reduced to the empirical variance of Y . As the functions g
and h are here unbounded, Proposition 3.2 does not apply and thus offers no asymptotic
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information. However, the quantity of interest Y being generally bounded in practice,
appropriately truncated versions of g and h could be considered.
This estimator can be compared to the classical Pick-Freeze estimator which is constructed
as follows. For the estimation of S1 for instance, an n-sample (Y1, . . . , Yn) of the output
Y and an n-sample (Y 1

1 , . . . , Y
1
n ) of its Pick-Freeze version Y 1 are required. The natural

estimator of S1 is then given by

S1
n =

1
n

∑n
j=1 YjY

1
j −

(
1
n

∑n
j=1 Yj

) (
1
n

∑n
j=1 Y

1
j

)
1
n

∑n
j=1(Yj)2 −

(
1
n

∑n
j=1 Yj

)2 . (15)

A slightly different estimator that uses all the information available is introduced in [22]:

T 1
n =

1
n

∑n
j=1 YjY

1
j −

(
1
n

∑n
j=1

Yj+Y 1
j

2

)2

1
n

∑n
j=1

(Yj)2+(Y 1
j )2

2 −
(

1
n

∑n
j=1

Yj+Y 1
j

2

)2 . (16)

As for the Cramér-von-Mises estimation scheme, such an estimation procedure has been
proved to be consistent and asymptotically normal (i.e. the rate of convergence is

√
n) in

[22, 16]. The limiting variance can be computed explicitly, allowing the practitioner to
build confidence intervals. In addition, the sequence of estimators (T 1

n)n is asymptotically
efficient to estimate S1 from such a design of experiment (see, [39] for the definition of
the asymptotic efficiency and [16] for the details of the result).

3.3 A CLT for the mighty estimator of the classical first-order
Sobol indices

We establish a CLT for the estimator ξSobol
n (X1, Y ) of the first-order Sobol index

S1 = Var(E[Y |X1])
Var(Y ) .

with respect to X1 (assumed to be real-valued) under some mild assumptions on the
model f and the random input X1 in (1). The proof of the theorem is given in Appendix
B.

Theorem 3.3. Assume that X1 is uniformly distributed on [0, 1] and f in (1) is a twice
differentiable function with respect to its first coordinate. Further, we suppose that f and
its two first derivatives (with respect to its first coordinate) are bounded. Then

√
n
(
ξSobol
n (X1, Y )− S1

)
is asymptotically Gaussian with zero mean and explicit variance σ2 given in Appendix
B.5.

Remark 3.4. The boundedness of f implies that f has a fourth moment, that is the
minimal assumption to get a CLT.
The assumption on the distribution of X1 can be relaxed as stated in the following corol-
lary.
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Corollary 3.5. Let FX1 be the cumulative distribution function of X1. Assume that
f ◦ F−1

X1 is a twice differentiable function such that f ◦ F−1
X1 and its two first derivatives

are bounded. Then the conclusion of Theorem 3.3 still holds.

Observe that Theorem 3.3 and Corollary 3.5 naturally allow to build statistical tests for
testing

H0 : S1 = 0 against H1 : S1 6= 0.

One can note that Chatterjee [9] result allows to test the independence of the input X1
with respect to the output Y which is a stronger assumption than S1 = 0, this was
for example studied in [34]. In addition our result allows to compute the power of the
statistical test against any alternative of the kind H1,x : S1 6= x for any x ≤ 0.
Remark 3.6. A careful reading of the different steps of the proof shows that Theorem 3.3
can be slightly extended to more general situations involving more than two successive
order statistics and with more general second variable (X2, . . . , Xp). See the forthcoming
paper [18].

4 Recovering other classical indices

4.1 Sensitivity indices in general metric spaces
In this section, we consider a computer code of the form (1) valued in a general metric
spaceM as presented in [19]. In this context, the authors of [19] consider a family of test
functions parametrized by m elements of M (m ∈ N∗). For any a = (ai)i=1,...,m ∈ Mm,
the test functions

Mm ×M → R
(a, x) 7→ Ta(x)

are assumed to be L2-functions with respect to the product measure P⊗m⊗P onMm×M
where P is the distribution of the output, still denoted by Y . Then they define the general
metric space sensitivity index with respect to X1 by

S1
2,GMS :=

∫
Mm E

[
(E[Ta(Y )]− E[Ta(Y )|X1])2

]
dP⊗m(a)∫

Mm Var(Ta(Y ))dP⊗m(a) . (17)

This general class of indices encompasses the classical sensitivity indices, for instance,
the Sobol indices and the Cramér-von-Mises indices. Naturally, a Monte-Carlo procedure
based on the Pick-Freeze scheme can be performed to estimate S1

2,GMS.

Estimation procedure based on U-statistics In [19], the authors propose a more
efficient estimation procedure based on U-statistics (see [19, Equation (13)]). More pre-
cisely, for any 1 6 i 6 m+ 2, let yi = (yi, y1

i ) and define

Φ1(y1, . . . ,ym+1) := Ty1,...,ym(ym+1)Ty1,...,ym(y1
m+1)

Φ2(y1, . . . ,ym+2) := Ty1,...,ym(ym+1)Ty1,...,ym(y1
m+2)

Φ3(y1, . . . ,ym+1) := Ty1,...,ym(ym+1)2

Φ4(y1, . . . ,ym+2) := Ty1,...,ym(ym+1)Ty1,...,ym(ym+2).

9



In addition, set

m(1) = m(3) = m+ 1 and m(2) = m(4) = m+ 2 (18)

and define for j = 1, . . . , 4,

I(Φj) :=
∫
Mm(j)

Φj(y1, . . . ,ym(j))dP⊗m(j)
Y (y1 . . . ,ym(j)), (19)

where PY stands for the law of Y = (Y, Y 1)>. Finally, we introduce the application Ψ
from R4 to R defined by

ψ : R4 → R
(x, y, z, t) 7→ x−y

z−t .
(20)

Then one can express S1
2,GMS in the following way

S1
2,GMS = ψ (I(Φ1), I(Φ2), I(Φ3), I(Φ4)) . (21)

Following the framework of Hoeffding [21], we replace the functions Φ1,Φ2, Φ3, and Φ4
by their symmetrized version Φs

1,Φs
2, Φs

3, and Φs
4:

Φs
j(y1, . . . ,ym(j)) = 1

(m(j))!
∑

τ∈Sm(j)

Φj(yτ(1), . . . ,yτ(m(j)))

for j = 1, . . . , 4 where Sk is the symmetric group of order k. For j = 1, . . . 4, the integrals
I(Φs

j) are naturally estimated by U-statistics of order m(j). More precisely, we consider
an n i.i.d. sample (Y1, . . . ,Yn) with distribution PY and, for j = 1, . . . , 4, we define

Uj,n :=
(

n
m(j)

)−1 ∑
16i1<···<im(j)6n

Φs
j

(
Yi1 , . . . ,Yim(j)

)
. (22)

[21, Theorem 7.1] ensures that Uj,n converges in probability to I(Φj) for any j = 1, . . . , 4.
Moreover, one may also prove that the convergence holds almost surely proceeding as in
the proof of [17, Lemma 6.1]. Then we estimate S1

2,GMS by

S1
2,GMS,n := U1,n − U2,n

U3,n − U4,n
= ψ(U1,n, U2,n, U3,n, U4,n). (23)

A novel estimation procedure In light of Section 3.1, we introduce a novel estimation
ξGMS
n (X1, Y ) of S1

2,GMS in (17) as follows. The Pick-Freeze scheme is replaced by the use
of the YN(i)’s where N is the permutation defined in (8) and the integration with respect
to P⊗m is handled using a unique n-sample of Y . More precisely, the empirical estimator
ξGMS
n (X1, Y ) of S1

2,GMS is given by the ratio between

1
nm

∑
16i1,...,im6n

[
1
n

n∑
j=1

TYi1 ,··· ,Yim (Yj)TYi1 ,··· ,Yim (YNi(j))
]

− 1
nm

∑
16i1,...,im6n

[
1
n

n∑
j=1

TYi1 ,··· ,Yim (Yj)
]2

and
1
nm

∑
16i1,...,im6n

[
1
n

n∑
j=1

TYi1 ,··· ,Yim (Yj)2
]
− 1
nm

∑
16i1,...,im6n

[
1
n

n∑
j=1

TYi1 ,··· ,Yim (Yj)
]2

.
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4.2 Owen higher-order moment indices
Following [28, 29], we consider extensions to Sobol indices obtained by replacing their
numerator by higher-order moments. More precisely, for any integer q > 2, we set

H1
q := E [(E[Y |X1]− E[Y ])q] . (24)

See [17] for known properties of H1
q .

In order to construct a Pick-Freeze estimator for H1
q , we refer the reader to [17]. More

precisely, we first observe that

H1
q = E

[ q∏
m=1

(
(Y 1)m − E[Y ]

)]
=

q∑
l=0

(
q

l

)
(−1)q−lE [Y ]q−l E

[
l∏

m=1
(Y 1)m

]

with the usual convention ∏0
m=1(Y 1)m = 1. Here, Y 1

1 = Y and, for i = 2, . . . , q, Y 1
i is con-

structed independently (similarly to Y 1 in (5)). Now we construct a Monte-Carlo scheme
and consider the following Pick-Freeze design constituted by a n-sample

(
Y 1
i,j

)
(i,j)∈Iq×In

of
(
Y 1

1 , . . . , Y
1
q

)
where, for any positive integer k, Ik stands for the set {1, . . . , k}. The

resulting Monte-Carlo estimator is then

H1
q,n =

q∑
l=0

(
q

l

)
(−1)q−l

(
P

1
1

)q−l
P

1
l

where for any positive integer n, j ∈ In and l ∈ Iq, we have set

P 1
l,j =

(
q

l

)−1 ∑
k1<...<kl∈Iq

(
l∏

i=1
Y 1
ki,j

)
and P

1
l = 1

N

N∑
j=1

P 1
l,j.

This setting generalizes the estimation procedure from [16] and uses more information by
considering the means over the set of indices k1, . . . , kl ∈ Id, kn 6= km.

A novel estimation procedure We generalize the procedure proposed by Chatterjee
in order to estimate higher-order moment indices. To that end, we introduce, for all
m ∈ {1, . . . , q − 1} and j ∈ {1, . . . , n},

Nm(j) =

π−1(π(j) +m) if π(j) +m 6 n,

π−1(π(j) +m− n) if π(j) +m > n.
(25)

Note that N1 = N . It remains to update Lemma 3.1 as follows.

Lemma 4.1. Let (gm)m=0,...,q−1 be a family of measurable functions in L1(R). Let (Vj, Yj)16j6n
be an n-sample of (V, Y ). Then

E

 q−1∏
m=0

gm(YNm(i))|V1, . . . , Vn

 =
q−1∏
m=0

ψVNm(i)(gm), (26)

where by convention N0(j) = j for all j = 1, . . . , n.

11



Finally, Lemma 4.1 (with gm(y) = y, for all y ∈ R andm = 0, . . . , q−1 together with (24))
allows us to propose a more efficient estimation procedure of the higher-order moment
index H1

q introduced by Owen.

Remark 4.2. While the collection of all indices
(
H1
q

)
q
is more informative than the classical

Sobol indices, it also has several drawbacks. First, these indices are moment-based and, as
is well known, they are not stable when the moment order increases. Second, they may be
negative when q is odd. To overcome this fact, one could introduce E [|E[Y |X1]− E[Y ]|q]
but the Pick-Freeze estimation procedure is then lost. Third, the Pick-Freeze estimation
procedure is computationally expensive and may be unstable: it requires a q × n-sample
of the output Y . In order to properly assess the influence of an input on the law of the
output, we need to estimate the first K − 1 indices H1

q : H1
2 , . . . , H1

K . Hence, we need to
run the code K × n times. These indices are thus not attractive in practice.

5 Numerical experiments

5.1 Numerical comparison on the Sobol g-function: conven-
tional Pick-Freeze estimators vs Chatterjee’s estimators

In this section, we compare the performances of both estimation procedures on an analytic
function: the so-called Sobol g-function, that is defined by

g(X1, . . . , Xp) =
p∏
i=1

|4Xi − 2|+ ai
1 + ai

, (27)

where (ai)i∈N is a sequence of real numbers and the Xi’s are i.i.d. random variables uni-
formly distributed on [0, 1]. In this setting, one may easily compute the exact expression
of the first-order Sobol indices:

Si = 1/(3(1 + a2
i ))

[∏p
i=1 1/(3(1 + a2

i ))]− 1 .

As expected, the lower the coefficient ai, the more significant the variable Xi. In the
sequel, we simply fix ai = i.
Due to its complexity (non-linear and non-monotonic correlations) and the analytical
expression of the Sobol indices, the Sobol g-function is a classical test example commonly
used in GSA (see e.g. [32]).

Convergence as the sample size increases In Figure 1, we compare the estimations
of the six first-order Sobol indices given by both methods (p = 6). In the Pick-Freeze
estimations given by (16), several sizes of sample N have been considered: N = 100,
500, 1000, 5000, 10000, 50000, 100000, and 500000. The Pick-Freeze procedure requires
(p+ 1) = 7 samples of size N . To have a fair comparison, the sample sizes considered in
the estimation of ξSobol

n are n = (p+ 1)N = 7N . We observe that both methods converge
and give precise results for large sample sizes.

12



Figure 1: The Sobol g-function model (27). Convergence of both methods when N
increases. The sixth first-order Sobol indices have been represented from left to right
and up to bottom. Several sample sizes have been considered: N = 100, 500, 1000,
5000, 10000, 50000, 100000, and 500000 for the Pick-Freeze estimation procedure and
correspondingly (p + 1)N for the estimation procedure proposed in [9]. The x-axis is in
logarithmic scale.

Comparison of the mean square errors We now compare the efficiency of both
methods at a fixed sample size. In that view, we assume that only n = 700 calls of the
computer code f are allowed to estimate the six first-order Sobol indices. We repeat the
estimation procedure 500 times. The boxplot of the mean square errors for the estimation
of the first-order Sobol index S1 with respect to X1 has been represented in Figure 2. We
observe that, for a fixed sample size n = 700 (corresponding to a Pick-Freeze sample size
N = 100), Chatterjee’s estimation procedure performs much better than the Pick-Freeze
method with significantly lower mean errors. The same behavior can be observed for all
the first Sobol indices as can be seen in Table 1 that provides some characteristics of the
mean squares errors.

Pick-Freeze Chatterjee
Mean Median Stdev Mean Median Stdev

mse S1 0.0095548 0.0039458 0.0145033 0.0010218 0.0004498 0.0013999
mse S2 0.0105727 0.0046104 0.0148873 0.0017314 0.0006870 0.0027436
mse S3 0.0101785 0.0041789 0.0143846 0.0016667 0.0006409 0.0024392
mse S4 0.0105463 0.0047284 0.0178064 0.0018522 0.0008126 0.0025296
mse S5 0.0097979 0.0042995 0.0135533 0.0016285 0.0006855 0.0024264
mse S6 0.0096109 0.0046822 0.0134822 0.0015590 0.0007080 0.0021333

Table 1: The Sobol g-function model (27). Some characteristics of the mean square errors
for the estimation of the six first-order Sobol indices with a fixed sample size and 500
replications. In Chatterjee’s methodology, the sample size considered is n = 700 while in
the Pick-Freeze estimation procedure, it is N = 100.

13



Figure 2: The Sobol g-function model (27). Boxplot of the mean square errors of the
estimation of S1 with a fixed sample size and 500 replications. The results of Chatterjee’s
methodology with n = 700 are provided in the left panel. The results of the Pick-Freeze
estimation procedure with N = 100 are provided in the right panel.
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Performances for small sample sizes or for large number of input variables As
expected, we can observe in Table 2 that Chatterjee’s procedure proceeds much better
than the Pick-Freeze methodology for small sample sizes. Similarly, if the number of input
variables increases drastically, we can observe the same behavior as can be seen in Figure
3. In that case, we consider the model (27) for several values of p: 6, 10, 15, 20, 30, 40,
and 50.

Pick-Freeze Chatterjee
N = 10 N = 50 N = 100 n = 70 n = 350 n = 700

mse S1 0.1128686 0.0172275 0.0095548 0.0116790 0.0022941 0.0010218
mse S2 0.1509575 0.0223196 0.0105727 0.0177522 0.0033719 0.0017314
mse S3 0.1469124 0.0220015 0.0101785 0.0175517 0.0032474 0.0016667
mse S4 0.1591130 0.0196357 0.0105463 0.0159360 0.0033948 0.0018522
mse S5 0.1646339 0.0240353 0.0097979 0.0158563 0.0032230 0.0016285
mse S6 0.1466408 0.0217638 0.0096109 0.0166701 0.0029653 0.0015590

Table 2: The Sobol g-function model (27). Mean squares errors of the estimation of the
six first-order Sobol indices with small sample sizes and with both methods.

Figure 3: The Sobol g-function model (27). Mean square errors of the estimation of the
six first-order Sobol indices with respect to the number of input variables with a fixed
sample size and 500 replications. We consider the sample sizes n = 200 in Chatterjee’s
methodology and N = n/(p + 1) in the Pick-Freeze procedure. The number of input
variables considered are p = 6, 10, 15, 20, 30, 40, and 50.

5.2 An application in biology
Here, we illustrate the nature and the performance of the Cramér-von-Mises indices and
their corresponding Chatterjee estimators as a screening mechanism for high-dimensional
problems. To do so, we consider the neurovascular coupling model from [20]. Mathemat-
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ically, this corresponds to the following differential-algebraic equation (DAE) system
dW

dt
= G(W,Z,X), (28)

0 = H(W,Z,X), (29)

where W = (W1, . . . ,WN) and Z = (Z1, . . . , ZM) correspond respectively to the differen-
tial and algebraic state variables of the models. The variables X = (X1, . . . , Xp) corre-
spond to the uncertain parameters of the model. Our quantity of interest corresponds to
the time average over [0, T ] of W ∗ (which is one of the differential state variables W1, ...,
WN), i.e.

Y = 1
T

∫ T

0
W ∗(t) dt. (30)

As above, we regard Y as a function of the unknown parameters, i.e., Y = f(X1, . . . , Xp).
In our implementation, the values of W ∗ are obtained by solving the above DAE system
(Equations (28) and (29)) by the MATLAB routine ode15s (it can be checked that (28)
and (29) form an index one system). Further, in the current example, N = 67 and
p = 160 and the distributions of most of the Xi’s are uniform and allowed to vary ±10%
from nominal values (see [20] for additional details).
We compare the results from the Chatterjee estimators as described above to those re-
sulting from the linear regression

f(X1, . . . , X160) ≈ λ0 +
160∑
j=1

λjXj.

As shown in [20], the above approximation performs well for the considered QoI. We
assign to each variable X1, . . . , X160 a relative importance Lj where

Lj = |λj|∑160
`=1 |λ`|

, j = 1, . . . , 160.

Figure 4 displays the results. Both screening approaches identify the same to three in-
fluential parameters. More parameters are identified as being non-influential through the
linear regression approach than using the Cramér-von-Mises indices.

6 Conclusion
In this paper, we explain how to use the estimator proposed by Chatterjee in [9] to provide
a very nice and mighty procedure to estimate both all the order one Sobol indices and the
so-called Cramér-von-Mises indices [17] at a small cost (only n calls of the computer code).
We also extend Chatterjee’s method to estimate more general quantities. Furthermore,
we show a CLT for our estimations of Sobol indices. As examples, we consider two indices
already introduced in sensitivity analysis: the indices adapted to output valued in general
metric spaces defined in [19] and the higher-moment indices [28, 29]. A general CLT will
be established soon in [18].
Acknowledgment. We warmly thank Robin Morillo for the numerical study provided
in Section 5.2. Moreover, we deeply thank the anonymous referee of the early version of
our paper who pushed us to prove the CLT.
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Figure 4: Chatterjee estimators corresponding to the Cramér-von-Mises indices as a
screening mechanics for the DAE system given by (28) and (29).

Support from the ANR-3IA Artificial and Natural Intelligence Toulouse Institute is grate-
fully acknowledged. This work was also supported by the National Science Foundation
under grant and DMS-1745654.

A Proof of the consistency
Proof of Lemma 3.1. Using the measurability of σn and by independence, we have

E
[
g(Yj)h(Yσn(j))|Fn

]
= E

[
g(Yj)

n∑
l=1,
l 6=j

h(Yl)1{σn(j)=l}|Fn
]

=
n∑
l=1,
l 6=j

1{σn(j)=l}E
[
g(Yj)h(Yl)|Fn

]

=
n∑
l=1,
l 6=j

1{σn(j)=l}E
[
g(Yj)|Fn

]
E
[
h(Yl)|Fn

]

= E
[
g(Yj)|Vj

] n∑
l=1,
l 6=j

1{σn(j)=l}E
[
h(Yl)|Vl

]

= ΨVj(g)
n∑
l=1,
l 6=j

1{σn(j)=l}ΨVl(h) = ΨVj(g)ΨVσn(j)(h).

Proof of Proposition 3.2. We follow the steps of the proof of Corollary 7.12 in [9]. Our
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proof is significantly simpler since σn is assumed to have no fix points and V is continuous
so that the are no ties in the sample. To simplify the notation, we denote χn(V, Y ; g, h)
and χ(V, Y ; g, h) by χn and χ respectively.
We first prove that, for any measurable function ϕ,

ϕ(V1)− ϕ(Vσn(1))→ 0 (31)

in probability as n → ∞. Let ε > 0. By the special case of Lusin’s theorem (see [9,
Lemma 7.5]), there exists a compactly supported continuous function ϕ̃ : R → R such
that P({x; ϕ(x) 6= ϕ̃(x)}) < ε, where P stands for the distribution of V . Then for any
δ > 0,

P
( ∣∣∣ϕ(V1)− ϕ(Vσn(1))

∣∣∣ > δ
)
6 P

(∣∣∣ϕ̃(V1)− ϕ̃(Vσn(1))
∣∣∣ > δ

)
+ P

(
ϕ(V1) 6= ϕ̃(V1)) + P(ϕ(Vσn(1)) 6= ϕ̃(Vσn(1))

)
. (32)

By continuity of ϕ̃ and since Vσn(1) → V1 as n → ∞ with probability one, the first term
in the right hand side of (32) converges to 0 as n→∞. By construction of g, the second
term is lower than ε. Turning to the third one, we have thus

E[ϕ(Vσn(1))] = 1
n

n∑
j=1

E[ϕ(Vσn(j))] = 1
n

n∑
j=1

n∑
l=1
l 6=j

E[ϕ(Vl)1{σn(j)=l}]

= 1
n

n∑
l=1

n∑
j=1
j 6=l

E[ϕ(Vl)1{σn(j)=l}] = 1
n

n∑
l=1

E[ϕ(Vl)
n∑
j=1
j 6=l

1{σn(j)=l}]

= 1
n

n∑
l=1

E[ϕ(Vl)] = E[ϕ(V1)]

where we have used the fact that by assumption σn has no fix point and the Vi’s have no
ties. This yields

P(ϕ(Vσn(1)) 6= ϕ̃(Vσn(1))) = P(ϕ(V1) 6= ϕ̃(V1)) < ε,

and, since ε and δ are arbitrary, (31) is therefore proved.
Now, since x 7→ Ψx is a measurable function and applying (31), we have{

ΨV1(g)−ΨVσn(1)(g) → 0,
ΨV1(h)−ΨVσn(1)(h) → 0, in probability as n→∞. (33)

Lemma 3.1 and the dominated convergence theorem lead to

E[χn] = 1
n

n∑
j=1

E[g(Yj)h(Yσn(j))] = E[g(Y1)h(Yσn(1))]

= E[ΨV1(g)ΨVσn(1)(h)]→ E[ΨV (g)ΨV (h)] = χ(V, Y ; g, h) (34)

where we have taken into account the fact that ΨV (g) and ΨV (h) are bounded (due to
the boundedness of g and h) and used (33).
The last step of the proof consists in comparing χn with E[χn] using Mc Diarmid’s con-
centration inequality [25]. To be self-contained, we recall this result.
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Theorem A.1 (Mac Diarmid’s bounded difference concentration inequality [25]). Let
W = (W1, . . . ,Wn) be a family of independent variables with Wi taking its values in a set
Ak. Consider a real-valued function ϕ defined on Πn

k=1Ak satisfying

|ϕ(w)− ϕ(w′)| 6 ck (35)

as soon as the vectors w and w′ differ only on the k-th coordinate. Then we have, for any
t > 0,

P (|ϕ(W )− E[ϕ(W )]| > t) 6 2 exp
(
− 2t2∑n

k=1 ck

)
.

Sharper constants can be obtained in Mc Diarmid’s inequality by using the inequalites
from [6, 7]. As we are interested in asymptotic results the accuracy of the constant has
no impact on the result.
Following the same lines as in the proof of [9, Lemma 7.11], Theorem A.1 then implies

P(|χn − E[χn]| > t) 6 2 exp{−2n2t2/C2}, (36)

where C is a universal constant and we conclude the proof by combining (34) and (36).

B Proof of the asymtotic normality
Framework and goal We consider the model defined in (1) that can be rewritten as

Y = f(X,W ) (37)

where X = X1 and W = (X2, . . . , Xp) are two independent inputs of the numerical code
f that is assumed to be bounded.
The random variables X and W are defined on a product space Ω = ΩX × ΩW ; so
that for any ω ∈ Ω, there exists ωX ∈ ΩX and ωW ∈ ΩW and we have (X,W )(ω) =
(X(ωX),W (ωW )). Further, we consider πW the projection on ΩW and the product measure
P = PX ⊗ PW = LX ⊗LW , where LX is the distribution of X and LW is the distribution
of W . Naturally, PW = P ◦ π−1

W .
We aim to prove a CLT for the estimator ξSobol

n (X, Y ) of the classical first-order Sobol
index with respect to X:

SX = Var(E[Y |X])
Var(Y ) .

This estimator has been defined in (14) and is also equal to

ξSobol
n (X, Y ) =

1
n

∑n−1
j=1 Yσn(j)Yσn(j+1) −

(
1
n

∑n
j=1 Yj

)2

1
n

∑n
j=1(Yj)2 −

(
1
n

∑n
j=1 Yj

)2 ,

where the denominator is reduced to the empirical variance of Y .
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Notation It is convenient to have short expressions for terms that converge in probabil-
ity to zero. We follow [39]. The notation oP(1) (respectively OP(1)) stands for a sequence
of random variables that converges to zero in probability (resp. is bounded in probability)
as n→∞. More generally, for a sequence of random variables Rn,

Xn = oP(Rn) means Xn = YnRn with Yn
P→ 0

Xn = OP(Rn) means Xn = YnRn with Yn = OP(1).

For deterministic sequences Xn and Rn, the stochastic notation reduce to the usual o and
O.

B.1 Proof of Theorem 3.3
The proof will proceed as follows. First, we prove a CLT for 1
n

n−1∑
j=1

Yσn(j)Yσn(j+1),
1
n

n∑
j=1

Yj,
1
n

n∑
j=1

Y 2
j

 =
 1
n

n−1∑
j=1

Yσn(j)Yσn(j+1),
1
n

n∑
j=1

Yσn(j),
1
n

n∑
j=1

Y 2
σn(j)

 .
Since f is bounded, notice that it amounts to prove a CLT for 1

n

n−1∑
j=1

Yσn(j)Yσn(j+1),
1
n

n−1∑
j=1

Yσn(j),
1
n

n−1∑
j=1

Y 2
σn(j)

 ,
where as mentioned in Section 3.3, σn = N defined in (8). Secondly, we use the so-called
delta method [39, Theorem 3.1] to conclude to Theorem 3.3.
It is worth noticing that the permutation on the W ’s do not affect the result as seen in
the sequel. For j = 1, . . . n− 1, introducing

∆n,j := f
(
Xσn(j),Wj

)
− f

(
j

n+ 1 ,Wj

)
and

Wn,j :=
( j

n+ 1 ,Wj

)
(38)

leads to

Yσn(j) =f
(
Xσn(j),Wσn(j)

) L= f
(
Xσn(j),Wj

)
= ∆n,j + f (Wn,j)

and

Yσn(j)Yσn(j+1) = f
(
Xσn(j),Wσn(j)

)
f
(
Xσn(j+1),Wσn(j+1)

)
L= f

(
Xσn(j),Wj

)
f
(
Xσn(j+1),Wj+1

)
=
(
f (Wn,j) + ∆n,j

)(
f (Wn,j+1) + ∆n,j+1

)
= f (Wn,j) f (Wn,j+1) + ∆n,jf (Wn,j+1) + ∆n,j+1f (Wn,j) + ∆n,j∆n,j+1.
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Thus we are led to establish a CLT for

Zn = 1
n

n−1∑
j=1


f(Wn,j)f(Wn,j+1) + ∆n,jf (Wn,j+1) + ∆n,j+1f (Wn,j) + ∆n,j∆n,j+1

f(Wn,j) + ∆n,j(
f(Wn,j) + ∆n,j

)2

 . (39)

Let us discard the negligible terms in the CLT for Zn. In that view, noticing that

E
[
Xσn(j)

]
= j

n+ 1

and
Var(Xσn(j)) = j(n− j + 1)

(n+ 1)2(n+ 2) = E
[(
Xσn(j) −

j

n+ 1

)2]
6

4
n+ 2 ,

we first establish

Xσn(j) −
j

n+ 1 = OP

(
1√
n

)
. (40)

As explained bellow (40) will imply

1
n

n−1∑
j=1

∆2
n,j = OP

( 1
n

)
and 1

n

n−1∑
j=1

∆n,j∆n,j+1 = OP

( 1
n

)
. (41)

First of all, we expand ∆n,j using the Taylor-Lagrange formula, for any j = 1, . . . n − 1
and we obtain

∆n,j =
(
Xσn(j) −

j

n+ 1

)
fx (Wn,j) + 1

2

(
Xσn(j) −

j

n+ 1

)2
fxx

(
δn,j,Wσn(j)

)
, (42)

where δn,j (resp. δn,j+1) lies in the unordered segment (Xσn(j), j/(n+1)) (resp. (Xσn(j+1), (j+
1)/(n + 1))) and where fx and fxx are the first and second derivatives of f with respect
to the first coordinate. This leads to expansions for ∆2

n,j and ∆n,j∆n,j+1:

∆2
n,j =

(
Xσn(j) −

j

n+ 1

)2(
fx (Wn,j) + 1

2

(
Xσn(j) −

j

n+ 1

)
fxx

(
δn,j,Wσn(j)

))2

∆n,j∆n,j+1 =
(
Xσn(j) −

j

n+ 1

)(
Xσn(j+1) −

j + 1
n+ 1

)
×
(
fx (Wn,j) + 1

2

(
Xσn(j) −

j

n+ 1

)
fxx

(
δn,j,Wσn(j)

))
×
(
fx (Wn,j+1) + 1

2

(
Xσn(j+1) −

j + 1
n+ 1

)
fxx

(
δn,j+1,Wσn(j+1)

)
.

Finally, using the boundedness of f , fx, and fxx, together with (40), (41) follows.
Remark that the proof of (41) yields also

1
n

n−1∑
j=1

∆n,j = OP

(
1√
n

)
, (43)
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from which it is clear that this term will contribute in the CLT on Zn. Then (41) entails
that the asymptotic study reduces to that of the empirical mean of

Zn,j = Bn,j + Cn,j

where

Bn,j :=

f (Wn,j) f (Wn,j+1)
f(Wn,j)
f(Wn,j)2

 and Cn,j :=

∆n,jf (Wn,j+1) + ∆n,j+1f (Wn,j)
∆n,j

2∆n,jf(Wn,j)

 . (44)

First, we consider Bn,j in (44) and we establish the following result, the proof of which
has been postponed to Appendix B.3.

Lemma B.1. As n→∞, the random vector Bn given by

1
n

n−1∑
j=1

Bn,j = 1
n

n−1∑
j=1

(
f (Wn,j) f (Wn,j+1) , f (Wn,j) , f (Wn,j)2

)>
satisfies a CLT. More precisely,

√
n
(
Bn −mB

) L−→
n→∞

N3(0,ΣB),

where

mB :=
(
E[Y Y ′],E[Y ],E[Y 2]

)>
, (45)

Y ′ = f(X,W ′), W ′ is an independent copy of W , and ΣB has an explicit expression given
in Appendix B.3.

Remark that Y ′ is the so-called Pick-Freeze version of Y with respect to X. Secondly,
we establish a conditional CLT for the empirical mean of the Cn,j’s defined in (44). The
reader is referred to Appendix B.4 for the proof of this result.

Lemma B.2. There exists a measurable set Π ∈ ΩW having PW -probability one such that,
for any ωW ∈ Π, we have

√
nCn(·, ωW ) LX−→

n→∞
N3(0,ΣC).

Moreover, ΣC does not depend on ωW and has an explicit expression given Appendix B.4.

Considering the characteristic function of the vector
√
n(Bn − E[Bn], Cn), one may write

E
[
ei(
√
n〈s,(Bn−E[Bn])〉+

√
n〈t,Cn〉)

]
= E

[
ei
√
n〈s,(Bn−E[Bn])〉E

[
ei
√
n〈t,Cn〉

∣∣∣FW ]]
for any s and t ∈ R3. On the one hand, E

[
ei
√
n〈t,Cn〉

∣∣∣FW ] converges almost surely to
exp{−t>ΣCt/2} which is not random. On the other hand,

√
n〈s, (Bn−E[Bn])〉] converges

in distribution to a Gaussian random variable denoted by Bs. By Slutsky’s lemma,(√
n〈s, (Bn − E[Bn])〉],E

[
ei
√
n〈t,Cn〉

∣∣∣FW ])
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converges in distribution to (Bs, exp{−t>ΣCt/2}). We consider the application h : (u, v) ∈
R × D(0, 1) 7→ eiuv ∈ C where D(0, 1) is the unit disc in C. The continuity and the
boundedness of h lead to the convergence in distribution of ei

√
n〈s,(Bn−E[Bn])〉

[
ei
√
n〈t,Cn〉

∣∣∣FW ]
and we conclude to the asymptotic normality of

√
n(Bn−E[Bn], Cn) to a six-dimensional

Gaussian random vector with zero mean and variance-covariance matrix
(

ΣB 0
0 ΣC

)
. It

remains to apply the so-called delta method [39, Theorem 3.1] and Slutsky’s lemma to
get the required result. The details of the computation of the asymptotic variance σ2 can
be found in Appendix B.5.

B.2 Technical results
B.2.1 Convergence of random measures

In the sequel, we will denote by LZ the law of a random vector Z.

Lemma B.3. There exists a measurable set Π ⊂ ΩW with PW -probability one such that
for any ωW ∈ Π,

πn(ωW ) := 1
n

n−2∑
j=1

δ( j
n+1 ,

j+1
n+1 ,

j+2
n+1 ,Wj(ωW ),Wj+1(ωW )) ⇒ π := L(X,X,X) ⊗ LW ⊗ LW ,

as n→∞ where as before X is uniformly distributed on [0, 1] and ⇒ stands for the weak
convergence of measures.

Proof of Lemma B.3. Let ωW ∈ ΩW . Let us consider the continuous and bounded func-
tions defined on R5 by

gs,s′,s′′,t,t′(x, x′, x′′, w, w′) = exp{i(sx+ s′x′ + s′′x′′ + tw + t′w′)},

for any s, s′, s′′, t, and t′ real numbers. To prove the weak convergence of the measures
(πn(ωW ))n, we show that πn(ωW )(gs,s′,s′′,t,t′) converges almost surely for any s, s′, s′′, t,
and t′ ∈ Q as n→∞. Finally, we will conclude by density of rational numbers in R.
Let (s, s′, s′′, t, t′) ∈ Q5 be fixed. To ease the reading, we use the shorthand notation g for
gs,s′,s′′,t,t′ and we omit the notation ωW as classically done in probability.
One has

πn(g) =
∫
gdπn = 1

n

n−2∑
j=1

e
i

(
s j
n+1 +s′ j+1

n+1 +s′′ j+2
n+1 +tWj+t′Wj+1

)
.

Obviously, by the independence of the sequence Wn and the convergence theorem of
Riemann sums,

E [πn(g)] = E
[
eitW

]
E
[
eit
′W
] 1
n

n−2∑
j=1

ei(s
j

n+1 +s′ j+1
n+1 +s′′ j+2

n+1)

→
n→∞

E
[
eitW

]
E
[
eit
′W
] ∫ 1

0
ei(s+s

′+s′′)xdx.
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Observe that the almost sure convergence of πn is equivalent to the almost sure conver-
gence of its real part and that of its imaginary part. Setting

Un,j = s
j

n+ 1 + s′
j + 1
n+ 1 + s′′

j + 2
n+ 1 + tWj + t′Wj+1,

we have
<(πn(g)) = 1

n

n−2∑
j=1

cos (Un,j) .

In order to apply the Borel-Cantelli lemma, we need to control the fourth moment

E
[
(<(πn(g))− E[<(πn(g))])4

]
= 1
n4E


n−2∑
j=1

cos (Un,j)− E[cos (Un,j)]
4
 .

The random variables cos (Un,j)−E [cos (Un,j)] are real-valued, centered, and bounded so
that we can apply inequality (2.14) page 37 in [30]. Then we obtain

E


n−2∑
j=1

cos (Un,j)− E [cos (Un,j)]
4
 6 224n2

(
Λ2(α−1)

)2
(46)

where
Λ2(α−1) = sup

06m<n
(m+ 1)(αm) 1

2 ,

where (αm)m is the sequence f the strong mixing coefficients of the sequence (Un,j). Now
since the random variable Zn

j only depends on (Wj,Wj+1), αm equal zero as soon as
m > 2. Hence, there exists a positive constant K such that

1
n4E


n−2∑
j=1

cos (Un,j)− E [cos (Un,j)]
4
 6

K

n2 .

It follows by Borel-Cantelli lemma that the real part of πn(g) converges almost surely.
Since the imaginary part can be treated using the exact same steps, the proof of Lemma
B.3 is almost complete. Hence, there exists a Borel set Ns,s′,s′′,t,t′ with P(Ns,s′,s′′,t,t′) = 1
so that the previous convergence holds on ΩW\Ns,s′,s′′,t,t′ . It remains to define Π :=
ΩW\ ∪(s,s′,s′′,t,t′)∈Q5 Ns,s′,s′′,t,t′ . Obviously, one has P(Π) = 1 and the almost sure conver-
gence holds on Π for all functions gs,s′,s′′,t,t′ with (s, s′, s′′, t, t′) ∈ Q5.
Finally, the result holding for any five-uplet (s, s′, s′′, t, t′) ∈ Q5, we conclude to the
required result by density of rational numbers in R.

The obvious following corollary is a direct consequence of Lemma B.3.
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Corollary B.4. We use the notation of Lemma B.3. For any ωW ∈ Π, as n→∞,

ηn := 1
n

n−1∑
j=1

δ( j
n+1 ,

j+1
n+1) ⇒ η := L(X,X),

κn := 1
n

n−1∑
j=1

δ( j
n+1 ,

j+1
n+1 ,

j+2
n+1) ⇒ κ := L(X,X,X),

µn(ωW ) := 1
n

n∑
j=1

δ( j
n+1 ,Wj(ωW )) ⇒ µ := LX ⊗ LW ,

νn(ωW ) := 1
n

n−1∑
j=1

δ( j
n+1 ,

j+1
n+1 ,Wj(ωW ),Wj+1(ωW )) ⇒ ν := L(X,X) ⊗ LW ⊗ LW .

B.2.2 Generalized L-Statistics

Lemma B.5. Let (Ei)i>1 be a sequence of i.i.d. random variables with standard exponen-
tial distribution and let ψ be a bounded measurable function on [0, 1]. We assume that the
set of discontinuity points of ψ has null Lebesgue measure. Then, the sequencen−1/2

n−1∑
j=1

ψ(j/n)(Ej − 1)

n∈N∗

converges in distribution towards a centered Gaussian law. The asymptotic variance is
σ2
ψ :=

∫
[0,1] ψ

2(x)dx.

Proof of Lemma B.5. For k ∈ N∗, let cumk denotes the cumulant of order k of

1√
n

n−1∑
j=1

ψ(j/n)(Ej − 1).

Obviously, cum1 = 0 and, for k > 2,

cumk = 1
n
√
nk−2

n−1∑
j=1

(ψ(j/n))k .

So that, limn→∞ cum2 =
∫
ψ2(x)dx while, for k > 3, limn→∞ cumk = 0.

Remark B.6. The previous lemma obviously extends to the case of a continuous function
Ψ = (ψi) valued in Rd (d > 1). In this case, the asymptotic covariance matrix ΣΨ is
the Gram matrix

(∫
[0,1] ψi(x)ψj(x)dx; 1 6 i, j 6 d

)
. Indeed, the previous lemma holds

for any linear combination of such random vector sequence. A direct computation of the
asymptotic variance leads to the quadratic form built on ΣΨ.
The next lemma is a generalization of the CLT for a L-statistics (see, e.g., [39, Chapter
22]).

Lemma B.7. Let (U,B(U)) be a Polish space where B(U) denotes the Borel σ algebra
of U . We consider a sequence (χj)16j6n, n∈N∗ valued in U and Q a probability measure
on U × [0, 1]. We assume that the sequence of empirical measures

(
1
n

∑n−1
j=1 δχj ,j/n

)
n∈N∗

converges in distribution to Q.
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Let ψ be a bounded measurable real function on U × [0, 1]. We assume that the set of
discontinuity points of ψ has null Q-probability. Then,

Dn := 1√
n

n−1∑
j=1

ψ (χj, j/n)
(
Xσn(j) −

j

n+ 1

)
L−→

n→∞
N
(
0, s2

ψ

)
.

where the asymptotic variance s2
ψ is given in (48).

Proof of Lemma B.7. Recall that the sequence (Ei) has been defined in Lemma B.5. We
have

Xσn(j) −
j

n+ 1
L=
∑j
i=1Ei∑n+1
i=1 Ei

− j

n+ 1

= 1
1

n+1
∑n+1
i=1 Ei

 1
n+ 1

j∑
i=1

Ei −
j

(n+ 1)2

n+1∑
i=1

Ei


= 1

1
n+1

∑n+1
i=1 Ei

 1
n+ 1

j∑
i=1

(Ei − 1)− j

(n+ 1)2

n+1∑
i=1

(Ei − 1)
 ,

so that,

Dn
L= 1√

n(n+ 1)
1

1
n+1

∑n+1
i=1 Ei

n−1∑
j=1

ψ (χj, j/n)
 j∑
i=1

(Ei − 1)− j

n+ 1

n+1∑
i=1

(Ei − 1)
 .

Using the assumption on the empirical measure, we get

1
n

n∑
j=1

ψ (χj, j/n) j

n+ 1 → I :=
∫
U×[0,1]

xψ(χ, x)dQ(χ, x).

Further, by the weak law of large numbers, (1/(n + 1))∑n+1
i=1 Ei converges in probability

to E[E1] = 1. Hence, by Slutsky’s lemma, we are led to consider the random vector

Vn := 1√
n

(
1

n+1
∑n−1
j=1 ψ (χj, j/n)∑j

i=1(Ei − 1)∑n+1
i=1 (Ei − 1)

)
.

Notice that the first coordinate of Vn can be rewritten as (up to the normalizing factor
n−1/2)

n−1∑
i=1

 1
n+ 1

n−1∑
j=1

ψ (χj, j/n)1i6j

 (Ei − 1).

For t ∈ [0, 1], let φ(t) :=
∫
U×[t,1] ψ(χ, x)dQ(χ, x). We will show below that

lim
n

sup
t∈[0,1]

∣∣∣∣∣∣
 1
n+ 1

n−1∑
j=1

ψ (χj, j/n)1i6j

− φ(t)

∣∣∣∣∣∣ = 0. (47)

Let assume for a while that this result holds. Then, in our study, we may replace Vn by

V̂n := 1√
n

( 1
n+1

∑n−1
i=1 φ(i/n)(Ei − 1)∑n+1
i=1 (Ei − 1)

)
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since (47) implies that limn→∞ E‖Vn − V̂n‖2 = 0. Using Remark B.6, we obtain that the
sequence (V̂n)n∈N∗ converges in distribution to a centered Gaussian vector with covariance
matrix (∫ 1

0 φ
2(t)dt

∫ 1
0 φ(t)dt∫ 1

0 φ(t)dt 1

)
.

Finally, using the so-called delta method [39, Theorem 3.1], (Dn)n∈N∗ converges in distri-
bution to a centered Gaussian variable with variance

s2
ψ =

∫ 1

0
(φ(t)− I)2dt. (48)

It remains to show that (47) holds. First let assume that ψ > 0. Set, for j = 1, . . . n,
φn(j/n) := (1/(n+ 1))∑n−1

j=1 ψ (χj, j/n) and consider the piece-wise linear extension φn
defined on [0, 1]. The second Dini’s theorem [31] allows to conclude that the sequence of
functions (φn)n∈N∗ converges uniformly to φ yielding the result. In the general case, we
may mimic this reasoning on ψ+ = sup(ψ, 0) and ψ− = sup(−ψ, 0) and so conclude.

Notice that, using the definitions of φ and I and applying Fubini’s theorem, s2
ψ can be

explicited as follows:

s2
ψ =

∫ 1

0
(φ(t)− I)2dt

=
∫ 1

0

(∫
U×[0,1]

ψ(χ, x)(1t6x − x)dQ(χ, x)
)2

dt

=
∫ 1

0

∫∫
(U×[0,1])2

ψ(χ1, x1)ψ(χ2, x2)(1t6x1 − x1)(1t6x2 − x2)dQ(χ1, x1)dQ(χ2, x2)dt

=
∫∫

(U×[0,1])2
ψ(χ1, x1)ψ(χ2, x2)

∫ 1

0
(1t6x1 − x1)(1t6x2 − x2)dtdQ(χ1, x1)dQ(χ2, x2)

=
∫∫

(U×[0,1])2
ψ(χ1, x1)ψ(χ2, x2)(x1 ∧ x2 − x1x2)dQ(χ1, x1)dQ(χ2, x2). (49)

B.3 Proof of Lemma B.1
One has

E[Bn] = 1
n

n−1∑
j=1

(
E [f (Wn,j) f (Wn,j+1)] ,E [f (Wn,j)] ,E

[
f (Wn,j)2

])>
,

the first coordinate of which converges as n→∞ to∫ 1

0
E (f (x,W ) f (x′,W ′)] dη(x, x′) = E [E [f (X,W ) f (X,W ′) |X]]

= E [f (X,W ) f (X,W ′)] = E [Y Y ′] .

The two other coordinates can be handled similarly leading to

E[Bn] →
n→∞

(
E[Y Y ′],E[Y ],E[Y 2]

)>
= mB.

We apply the CLT for dependent variables proved in [26] to B̃1
n,j, the centered version

of the random variables f
(
Wn,j

)
f
(
Wn,j+1

)
/
√
n with m = 1, α=0, and because f is
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bounded (so is B̃1
n,j). Assumptions (1) and (2) in [26] obviously hold, the assumption (3)

is naturally fulfilled and assumption (4) is a mere consequence of Chebyshev’s inequality
and the boundedness of f . Now, it remains to check that assumption (5) holds. We have

n−1∑
i,j=1

Cov(B̃1
n,i, B̃

1
n,j)

= 1
n

n−1∑
i,j=1

Cov (f (Wn,i) f (Wn,i+1) , f (Wn,j) f (Wn,j+1))

= 1
n

n−1∑
j=1

Var (f (Wn,j) f (Wn,j+1))

+ 1
n

n−2∑
j=1

Cov (f (Wn,j) f (Wn,j+1) , f (Wn,j+1) f (Wn,j+2)) .

On the one hand, by Corollary B.4,

1
n

n−1∑
j=1

Var (f (Wn,j) f (Wn,j+1)) →
n→∞

∫
Var (f (x,W ) f (x′,W ′)) dη(x, x′)

=
∫ 1

0
Var (f (x,W ) f (x,W ′)) dx

= E [Var (f (X,W ) f (X,W ′) |X)]
= E [Var (Y Y ′|X)] ,

whereW ′ is an independent copies ofW , Y = f(X,W ) and Y ′ = f(X,W ′). On the other
hand, by Corollary B.4,

1
n

n−2∑
j=1

Cov (f (Wn,j) f (Wn,j+1) , f (Wn,j+1) f (Wn,j+2))

→
n→∞

E [Cov (f (X,W ) f (X,W ′) , f (X,W ′) f (X,W ′′) |X)] = E [Cov (Y Y ′, Y Y ′′|X)] ,

where W ′ and W ′′ are two independent copies of W . Further, Y = f(X,W ), Y ′ =
f(X,W ′), and Y ′′ = f(X,W ′′). Actually, notice that all linear combination of the coor-
dinates of (

f(Wn,j)f(Wn,j+1), f(Wn,j), f(Wn,j)2
)>

(50)

is a one-dependent random variable. In addition, following the same lines as above, one
may check that any linear combination still satisfies the assumptions of [26]. Hence,
any linear combination of the coordinates of Bn satisfies a CLT so that Lemma B.1 is
proved, up to the computation of the asymptotic variance-covariance matrix ΣB done in
the paragraph that follows.

Computation of the asymptotic covariance matrix ΣB

We consider a linear combination of the random vector in (50) given by

uf(Wn,j)f(Wn,j+1) + vf(Wn,j) + wf(Wn,j)2,
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where (u, v, w) ∈ R3. This one-dimensional random vector is one-dependent and its
centered version normalized by

√
n, denoted by B̃n,j, satisfies the assumptions of [26]. To

calculate the asymptotic variance-covariance matrix ΣB, we compute explicitly the limit
of

n−1∑
i,j=1

Cov(B̃n,i, B̃n,j),

as n → ∞ using Corollary B.4. It remains to take (u, 0, 0), (0, v, 0) and (0, 0, w) to get
the diagonal terms of the asymptotic variance-covariance matrix and to solve a three-
dimensional system of equations to get the remaining terms. Finally, as computed previ-
ously and using notation of Corollary B.4, the first diagonal term of ΣB is :

Σ1,1
B =

∫
Var (f (x,W ) f (x′,W ′)) dη(x, x′)

+
∫

Cov (f (x,W ) f (x′,W ′) , f (x′,W ′) f (x′′,W ′′)) dκ(x, x′, x′′)

=
∫ 1

0
Var (f (x,W ) f (x,W ′)) dx

+
∫ 1

0
Cov (f (x,W ) f (x,W ′) , f (x,W ′) f (x,W ′′)) dx

= E [Var (f (X,W ) f (X,W ′) |X)] + E [Cov (f (X,W ) f (X,W ′) , f (X,W ′) f (X,W ′′) |X)]
= E [Var (Y Y ′|X)] + E [Cov (Y Y ′, Y Y ′′|X)] ,

where we remind that Y = f(X,W ), Y ′ = f(X,W ′), and Y ′′ = f(X,W ′′) with W ′ and
W ′′ independent copies of W . The other terms are

Σ2,2
B =

∫ 1

0
Var (f (x,W )) dx = E [Var (f (X,W ) |X)] = E [Var(Y |X)] ,

Σ3,3
B =

∫ 1

0
Var

(
f (x,W )2

)
dx = E

[
Var

(
Y 2|X

)]
,

Σ1,2
B = Σ2,1

B = 2
∫ 1

0
Cov (f (x,W ) f (x,W ′) , f (x,W )) dx = 2E [Cov (Y Y ′, Y |X)] ,

Σ1,3
B = Σ3,1

B = 2
∫ 1

0
Cov

(
f (x,W ) f (x,W ′) , f (x,W )2

)
dx = 2E

[
Cov

(
Y Y ′, Y 2|X

)]
,

Σ2,3
B = Σ3,2

B =
∫ 1

0
Cov

(
f (x,W ) , f (x,W )2

)
dx = E

[
Cov(Y, Y 2|X)

]
.

B.4 Proof of Lemma B.2
Let ωW ∈ Π as defined in Lemma B.3. The aim is to establish a CLT for

√
nCn,j(·, ωW ).

To ease the reading, we omit the notation (·, ωW ) as classically done in probability. First,
dealing with the first coordinate of Cn,j defined in (44), one has

f (Wn,j+1) ∆n,j + f (Wn,j) ∆n,j+1

= (f (Wn,j) + f (Wn,j+1)) ∆n,j + f (Wn,j) (∆n,j+1 −∆n,j)

=
(
Xσn(j) −

j

n+ 1

)
(f (Wn,j) + f (Wn,j+1)) fx (Wn,j)

+ 1
2

(
Xσn(j) −

j

n+ 1

)2
(f (Wn,j) + f (Wn,j+1)) fxx (δn,j,Wj)

+ f (Wn,j) (∆n,j+1 −∆n,j)
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using the expansion of ∆n,j given in (42). By Lemma 40 and using the boundedness of f
and fxx, we get that

1
n

n−1∑
j=1

(
Xσn(j) −

j

n+ 1

)2
(f (Wn,j) + f (Wn,j+1)) fxx (δn,j,Wj)

is OP (1/n). The same asymptotic behavior is observed for the telescopic sum

1
n

n−1∑
j=1

f (Wn,j) (∆n,j+1 −∆n,j).

So that, using also the expansion of ∆n,j given in (42), Lemma 40, and the boundedness
of f and fxx, the study of Cn reduces to that of the random vector

1
n

n−1∑
j=1

(
Xσn(j) −

j

n+ 1

)
fx (Wn,j)

f (Wn,j) + f (Wn,j+1)
1

2f (Wn,j+1)

 (51)

by the independence between σn and W1, . . . ,Wn. In that view, let us consider the
following linear combination

u(f(Wn,j) + f(Wn,j+1)) + v + w2f(Wn,j+1),

where (u, v, w) ∈ R3 and the empirical mean

1
n

n−1∑
j=1

(
Xσn(j)−

j

n+ 1
)
fx (Wn,j)

× (u(f(Wn,j) + f(Wn,j+1)) + v + w2f(Wn,j+1)) . (52)

Now it remains to apply Lemma B.71 with χj = (Wj,Wj+1) and ψ = ψuvw with

ψuvw

(
χj,

j

n+ 1 ,
j + 1
n+ 1

)
= fx (Wn,j) (u(f(Wn,j) + f(Wn,j+1)) + v + w2f(Wn,j+1)) , (53)

noticing that, as n → ∞, (1/n)∑n−1
j=1 δχj ,j/(n+1),(j+1)/(n+1) converges in distribution to

Q = ν = L(X,X) ⊗ LW ⊗ LW by Corollary B.4. Thus we deduce that the empirical mean
in (52) converges in distribution for any 3-uplet (u, v, w). Since any linear combination of
the components of the random vector defined in (51) satisfies a CLT, so does the random
vector itself. The proof of Lemma B.2 is now complete, up to the computation of the
asymptotic variance-covariance matrix ΣC done in the paragraph that follows.

Computation of the asymptotic covariance matrix ΣC

We use the explicited expression (49) of the asymptotic variance σ2
ψ of Lemma B.7 (actu-

ally its slightly generalized version) with Q = ν = L(X,X)⊗LW ⊗LW and with ψ given by
(53). Then taking the values (u, 0, 0), (0, v, 0) and (0, 0, w) leads to the diagonal terms of

1A slightly generalization of Lemma B.7 is required to handle the pair (j/(n + 1), (j + 1)/(n + 1))
rather than the quantity j/n. Its proof comes directly following the same lines as in the proof of Lemma
B.7
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the asymptotic variance-covariance matrix ΣC while solving a three-dimensional system
of equations provides the remaining terms. For instance, reminding that χj = (Wj,Wj+1)
and Wn,j = (Wj, j/(n+ 1)) and

ψ100

(
χj,

j

n+ 1 ,
j + 1
n+ 1

)
= fx (Wn,j) (f(Wn,j) + f(Wn,j+1))

(namely, ψ with (u, v, w) = (u, 0, 0)), we have

Σ1,1
C =

∫∫
ψ1(χ1, x1, x

′
1)ψ1(χ2, x2, x

′
2)x1 ∧ x2 ∧ x′1 ∧ x′2dν(χ1, x1, x

′
1)dν(χ2, x2, x

′
2)

−
(∫

ψ1(χ, x, x′)xdν(χ, x, x′)
)2

=E[(Y1 + Y ′1)(Y2 + Y ′2)fx(X1,W1)fx(X2,W2)(X1 ∧X2)]− E[(Y + Y ′)fx(X,W )X]2.

Finally, the other diagonal terms of ΣC are:

Σ2,2
C =E[fx(X1,W1)fx(X2,W2)(X1 ∧X2)]− E[fx(X,W )X]2

Σ3,3
C =4E[Y ′1Y ′2fx(X1,W1)fx(X2,W2)(X1 ∧X2)]− 4E[Y ′fx(X,W )X]2

while the remaining terms are

Σ1,2
C = Σ2,1

C =E[(Y1 + Y ′1)fx(X1,W2)fx(X2,W2)(X1 ∧X2)]
− E[(Y + Y ′)fx(X,W )X]E[fx(X,W )X]

Σ1,3
C = Σ3,1

C =2E[(Y1 + Y ′1)fx(X1,W1)Y ′2fx(X2,W2)(X1 ∧X2)]
− 2E[(Y + Y ′)fx(X,W )X]E[Y ′fx(X,W )X]

Σ2,3
C = Σ3,2

C =2E[fx(X1,W1)Y ′2fx(X2,W2)(X1 ∧X2)]− 2E[fx(X,W )X]E[Y ′fx(X,W )X].

B.5 Asymptotic variance σ2 of Theorem 3.3
We have proved yet that

√
n

((
Bn

Cn

)
−
(
mB

0

))
L−→

n→∞
N6

(
0,
(

ΣB 0
0 ΣC

))
,

where the explicit expressions of mB, ΣB and ΣC are given in (45) of Lemma B.1, Appen-
dices B.3 and B.4 respectively. Applying the so-called delta method [39, Theorem 3.1] to
the linear function f(x, y) = x+ y, we conclude that

√
n(Zn −mB) L−→

n→∞
N3 (0,ΣB + ΣC) ,

Further, we notice that
ξSobol
n (X, Y ) L= Ψ(Zn)

with Ψ(x, y, z) = (x − y2)/(z − y2). The so-called delta method [39, Theorem 3.1] then
gives √

N
(
ξSobol
n (X, Y )− SX

) L−→
n→∞

N1(0, σ2)
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where SX = Var(E[Y |X])/Var(Y ) is the first-order Sobol index with respect to X and
σ2 = gT (ΣB + ΣC)g with

g = ∇Ψ(mB).
By assumption Var(Y ) 6= 0, Ψ is differentiable at m and we will see in the sequel that
gT (ΣB + ΣC)g 6= 0, so that the application of the delta method is justified. By differenti-
ation, we get that, for any x, y, and z so that z 6= y2:

∇Ψ(x, y, z) =
(

1
z − y2 ,−2y z − x

(z − y2)2 ,−
x− y2

(z − y2)2

)T
so that

g = ∇Ψ(mB) =
(

1
Var(Y ) , 2E[Y ]E[Y Y ′]− E[Y 2]

Var(Y )2 ,− SX

Var(Y )

)>
,

= 1
Var(Y )

(
1, 2E[Y ](SX − 1),−SX

)>
. (54)

Hence the asymptotic variance σ2 in Theorem 3.3 is finally given by

σ2 = gT (ΣB + ΣC) g

where g has been defined above in (54), ΣB and ΣC have been defined in Appendices B.3
and B.4 respectively. The matrix ΣB rewrites as

ΣB =

v01 + c01,02 2c01,03 2c01,00
2c01,03 Var(Y )(1− SX) 2c03,00
2c01,00 2c03,00 v00


where

vij = E[Var(AiAj|X)]
cij,kl = E[Cov(AiAj, AkAl|X)]

and A0 = Y , A1 = Y ′, A2 = Y ′′, and A3 = 1 (Y and Y ′′ have been defined just before
(50)). The matrix ΣC rewrites as

ΣC =

s
2
ψ100 s2

ψ110 s2
ψ101

s2
ψ110 s2

ψ010 s2
ψ011

s2
ψ101 s2

ψ011 s2
ψ001


where s2

ψ and ψuvw have been defined in (48) and (53) respectively. The proof of Theorem
3.3 is now complete.
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