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Abstract
We propose a new statistical estimation framework for a large fam-

ily of global sensitivity analysis methods. Our approach is based on
rank statistics and uses an empirical correlation coefficient recently in-
troduced by Sourav Chatterjee. We show how to apply this approach to
compute not only the Cramér-von-Mises indices, which are directly re-
lated to Chatterjee’s notion of correlation, but also Sobol indices at any
order, higher-order moment indices, and Shapley effects. We establish
consistency of the resulting estimators and demonstrate their numerical
efficiency, especially for small sample sizes.

Key words Global sensitivity analysis, Cramér-von-Mises distance, Pick-
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1 Introduction
The use of complex computer models for the analysis of applications from the
sciences, engineering and other fields is by now routine. Often, the models
are expensive to run in terms of computational time. It is thus crucial to
understand, with just a few runs, the global influence of one or several inputs
on the output of the system under study [31]. When these inputs are regarded
as random elements, this problem is generally referred to as Global Sensitivity
Analysis (GSA). We refer to [9, 30, 34] for an overview of the practical aspects
of GSA.
A popular and highly useful tool to quantify input influence are the Sobol
indices. These indices were first introduced in [33] and are well tailored to the
case of scalar outputs. The Sobol indices compare, thanks to the Hoeffding
decomposition [18], the conditional variance of the output knowing some of
the input variables to the total variance of the output. Many different estima-
tion procedures of the Sobol indices have been proposed and studied. Some are
based on Monte-Carlo or quasi Monte-Carlo design of experiments (see [22, 27]
and references therein for more details). In particular, an efficient estimation of
the Sobol indices can be performed through the so-called Pick-Freeze method.
For the description of this method and its theoretical study (consistency, cen-
tral limit theorem, concentration inequalities and Berry-Esseen bounds), we
refer to [20, 13] and references therein. Some other estimation procedures are
based on different designs of experiment using for example polynomial chaos
(see [36] and the reference therein for more details).
Various generalizations of the Sobol indices have been developed. The issue of
vectorial outputs, as is the case with time dependent or functional quantities of
interest, is addressed in [1, 12, 23]. In particular, in [12], the authors recover the
indices from [23] and show that they are a proper generalization of the classical
Sobol indices in higher dimension. Moreover, they provide the theoretical
study of their Pick-Freeze estimators and extend their definitions to the case
of outputs valued in a separable Hilbert space.
Since Sobol indices are variance based, they only quantify the second order
influence of the inputs. Many authors proposed other criteria to compare the
conditional distribution of the output knowing some of the inputs to the distri-
bution of the output. In [27, 26, 25], the authors use higher moments to define
new indices while, in [5, 6, 8], the use of divergences or distances between mea-
sures allows to define new indices. In [10], the authors use contrast functions to
build indices that are goal oriented. Although these works define nice theoret-
ical indices, the existence of a relevant statistical estimation procedure is still
in most cases an open question. The case of vectorial valued computer codes
is considered in [14] where a sensitivity index based on the whole distributions
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is defined. Within this framework, the authors show that the Pick-Freeze esti-
mation procedure provides an asymptotically Gaussian estimator of the index.
The scheme requires 3N evaluations of the output code for the evaluation of
a single index and leads to a convergence rate

√
N . Hence, if the number of

inputs variable is p, the total number of calls of the code is (p+3)N that grows
linearly with p. This approach has been generalized in [11], where the authors
considered computer codes valued on a compact Riemannian manifold. They
use the Pick-Freeze scheme to provide a consistent estimator requiring 4N eval-
uations of the output code. The authors of [15] extend the previous indices
to general metric spaces and propose U-statistics-based estimators improving
the classical Pick-Freeze procedure.
We emphasize that the Pick-Freeze estimation procedure allows the estimation
of several sensitivity indices: the classical Sobol indices for real-valued outputs,
as well as their generalization for vectorial valued codes, but also the indices
based on higher moments [26] and the Cramér-von-Mises indices which take
into account on the whole distribution [14, 11]. In addition, the Pick-Freeze
estimators have desirable statistical properties such as consistency, fixed rate
of convergence and exponential inequalities. They have, however, two majors
drawbacks. First, they rely on a particular experimental design that may be
unavailable in practice. Second, the number of model calls to estimate all
first-order Sobol indices grows linearly with the number of input parameters.
For example, if we consider p = 99 input parameters and only n = 1000 calls
are allowed, then only a sample of size n/(p+ 1) = 10 is available to estimate
each single first-order Sobol index.
In a recent work [7], Chatterjee studies the dependence between two variables
by introducing an empirical correlation coefficient based on rank statistics, see
Section 2.3 below for the precise definition. The striking point of his work
is that this empirical correlation coefficient converges almost surely to the
Cramér-von-Mises index introduced in [14] as the sample size goes to infin-
ity. In this paper, we show how to embed Chatterjee’s method in the GSA
framework, thereby eliminating the two drawbacks of the classical Pick-Freeze
estimation mentioned above. In addition, we generalize Chatterjee’s approach
to allow the estimation a large class of GSA indices which include the Sobol
indices and the higher order moment indices proposed by Owen [27, 26, 25].
Using a single sample of size n, it is now possible to estimate at the same
time all the Sobol indices at any order, the Cramér-von-Mises indices, and
other useful sensitivity indices. Last but not least, this estimation scheme also
allows to estimate the Shapley effects defined in [28] for correlated inputs.
The paper is organized as follows. In Section 2, we recall the definition of the
Cramér-von-Mises indices and their classical Pick-Freeze estimation. Further,
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we show how they can be also estimated using Chatterjee’s method. In Sec-
tion 3, we present the generalization Chatterjee’s method to estimate other
sensitivity indices and in particular the Sobol indices. Extensions are pre-
sented in Section 4. The higher order Sobol indices and the Shapley effects
are considered. Section 5 is dedicated to a numerical comparison between the
Pick-Freeze estimation procedure and Chatterjee’s method. We first compare
the numerical performance of both estimators on a linear model. Finally, we
consider a real life application. As expected, Chaterjee’s estimation method
outperforms the classical Pick-Freeze procedure, even for small sample sizes
(which are common in practice). Conclusions and perspectives are offered in
Section 6.

2 Sensitivity analysis based on Cramér-von-
Mises indices

2.1 Definition of Cramér-von-Mises indices
The quantity of interest (QoI) Y is obtained from the numerical code and is
regarded a function f of the vector of the distributed input (Xi)i=1,··· ,p

Y = f(X1, . . . , Xp), (1)

where f is defined on the state space E1 . . . × Ep, Xi ∈ Ei, i = 1, . . . , p.
Classically, the Xi’s are assumed to be independent random variables and
a sensitivity analysis is performed using the Hoeffding decomposition [2, 37]
leading to the standard Sobol indices [34]. More precisely, assume f to be
real-valued and square integrable and let u be a subset of {1, . . . , p} and ∼u
its complementary set in {1, . . . , p}. Setting Xu = (Xi, i ∈ u) and X∼u =
(Xi, i ∈∼u), the corresponding Sobol indices take the form

Su = Var (E[Y |Xu])
Var(Y ) and S∼u = Var (E[Y |X∼u])

Var(Y ) . (2)

By definition, the Sobol indices quantifies the fluctuations of the output Y
around its mean. When the practitioner is not interested in the mean behavior
of Y but rather in its median, in its tail, or even in its quantiles, the Sobol
indices become less appropriate to quantify sensitivity. GSA must then be
performed in a framework which takes into account more than one specific
moment, such as the variance for Sobol indices. The Cramér-von-Mises indices
introduced in [14] provide alternative indices based on the whole distribution.
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They are defined by

Su
2,CVM =

∫
R E

[
(F (t)− Fu(t))2

]
dF (t)∫

R F (t)(1− F (t))dF (t) (3)

where F is the cumulative distribution function of Y

F (t) = P (Y 6 t) = E
[
1{Y 6t}

]
(t ∈ R)

and Fu is its Pick-Freeze version, namely the conditional distribution function
of Y conditionally on Xu:

Fu(t) = P (Y 6 t|Xu) = E
[
1{Y 6t}|Xu

]
(t ∈ R).

Such a definition stems from the Hoeffding decomposition of the collection of
variables (1{Y 6t})t∈R. It is worth noting that this definition naturally extends
to multivariate outputs.

2.2 Classical estimation of Sobol and Cramér-von-Mises
indices using the Pick-Freeze method

The estimation of the Cramér-von-Mises index (3) reduces to the estimation
of both its numerator and its denominator. The numerator of Su

2,CVM can be
rewritten as∫

R
E
[
(F (t)− Fu(t))2

]
dF (t) = EW

[
EXu

[
(F (W )− Fu(W ))2

]]
= EW

[
VarXu

(
EY

[
1{Y 6W}|Xu

])]
whereW is an independent copy of Y and where, for a random quantity Z, EZ
and VarZ denote respectively the expectation and the variance with respect
to Z. When no confusion is possible, we only write E and Var in the rest
of the paper. A Monte-Carlo scheme can be used to estimate the Cramér-
von-Mises indices. The corresponding Pick-Freeze approach from [13, 14, 20]
relies on expressing the variances of the conditional expectations in terms of
covariances which are easily and well estimated by their empirical versions. To
that end, we define, for any subset u of {1, . . . , p}

Y u := f(Xu). (4)

where Xu is such that Xu
u = Xu and Xu

i = X ′i if i ∈∼ u, X ′i being an
independent copy of Xi. The estimation procedure relies on the following
lemma which is still valid for any function g ∈ L2, not just g(y) = 1{y6t}.
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Lemma 2.1.

Var(E[1{Y 6t}|Xu]) = Cov(1{Y 6t},1{Y u6t}). (5)

Proof. Let Z = 1{Y 6t} and Zu = 1{Y u6t}. Since, Z and Zu shares the same
distribution and are independent conditionally to Xu, we have

Var(E[Z|Xu]) = E[E[Z|Xu]2]− E[E[Z|Xu]]2

= E[E[Z|Xu]E[Zu|Xu]]− E[E[Z|Xu]]E[E[Zu|Xu]]
= E[E[ZZu|Xu]]− E[Z]E[Zu]
= E[ZZu]− E[Z]E[Zu]
= Cov(Z,Zu).

Consequently, the Monte-Carlo estimation can be done as follows. A n sample
(Y1, . . . , Yn) of the output Y and a n sample (Y u

1 , . . . , Y
u
n ) of its Pick-Freeze

version Y u are required. In addition, in order to deal with the integral with
respect to dF (t) in (3), a third independent n sample (W1, . . . ,Wn) of the
output Y is necessary. Then the empirical estimator of S1

2,CVM is

S1
n,2,CVM =

1
n

∑n
k=1

(
1
n

∑n
j=1 1{Yj6Wk}1{Y u

j 6Wk} − 1
n

∑n
j=1 1{Yj6Wk}

1
n

∑n
j=1 1{Y u

j 6Wk}
)

1
n

∑n
j=1

(
1
n

∑n
j=1 1{Yj6Wk} −

(
1
n

∑n
j=1 1{Yj6Wk}

)2
) .

(6)

As showed in [14], this estimator is consistent and asymptotically Gaussian
(i.e. the rate of convergence is

√
n). The limiting variances can be computed

explicitly, allowing the practitioner to build confidence intervals. In particular,
if one wants to estimate all the first-order indices (that is the p first-order Sobol
indices) and the p Cramér-von-Mises indices, (p + 2)n calls of the computer
code are required. The number of calls grows linearly with respect to the
number of input parameters. This is a practical issue for large input dimension
domains. A second drawback of this estimation scheme comes from the need
of the particular Pick-Freeze design that is not always available.

2.3 Chatterjee’s method
In [7], Chatterjee considers a pair of random variables (V, Y ) and an i.i.d. sam-
ple (Vj, Yj)16j6n. In order to simplify the presentation, we assume that the laws
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of V and Y are both diffuse (ties are excluded). The pairs (V(1), Y(1)), . . . , (V(n), Y(n))
are rearranged in such a way that

V(1) < . . . < V(n).

Let rj be the rank of Y(j), that is,
rj = #{j′ ∈ {1, . . . , n}, Y(j′) 6 Y(j)}.

The new correlation coefficient defined by Chatterjee in [7] is

ξn(V, Y ) := 1−
3∑n−1

j=1 |rj+1 − rj|
n2 − 1 . (7)

The author proves that ξn(V, Y ) converges almost surely to a deterministic
limit ξ(V, Y ) which is equal to the Cramér-von-Mises sensitivity index SV2,CVM
with respect to V as soon as V is one of the random variables X1, ..., Xp in
the model (1). Further, he also proves a central limit theorem (CLT) when V
and Y are independent.
Chatterjee also provides a rank statistics analog to Lemma 2.1. More precisely,
let π(j) be the rank of Vj in the sample (V1, . . . , Vn) of V and define

N(j) =

π−1(π(j) + 1) if π(j) + 1 6 n,

π−1(1) if π(j) = n.
(8)

Observe that ξn(V, Y ) can be rewritten as Qn/Sn where

Qn = 1
n

n∑
j=1

min{Fn(Yj), Fn(YN(j))} −
1
n

n∑
j=1

Fn(Yj)2

= 1
n

n∑
j=1

 1
n

n∑
k=1

1Yk6Yj1Yk6YN(j) −
(

1
n

n∑
k=1

1Yk6Yj

)2
 ,

Sn = 1
n

n∑
j=1

Fn(Yj)(1− Fn(Yj)),

where Fn stands for the empirical distribution function of Y : Fn(t) = 1
n

∑n
j=1 1{Yj6t}.

The analogue of the Pick-Freeze version Y V with respect to V of Y becomes
YN and Lemma 2.1 is replaced by the formula

E[1{Yj>t}1{YN(j)>t}|V1, . . . , Vn] = GVj(t)GVN(j)(t) (9)
for all j = 1, . . . , n that is mentioned in the proof of Lemma 7.10 in [7, p.24],
with GV the conditional survival function: GV (t) = P(Y > t|V ).
Remark 2.2. In [7], the author considers also the random variables Vn,j due to
the fact that ties are possible. In our paper, we assume that the distributions
of V and Y are diffuse rendering the introduction of the Vn,j’s unworthy since
in this case, Vn,j = VN(j).
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Consequences of Chatterjee’s method

1. A unique n sample of input-output provides consistent estimations of the
p first-order Cramér-von-Mises indices.

2. Chatterjee’s central limit theorem allows to built statistical tests for test-
ing

H0 : SV2,CVM = 0 against H1 : SV2,CVM 6= 0.

3 Generalization of Chatterjee’s method

3.1 A universal estimation procedure of sensitivity in-
dices

In this section, we propose a universal estimation procedure of expectations of
the form

E[E[f(Y )|V ]E[g(Y )|V ]].

This result is a generalization of (9) and can be interpreted as an approximation
of (5). To this end, we introduce the function ΨV defined by

ΨV (f) = E[f(Y )|V ] (10)

for any integrable function f . Let Fn be the σ-algebra generated by {V1, . . . , Vn}.
Note that in Section 2.3, we consider f(x) = ft(x) = 1x>t so that ΨV (f) =
P(Y > t|V ) = GV (t).

Lemma 3.1. Let f and g be two integrable functions such that fg is also
integrable. Let (Vj, Yj)16j6n be a n sample of (V, Y ). Consider a Fn-measurable
random permutation σn such that σn(j) 6= j, for all j = 1, . . . , n. Then

E
[
f(Yj)g(Yσn(j))|V1, . . . , Vn

]
= ΨVj(f)ΨVσn(j)(g). (11)
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Proof. Using the measurability of σn and by independence, we have

E
[
f(Yj)g(Yσn(j))|Fn

]
= E

[
f(Yj)

n∑
l=1,
l 6=j

g(Yl)1σn(j)=l|Fn
]

=
n∑
l=1,
l 6=j

1σn(j)=lE
[
f(Yj)g(Yl)|Fn

]

=
n∑
l=1,
l 6=j

1σn(j)=lE
[
f(Yj)|Fn

]
E
[
g(Yl)|Fn

]

= E
[
f(Yj)|Vj

] n∑
l=1,
l 6=j

1σn(j)=lE
[
g(Yl)|Vl

]

= ΨVj(f)
n∑
l=1,
l 6=j

1σn(j)=lΨVl(g) = ΨVj(f)ΨVσn(j)(g).

The previous lemma leads to a generalization of the first part of the numerator
of ξn defined in (7). Following the same lines as in [7], one may prove that such
a quantity converges almost surely as n→∞ under some mild conditions.

Proposition 3.2. Let f and g be two bounded measurable functions. Consider
a Fn-measurable random permutation σn with no fix point (i.e. σn(j) 6= j), for
all j = 1, . . . , n. In addition, we assume that for any j = 1, . . . , n, Vσn(j) → Vj
as n→∞ with probability one. Then χn(V, Y ; f, g) defined by

χn(V, Y ; f, g) = 1
n

n∑
j=1

f(Yj)g(Yσn(j)) (12)

converges almost surely as n→∞ to

χ(V, Y ; f, g) = E[ΨV (f)ΨV (g)], (13)

where ΨV (f) has been defined in (10).

Proof. We follow the steps of the proof of Corollary 7.12 in [7]. Our proof
is significantly simpler since σn is assumed to have no fix points and V is
continuous so that the are no ties in the sample. To simplify the notation, we
denote χn(V, Y ; f, g) and χ(V, Y ; f, g) by χn and χ respectively.
We first prove that, for any measurable function h,

h(V1)− h(Vσn(1))→ 0 (14)
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almost surely as n → ∞. Let ε > 0. By the special case of Lusin’ theorem
(see [7, Lemma 7.5]), there exists a compactly supported continuous function
g : R→ R such that P({x; h(x) 6= g(x)}) < ε, where P stands for the distribu-
tion of V . Then for any δ > 0,

P(
∣∣∣h(V1)− h(Vσn(1)

∣∣∣ > δ) 6 P(
∣∣∣g(V1)− g(Vσn(1))

∣∣∣ > δ)
+ P(h(V1) 6= g(V1)) + P(h(Vσn(1)) 6= g(Vσn(1))). (15)

By continuity of g and since Vσn(1) → V1 as n → ∞ with probability one,
the first term in the right hand side of (15) converges to 0 as n → ∞. By
construction of g, the second term is lower than ε. Turning to the third one,
we have thus

E[h(Vσn(1))] = 1
n

n∑
j=1

E[h(Vσn(j))] = 1
n

n∑
j=1

n∑
l=1
l 6=j

E[h(Vl)1σn(j)=l]

= 1
n

n∑
l=1

n∑
j=1
j 6=l

E[h(Vl)1σn(j)=l] = 1
n

n∑
l=1

E[h(Vl)
n∑
j=1
j 6=l

1σn(j)=l]

= 1
n

n∑
l=1

E[h(Vl)] = E[h(V1)]

where we have used the fact that by assumption σn has no fix point and the
Vi’s have no ties. This yields

P(h(Vσn(1)) 6= g(Vσn(1))) = P(h(V1) 6= g(V1)) < ε,

and, since ε and δ are arbitrary, (14) is therefore proved.
Now, since x 7→ Ψx is a measurable function and applying (14), we have{

ΨV1(f)−ΨVσn(1)(f) → 0,
ΨV1(g)−ΨVσn(1)(g) → 0, in probability as n→∞. (16)

Lemma 3.5 and the dominated convergence theorem lead to

E[χn] = 1
n

n∑
j=1

E[f(Yj)g(Yσn(j))] = E[f(Y1)g(Yσn(1))]

= E[ΨV1(f)ΨVσn(1)(g)]→ E[ΨV (f)ΨV (g)] = χ(V, Y ; f, g) (17)

where we have taken into account the fact that ΨV (f) and ΨV (g) are bounded
(due to the boundedness of f and g) and used (16).
The last step of the proof consists in comparing E[χn] with χn using Mc Di-
armid’s concentration inequality [24]. To be self-contained, we recall this re-
sult.
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Theorem 3.3 (Mac Diarmid’s bounded difference concentration inequality
[24]). Let W = (W1, . . . ,Wn) be a family of independent variables with Wi

taking its values in a set Ak. Consider a real-valued function h defined on
Πn
k=1Ak satisfying

|h(w)− h(w′)| 6 ck (18)

as soon as the vectors w and w′ differ only on the k-th coordinate. Then we
have, for any t > 0,

P (|h(W )− E[h(W )]| > t) 6 2 exp
(
− 2t2∑n

k=1 ck

)
.

Assume that for some i 6 n, the pair (Vi, Yi) is replaced by a different value
(V ′i , Y ′i ). Then there are at most three indices j such that the value of σn(j)
changes after such a replacement, and exactly one index, j = i, where Yj
changes. Moreover, there can be at most one index j such that σn(j) = i,
both before and after the replacement. Using the boundedness of f and g, this
shows that χn changes by at most C/n due to this replacement.

Theorem 3.3 then implies

P(|χn − E[χn]| > t) 6 2e−2n2t2/C2
, (19)

and we conclude the proof by combining (17) and (19).

3.2 Recovering the classical first-order Sobol indices
We can now leverage the above results and construct a new family of estimators
for Sobol indices. Indeed, assume we want to estimate the Sobol index with
respect to V = X1. We then define N as in (8) where π is the rank of X1.
Taking f(x) = g(x) = x and σn = N , (11) provides the analogue to ξn to
estimate the classical Sobol indices:

ξSobol
n (X1, Y ) :=

1
n

∑n
j=1 YjYN(j) −

(
1
n

∑n
j=1 Yj

)2

1
n

∑n
j=1(Yj)2 −

(
1
n

∑n
j=1 Yj

)2 , (20)

where the denominator reduces to the empirical variance of Y .
This estimator can be compared to the classical Pick-Freeze estimators which
are constructed as follows. For the estimation of S1 for instance, a n sample
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(Y 1, . . . , Y n) of the output Y and a n sample (Y 1
k , . . . , Y

n
k ) of its Pick-Freeze

version Yk are required. The natural estimator of S1 is then given by

S1
n =

1
n

∑n
j=1 YjY

1
j −

(
1
n

∑n
j=1 Yj

) (
1
n

∑n
j=1 Y

1
j

)
1
n

∑n
j=1(Yj)2 −

(
1
n

∑n
j=1 Yj

)2 . (21)

A slightly different estimator is introduced in [20] to use all the information
available:

T 1
n =

1
n

∑n
j=1 YjY

1
j −

(
1
n

∑n
j=1

Yj+Y 1
j

2

)2

1
n

∑n
j=1

(Yj)2+(Y 1
j )2

2 −
(

1
n

∑n
j=1

Yj+Y 1
j

2

)2 . (22)

As for the Cramér-von-Mises estimation scheme, such an estimation procedure
has been proved to be consistent and asymptotically normal (i.e. the rate
of convergence is

√
n) in [20, 13]. The limiting variances can be computed

explicitly, allowing the practitioner to build confidence intervals. In addition,
the sequence of estimators (T 1

n)n is asymptotically efficient to estimate S1

from such a design of experiment (see, [37] for the definition of the asymptotic
efficiency and [13] for the details of the result).

3.3 Sensitivity indices in general metric spaces
In this section, we consider a computer code valued in a general metric space
X as presented in [15]. In this context, the authors of [15] consider a family
of test functions parametrized by m elements of X (m ∈ N∗). For any a =
(ai)i=1,...,m ∈ Xm, the test functions

Xm ×X → R
(a, x) 7→ Ta(x)

are assumed to be L2-functions with respect to the product measure P⊗m ⊗ P
on Xm × X where P is the distribution of Y . Then they define the general
metric space sensitivity index with respect to X1 by

S1
2,GMS :=

∫
Xm E

[
(E[Ta(Y )]− E[Ta(Y )|X1])2

]
dP⊗m(a)∫

Xm Var(Ta(Y ))dP⊗m(a) . (23)

This general class of indices encompasses the classical sensitivity indices, for
instance, the Sobol indices and the Cramér-von-Mises indices. Naturally, a
Monte-Carlo procedure based on the Pick-Freeze scheme can be performed to
estimate S1

2,GMS.
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Estimation procedure based on U-statistics In [15], the authors pro-
pose a more efficient estimation procedure based on U-statistics (see [15, Equa-
tion (13)]). More precisely, for any 1 6 i 6 m+ 2, we let yi = (yi, y1

i ) and we
define

Φ1(y1, . . . ,ym+1) := Ty1,...,ym(ym+1)Ty1,...,ym(y1
m+1)

Φ2(y1, . . . ,ym+2) := Ty1,...,ym(ym+1)Ty1,...,ym(y1
m+2)

Φ3(y1, . . . ,ym+1) := Ty1,...,ym(ym+1)2

Φ4(y1, . . . ,ym+2) := Ty1,...,ym(ym+1)Ty1,...,ym(ym+2).
We set

m(1) = m(3) = m+ 1 and m(2) = m(4) = m+ 2 (24)
and we define for j = 1, . . . , 4,

I(Φj) :=
∫
Xm(j)

Φj(y1, . . . ,ym(j))dP⊗m(j)
Y (y1 . . . ,ym(j)), (25)

where PY stands for the law of Y = (Y, Y 1)>. Finally, we introduce the
application Ψ from R4 to R defined by

ψ : R4 → R
(x, y, z, t) 7→ x−y

z−t .
(26)

Then one can express S1
2,GMS in the following way

S1
2,GMS = ψ (I(Φ1), I(Φ2), I(Φ3), I(Φ4)) . (27)

Following the framework of Hoeffding [18], we replace the functions Φ1,Φ2, Φ3
and Φ4 by their symmetrized version Φs

1,Φs
2, Φs

3 and Φs
4:

Φs
j(y1, . . . ,ym(j)) = 1

(m(j))!
∑

τ∈Sm(j)

Φj(yτ(1), . . . ,yτ(m(j)))

for j = 1, . . . , 4 where Sk is the symmetric group of order k. For j = 1, . . . 4,
the integrals I(Φs

j) are naturally estimated by U-statistics of order m(j). More
precisely, we consider a n i.i.d. sample (Y1, . . . ,Yn) with distribution PY and,
for j = 1, . . . , 4, we define

Uj,n :=
(

n
m(j)

)−1 ∑
16i1<···<im(j)6n

Φs
j

(
Yi1 , . . . ,Yim(j)

)
. (28)

Theorem 7.1 in [18] ensures that Uj,n converges in probability to I(Φj) for any
j = 1, . . . , 4. Moreover, one may also prove that the convergence holds almost
surely proceeding as in the proof of Lemma 6.1 in [14]. Then we estimate
S1

2,GMS by

S1
2,GMS,n := U1,n − U2,n

U3,n − U4,n
= ψ(U1,n, U2,n, U3,n, U4,n). (29)
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A novel estimation procedure In light of Section 3.1, one can introduce
a novel estimation ξGMS

n (X1, Y ) of S1
2,GMS in (23) as follows. The Pick-Freeze

scheme is replaced by the use of the YN(i)’s where N is the permutation defined
in (8) and the integration with respect to P⊗m is handled using U-statistics.
More precisely, for j = 1, . . . , 4, we define

Ũj,n :=
(

n
m(j)

)−1 ∑
16i1<···<im(j)6n

Φ̃s
j

(
Yi1 , . . . ,Yim(j)

)
, (30)

where Φ̃s
j is the symetrized version of Φs

j with

Φ̃1(y1, . . . , ym+1) := Ty1,...,ym(ym+1)Ty1,...,ym(yN(m+1))
Φ̃2(y1, . . . , ym+2) := Ty1,...,ym(ym+1)Ty1,...,ym(yN(m+2))
Φ̃3(y1, . . . , ym+1) := Ty1,...,ym(ym+1)2

Φ̃4(y1, . . . , ym+2) := Ty1,...,ym(ym+1)Ty1,...,ym(ym+2).

Finally, the estimator writes as

ξGMS
n (X, Y ) := Ũ1,n − Ũ2,n

Ũ3,n − Ũ4,n
= ψ(Ũ1,n, Ũ2,n, Ũ3,n, Ũ4,n). (31)

3.4 Owen higher-order moment indices
Following [25, 26], we consider extensions to Sobol indices obtained by replac-
ing the numerator by higher-order moments. More precisely, for any integer
q > 2, we set

H1
q := E [(E[Y |X1]− E[Y ])q] ,

see [14] for known properties H1
q .

In order to construct a Pick-Freeze estimator for H1
q , we first observe that

H1
q = E

[ q∏
m=1

(
(Y 1)m − E[Y ]

)]
=

q∑
l=0

(
q

l

)
(−1)q−lE [Y ]q−l E

[
l∏

m=1
(Y 1)m

]

with the usual convention ∏0
m=1(Y 1)m = 1. Here, Y 1

1 = Y and for i = 2, . . . , q,
Y 1
i is constructed independently (similarly to Y 1 in (5)). Now we construct a

Monte-Carlo scheme and consider the following Pick-Freeze design constituted
by a n-sample

(
Y 1
i,j

)
(i,j)∈Iq×In

of
(
Y 1

1 , . . . , Y
1
q

)
where, for any positive integer

k, Ik stands for the set {1, . . . , k}.
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The resulting Monte-Carlo estimator is then

H1
q,n =

q∑
l=0

(
q

l

)
(−1)q−l

(
P

1
1

)q−l
P

1
l

where for any positive integer n, j ∈ In and l ∈ Iq, we have set

P 1
l,j =

(
q

l

)−1 ∑
k1<...<kl∈Iq

(
l∏

i=1
Y 1
ki,j

)
and P

l
u = 1

N

N∑
j=1

P 1
l,j.

This setting generalizes the estimation procedure from [13] and uses all the
available information by considering the means over the set of indices k1, . . . , kl ∈
Id, kn 6= km.
Remark 3.4. While the collection of all indices

(
H1
q

)
q
is much more informative

than the classical Sobol indices, it also has several drawbacks. First, these
indices are moment-based and, as is well known, they are not stable when
the moment order increases. Second, they may be negative when q is odd.
To overcome this fact, one may introduce E [|E[Y |X1]− E[Y ]|q] but the Pick-
Freeze estimation procedure is then lost. Third, the Pick-Freeze estimation
procedure is computationally expensive and may be unstable: it requires a
q × n-sample of the output Y . In order to properly assess the influence of an
input on the law of the output, we need to estimate the first K−1 indices H1

q :
H1

2 , . . . , H1
K . Hence, we need to run the code K × n times. These indices are

thus not attractive in practice.
We introduce below a new sensitivity index which is based on the conditional
distribution of the output and requires only 3×n runs. This index compares the
output distribution to the conditional one whereas the q higher-order moment
indices only compare the q-th output moment to the conditional one.

A novel estimation procedure We generalize the procedure proposed by
Chatterjee in order to estimate higher-order moment indices. To that end, we
introduce, for all m ∈ {1, . . . , q − 1} and j ∈ {1, . . . , n},

Nm(j) =

π−1(π(j) +m) if π(j) +m 6 n,

π−1(π(j) +m− n) if π(j) +m > n.
(32)

Note that N1(j) = N(j) for all j. It remains to update Lemma 3.1 as follows.
Lemma 3.5. Let (fm)m=0,...,q−1 a family of measurable functions in L1(R).
Let (Vj, Yj)16j6n be a n sample of (V, Y ). Then

E

 q−1∏
m=0

fm(YNm(i))|V1, . . . , Vn

 =
q−1∏
m=0

ψVNm(i)(fm), (33)
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where by convention N0(j) = j for all j = 1, . . . , n.

It suffices to take fm(y) = y, for all y ∈ R and m = 0, . . . , q − 1.

4 Extensions

4.1 Estimating all Sobol indices with a single sample
We consider higher order indices such as

S1,2 = VarE[Y |X1, X2]
Var(Y ) .

We want to estimate S1,2 using the analogue to Chatterje’s procedure; S1,2

could be replaced by any two order index as for example the Cramér-von-
Mises index. Let Wj = (X1,j, X2,j), 1 6 j 6 n, be n sample in R2. To define
the analogue of the permutation given by (8), observe that it is the unique
permutation (when we have no ties) that minimizes

n∑
j=1
|Vσ(j) − Vσ(j)+1| (34)

over the permutation σ, which is exactly the solution in dimension one of the
traveling salesman problem. The reader is refered to, e.g., [3, 16] for a complete
presentation of the traveling salesman problem. In dimension greater than one,
we then naturally consider the permutation of the points Wi that solves the
traveling salesman problem. Hence it is enough to consider the estimator (20)
in order to estimate S1,2.
Consequently, we are now able to extend easily Chatterjee’s method

1. to estimate any sensitivity index of any order (for example, for an index
of order k, it suffices to consider a permutation that solves the traveling
salesman problem in Rk); Moreover one can use the same n sample to
estimate all Sobol indices of any order.

2. to consider codes whose inputs are not real-valued but take their values
in any metric space.

In practice, one generally uses approximation algorithms to solve the traveling
salesman problem (see, [3] and e.g., [21] for a genetic algorithm), which is not
restrictive. Indeed, the only crucial point is be able to propose a permutation
without fix point such that σ(i) is close to i for any generic i.
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4.2 Application: estimating all Shapley effects for cor-
related inputs

Shapley values were first introduced in game theory and economics [32] and
later in the framework of sensitivity analysis in [28]. In this context, these
indices have been called Shapley effects. They are used to quantify the impor-
tance of some input variables for correlated inputs. We refer to [28, 35, 29, 19]
and the references therein for more details on Shapley effects. Here, we then
consider that the input variables are no longer independent. In this case, it is
still possible to define, for any u ⊂ Ip,

Su = Var (E[Y |Xu])
Var(Y )

but its interpretation is no longer obvious. To overcome this difficulty, one can
consider the so-called Shapley effects defined, for any 1 6 i 6 p, by

Shi :=
∑

w⊂{1...,p},i∈w

1
|w|

∑
v⊂w

(−1)|w|−|v|Sw (35)

or equivalently,

Shi :=
∑

w⊂∼i

(p− |w| − 1)!|w|!
p! (Sw∪{i} − Sw). (36)

In the case of independent input variables, one has

Si 6 Shi 6 Si,Tot

In [35], the authors propose two algorithms to estimate the Shapley effects from
(36). The first one need to browse all the possible combinations of the input
variables while the second one sample randomly permutations of the input
variables. At each iteration, the expectation of a conditional variance has to
be computed by the algorithm. In [4], the authors implement a bootstrap
sampling in the existing algorithms to estimate confidence intervals of the
indices estimation.
Now, using the result of Section 4.1 with a single n sample, one can consistently
estimate all Sobol indices Su and all Shapley effects at the same time.
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5 Numerical experiments

5.1 Numerical comparison on the Sobol g-function: con-
ventional Pick-Freeze estimators vs Chatterjee’s es-
timators

In this section, we compare the performances of both estimation procedures
on an analytic function, the so-called Sobol g-function, that is defined by:

g(X1, . . . , Xp) =
p∏
i=1

|4Xi − 2|+ ai
1 + ai

, (37)

where (ai)i∈N is a sequence of real numbers and the Xi’s are i.i.d. random
variables uniformly distributed on [0, 1]. In this setting, one my easily compute
the exact expression of the first-order Sobol indices:

Si = 1/(3(1 + a2
i ))

[∏p
i=1 1/(3(1 + a2

i ))]− 1 .

As expected, the lower the coefficient ai, the more significant the variable Xi.
In the sequel, we simply fix ai = i.
Due to its complexity (non-linear and non-monotonic correlations) and the
analytical expression of the Sobol indices, the Sobol g-function is a classical
test example commonly used in global sensitivity analysis (see e.g. [30]).

Convergence as the sample size increases In Figure 1, we compare the
estimations of the six first-order Sobol indices given by both methods. In
the Pick-Freeze estimations, several sizes of sample N have been considered:
N = 100, 500, 1000, 5000, 10000, 50000, 100000, and 500000. The Pick-Freeze
procedure requires (p + 1) samples of size N . To have a fair comparison, the
sample sizes considered in the estimation of ξSobol

n are n = (p+ 1)N = 7N . We
observe that both methods converge and give precise results for large sample
sizes.

Comparison of the mean square errors Now we want to compare the
efficiency of both methods at a fixed sample size. In that view, we assume
that only n = 700 calls of the computer code f are allowed to estimate the six
first-order Sobol indices. We repeat the estimation procedure 500 times. The
boxplot of the mean square errors for the estimation of the first-order Sobol
index S1 with respect to X1 has been represented in Figure 2. We observe that,
for a fixed sample size n = 700 (corresponding to a Pick-Freeze sample size
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Figure 1: The Sobol g-function model (37). Convergence of both methods
when N increases. The sixth first-order Sobol indices have been represented
from left to right and up to bottom. Several sample sizes have been considered:
N = 100, 500, 1000, 5000, 10000, 50000, 100000, and 500000 for the Pick-
Freeze estimation procedure and correspondingly (p+ 1)N for the estimation
procedure proposed in [7]. The x-axis is in logarithmic scale.

N = 100), Chatterjee’s estimation procedure performs much better than the
Pick-Freeze method with significantly lower mean errors. The same behavior
can be observed for all the first Sobol indices as can be seen in Table 1 that
provides some characteristics of the mean squares errors.

Performances for small sample sizes or for large number of input
variables As expected, we can observe in Table 2 that Chatterjee’s procedure
proceeds much better than the Pick-Freeze methodology for small sample sizes.
Similarly, if the number of input variables increases drastically, we can observe
the same behavior as can be seen in Figure 3. In that case, we consider the
model (37) for several values of p: 6, 10, 15, 20, 30, 40, and 50.
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Figure 2: The Sobol g-function model (37). Boxplot of the mean square errors
of the estimation of S1 with a fixed sample size and 500 replications. The
results of Chatterjee’s methodology with n = 700 are provided in the left
panel. The results of the Pick-Freeze estimation procedure with N = 100 are
provided in the right panel.
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Pick-Freeze Chatterjee
Mean Median Stdev Mean Median Stdev

mse S1 0.0095548 0.0039458 0.0145033 0.0010218 0.0004498 0.0013999
mse S2 0.0105727 0.0046104 0.0148873 0.0017314 0.0006870 0.0027436
mse S3 0.0101785 0.0041789 0.0143846 0.0016667 0.0006409 0.0024392
mse S4 0.0105463 0.0047284 0.0178064 0.0018522 0.0008126 0.0025296
mse S5 0.0097979 0.0042995 0.0135533 0.0016285 0.0006855 0.0024264
mse S6 0.0096109 0.0046822 0.0134822 0.0015590 0.0007080 0.0021333

Table 1: The Sobol g-function model (37). Some characteristics of the mean
square errors for the estimation of the six first-order Sobol indices with a fixed
sample size and 500 replications. In Chatterjee’s methodology, the sample
size considered is n = 700 while in the Pick-Freeze estimation procedure, it is
N = 100.

Pick-Freeze Chatterjee
N = 10 N = 50 N = 100 n = 70 n = 350 n = 700

mse S1 0.1128686 0.0172275 0.0095548 0.0116790 0.0022941 0.0010218
mse S2 0.1509575 0.0223196 0.0105727 0.0177522 0.0033719 0.0017314
mse S3 0.1469124 0.0220015 0.0101785 0.0175517 0.0032474 0.0016667
mse S4 0.1591130 0.0196357 0.0105463 0.0159360 0.0033948 0.0018522
mse S5 0.1646339 0.0240353 0.0097979 0.0158563 0.0032230 0.0016285
mse S6 0.1466408 0.0217638 0.0096109 0.0166701 0.0029653 0.0015590

Table 2: The Sobol g-function model (37). Mean squares errors of the es-
timation of the six first-order Sobol indices with small sample sizes and with
both methods.

5.2 An application in biology
Now we illustrate the nature and performance of the Cramér-von-Mises indices
and their corresponding Chaterjee estimators as a screening mechanism for
high-dimensional problems. To do so, we consider the neurovascular coupling
model from [17]. Mathematically, this corresponds to the following differential-
algebraic equation (DAE) system

dW

dt
= G(W,Z,X), (38)

0 = H(W,Z,X), (39)

21



Figure 3: The Sobol g-function model (37). Mean square errors of the es-
timation of the six first-order Sobol indices with respect to the number of
input variables with a fixed sample size and 500 replications. We consider
the sample sizes n = 200 in Chatterjee’s methodology and N = n/(p + 1)
in the Pick-Freeze procedure. The number of input variables considered are
p = 6, 10, 15, 20, 30, 40, and 50.

where W = (W1, . . . ,WN) and Z = (Z1, . . . , ZM) correspond respectively to
the differential and algebraic state variables of the models. The variables
X = (X1, . . . , Xp) correspond to the uncertain parameters of the model. Our
quantity of interest corresponds to the time average over [0, T ] of W ∗ (which
is one of the differential state variables W1, ..., WN), i.e.

Y = 1
T

∫ T

0
W ∗(t) dt. (40)

As above, we regard Y as a function of the unknown parameters, i.e., Y =
f(X1, . . . , Xp). In our implementation, the values of W ∗ are obtained by solv-
ing the above DAE system (Equations (38) and (39)) by the MATLAB routine
ode15s (it can be checked that (38) and (39) form an index one system). Fur-
ther, in the current example, N = 67 and p = 160 and the distributions of
most of the Xi’s are uniform and allowed to vary ±10% from nominal values
(see [17] for additional details).
We compare the results from the Chaterjee estimators as described above to
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those resulting from the linear regression

f(X1, . . . , X160) ≈ λ0 +
160∑
j=1

λjXj.

As shown in [17], the above approximation performs well for the considered
QoI. We assign to each variable X1, . . . , X160 a relative importance Lj where

Lj = |λj|∑160
`=1 |λ`|

, j = 1, . . . , 160.

Figure 4 displays the results. Both screening approaches identify the same
to three influential parameters. More parameters are identified as being non-
influential through the linear regression approach than using the Cramér-von-
Mises indices.

Figure 4: Chaterjee estimators corresponding to the Cramér- von-Mises indices
as a screening mechanics for the DAE system given by (38) and (39).

6 Conclusion
In this paper, we explain how to use the estimator proposed by Chatterjee in
[7] to provide a very nice and mighty procedure to estimate both all the order
one Sobol indices and the so-called Cramér-von-Mises indices [14] at a small
cost (only n calls of the computer code). We also extend Chatterjee’s method
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to estimate more general quantities. As examples, we consider two indices
already introduced in sensitivity analysis: the indices adapted to output valued
in general metric spaces defined in [15] and the higher-moment indices [25, 26].
In addition, we extend the procedure to estimate not only the first-order indices
but also second-order and even higher-order indices. Consequently, the Shapley
effects defined for correlated inputs are then also easily estimated.
Our analysis paves the way for further research directions. For instance,
Chaterjee proves a central limit theorem for (7) when X and Y are inde-
pendent. A first interesting step would be to establish a central limit theorem
for the estimators (7) and more generally (12) in any case.
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Intelligence Toulouse Institute is gratefully acknowledged. This work was also
supported by the National Science Foundation under grant DMS-1745654.

References
[1] A. Alexanderian, P. Gremaud, and R. Smith. Variance-based sensitiv-

ity analysis for time-dependent processes. Reliability Eng. Sys. Safety,
196:106722, 2020.

[2] A. Antoniadis. Analysis of variance on function spaces. Statistics: A
Journal of Theoretical and Applied Statistics, 15(1):59–71, 1984.

[3] D. L. Applegate, R. E. Bixby, V. Chvatal, and W. J. Cook. The traveling
salesman problem: a computational study. Princeton university press,
2006.

[4] N. Benoumechiara and K. Elie-Dit-Cosaque. Shapley effects for sensitivity
analysis with dependent inputs: bootstrap and kriging-based algorithms.
arXiv preprint arXiv:1801.03300, 2018.

[5] E. Borgonovo. A new uncertainty importance measure. Reliability Engi-
neering & System Safety, 92(6):771–784, 2007.

[6] E. Borgonovo, W. Castaings, and S. Tarantola. Moment independent im-
portance measures: New results and analytical test cases. Risk Analysis,
31(3):404–428, 2011.

[7] S. Chatterjee. A new coefficient of correlation. arXiv e-prints, page
arXiv:1909.10140, Sep 2019.

24



[8] S. Da Veiga. Global sensitivity analysis with dependence measures. J.
Stat. Comput. Simul., 85(7):1283–1305, 2015.

[9] E. De Rocquigny, N. Devictor, and S. Tarantola. Uncertainty in industrial
practice. Wiley Online Library, 2008.

[10] J.-C. Fort, T. Klein, and N. Rachdi. New sensitivity analysis subordinated
to a contrast. Communications in Statistics - Theory and Methods, 2015
to appear.

[11] R. Fraiman, F. Gamboa, and L. Moreno. Sensitivity indices for output
on a Riemannian manifold. arXiv e-prints, page arXiv:1810.11591, Oct
2018.

[12] F. Gamboa, A. Janon, T. Klein, and A. Lagnoux. Sensitivity analysis for
multidimensional and functional outputs. Electronic Journal of Statistics,
8:575–603, 2014.

[13] F. Gamboa, A. Janon, T. Klein, A. Lagnoux, and C. Prieur. Statistical
inference for Sobol pick-freeze Monte Carlo method. Statistics, 50(4):881–
902, 2016.

[14] F. Gamboa, T. Klein, and A. Lagnoux. Sensitivity analysis based on
Cramér von Mises distance. SIAM/ASA Journal on Uncertainty Quan-
tification, 6(2):522–548, Apr. 2018.

[15] F. Gamboa, T. Klein, A. Lagnoux, and L. Moreno. Sensitivity analysis
in general metric spaces. working paper or preprint, Feb. 2019.

[16] G. Gutin and A. P. Punnen. The traveling salesman problem and its
variations, volume 12. Springer Science & Business Media, 2006.

[17] J. Hart, P. Gremaud, and T. David. Global sensitivity analysis of high
dimensional neuroscience models: an example of neurovascular coupling.
Bull Math Biol, 2019.

[18] W. Hoeffding. A class of statistics with asymptotically normal distribu-
tion. Ann. Math. Statistics, 19:293–325, 1948.

[19] B. Iooss and C. Prieur. Shapley effects for sensitivity analysis with cor-
related inputs: comparisons with Sobol’indices, numerical estimation and
applications. International Journal for Uncertainty Quantification, 9(5),
2019.

25



[20] A. Janon, T. Klein, A. Lagnoux, M. Nodet, and C. Prieur. Asymptotic
normality and efficiency of two Sobol index estimators. ESAIM: Proba-
bility and Statistics, 18:342–364, 1 2014.

[21] J. Kirk. Traveling salesman problem - genetic algorithm. 2014.

[22] S. Kucherenko and S. Song. Different numerical estimators for main ef-
fect global sensitivity indices. Reliability Engineering & System Safety,
165:222–238, 2017.

[23] M. Lamboni, H. Monod, and D. Makowski. Multivariate sensitivity anal-
ysis to measure global contribution of input factors in dynamic models.
Reliability Engineering & System Safety, 96(4):450–459, 2011.

[24] C. McDiarmid. On the method of bounded differences. Surveys in com-
binatorics, 141(1):148–188, 1989.

[25] A. Owen. Variance components and generalized Sobol’ indices.
SIAM/ASA Journal on Uncertainty Quantification, 1(1):19–41, 2013.

[26] A. Owen, J. Dick, and S. Chen. Higher order Sobol’ indices. Information
and Inference, 3(1):59–81, 2014.

[27] A. B. Owen. Better estimation of small Sobol’sensitivity indices.
ACM Transactions on Modeling and Computer Simulation (TOMACS),
23(2):11, 2013.

[28] A. B. Owen. Sobol’indices and Shapley value. SIAM/ASA Journal on
Uncertainty Quantification, 2(1):245–251, 2014.

[29] A. B. Owen and C. Prieur. On Shapley value for measuring importance
of dependent inputs. SIAM/ASA Journal on Uncertainty Quantification,
5(1):986–1002, 2017.

[30] A. Saltelli, K. Chan, and E. Scott. Sensitivity analysis. Wiley Series in
Probability and Statistics. John Wiley & Sons, Ltd., Chichester, 2000.

[31] T. J. Santner, B. Williams, and W. Notz. The Design and Analysis of
Computer Experiments. Springer-Verlag, 2003.

[32] L. S. Shapley. A value for n-person games. Contributions to the Theory
of Games, 2(28):307–317, 1953.

[33] I. Sobol. Global sensitivity indices for nonlinear mathematical models and
their Monte Carlo estimates. Mathematics and Computers in Simulation,
55(1-3):271–280, 2001.

26



[34] I. M. Sobol. Sensitivity estimates for nonlinear mathematical models.
Math. Modeling Comput. Experiment, 1(4):407–414 (1995), 1993.

[35] E. Song, B. L. Nelson, and J. Staum. Shapley effects for global sensitivity
analysis: Theory and computation. SIAM/ASA Journal on Uncertainty
Quantification, 4(1):1060–1083, 2016.

[36] B. Sudret. Global sensitivity analysis using polynomial chaos expansions.
Reliability Engineering & System Safety, 93(7):964–979, 2008.

[37] A. W. van der Vaart. Asymptotic statistics, volume 3 of Cambridge Series
in Statistical and Probabilistic Mathematics. Cambridge University Press,
Cambridge, 1998.

27


	Introduction
	Sensitivity analysis based on Cramér-von-Mises indices
	Definition of Cramér-von-Mises indices
	Classical estimation of Sobol and Cramér-von-Mises indices using the Pick-Freeze method
	Chatterjee's method

	Generalization of Chatterjee's method
	A universal estimation procedure of sensitivity indices
	Recovering the classical first-order Sobol indices
	Sensitivity indices in general metric spaces
	Owen higher-order moment indices

	Extensions
	Estimating all Sobol indices with a single sample
	Application: estimating all Shapley effects for correlated inputs

	Numerical experiments
	Numerical comparison on the Sobol g-function: conventional Pick-Freeze estimators vs Chatterjee's estimators
	An application in biology

	Conclusion

