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Abstract

We propose a new statistical estimation framework for a large family of global sensi-
tivity analysis methods. Our approach is based on rank statistics and uses an empirical
correlation coefficient recently introduced by Sourav Chatterjee. We show how to apply
this approach to compute not only the Cramér-von-Mises indices, which are directly
related to Chatterjee’s notion of correlation, but also Sobol indices at any order, higher-
order moment indices, and Shapley effects. We establish consistency of the resulting
estimators and demonstrate their numerical efficiency, especially for small sample sizes.

Key words Global sensitivity analysis, Cramér-von-Mises distance, Pick-Freeze method,
Chatterjee’s coefficient of correlation, Shapley effects, Sobol indices estimation.

AMS subject classification 62G05, 62G20.

1 Introduction
The use of complex computer models for the analysis of applications from the sciences, engi-
neering and other fields is by now routine. Often, the models are expensive to run in terms of
computational time. It is thus crucial to understand, with just a few runs, the global influence
of one or several inputs on the output of the system under study [31]. When these inputs
are regarded as random elements, this problem is generally referred to as Global Sensitivity
Analysis (GSA). We refer to [9, 30, 34] for an overview of the practical aspects of GSA.
A popular and highly useful tool to quantify input influence are the Sobol indices. These
indices were first introduced in [33] and are well tailored to the case of scalar outputs. The
Sobol indices compare, thanks to the Hoeffding decomposition [18], the conditional variance
of the output knowing some of the input variables to the total variance of the output. Many
different estimation procedures of the Sobol indices have been proposed and studied. Some are
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based on Monte-Carlo or quasi Monte-Carlo design of experiments (see [22, 27] and references
therein for more details). In particular, an efficient estimation of the Sobol indices can be
performed through the so-called Pick-Freeze method. For the description of this method and
its theoretical study (consistency, central limit theorem, concentration inequalities and Berry-
Esseen bounds), we refer to [20, 13] and references therein. Some other estimation procedures
are based on different designs of experiment using for example polynomial chaos (see [36] and
the reference therein for more details).
Various generalizations of the Sobol indices have been developed. The issue of vectorial out-
puts, as is the case with time dependent or functional quantities of interest, is addressed in
[1, 12, 23]. In particular, in [12], the authors recover the indices from [23] and show that they
are a proper generalization of the classical Sobol indices in higher dimension. Moreover, they
provide the theoretical study of their Pick-Freeze estimators and extend their definitions to
the case of outputs valued in a separable Hilbert space.
Since Sobol indices are variance based, they only quantify the second order influence of the
inputs. Many authors proposed other criteria to compare the conditional distribution of the
output knowing some of the inputs to the distribution of the output. In [27, 26, 25], the
authors use higher moments to define new indices while, in [5, 6, 8], the use of divergences
or distances between measures allows to define new indices. In [10], the authors use contrast
functions to build indices that are goal oriented. Although these works define nice theoretical
indices, the existence of a relevant statistical estimation procedure is still in most cases an open
question. The case of vectorial valued computer codes is considered in [14] where a sensitivity
index based on the whole distributions is defined. Within this framework, the authors show
that the Pick-Freeze estimation procedure provides an asymptotically Gaussian estimator of
the index. The scheme requires 3N evaluations of the output code for the evaluation of a
single index and leads to a convergence rate

√
N . Hence, if the number of inputs variable is p,

the total number of calls of the code is (p+3)N that grows linearly with p. This approach has
been generalized in [11], where the authors considered computer codes valued on a compact
Riemannian manifold. They use the Pick-Freeze scheme to provide a consistent estimator
requiring 4N evaluations of the output code. The authors of [15] extend the previous indices
to general metric spaces and propose U-statistics-based estimators improving the classical
Pick-Freeze procedure.
We emphasize that the Pick-Freeze estimation procedure allows the estimation of several sensi-
tivity indices: the classical Sobol indices for real-valued outputs, as well as their generalization
for vectorial valued codes, but also the indices based on higher moments [26] and the Cramér-
von-Mises indices which take into account on the whole distribution [14, 11]. In addition, the
Pick-Freeze estimators have desirable statistical properties such as consistency, fixed rate of
convergence and exponential inequalities. They have, however, two majors drawbacks. First,
they rely on a particular experimental design that may be unavailable in practice. Second, the
number of model calls to estimate all first-order Sobol indices grows linearly with the number
of input parameters. For example, if we consider p = 99 input parameters and only n = 1000
calls are allowed, then only a sample of size n/(p+ 1) = 10 is available to estimate each single
first-order Sobol index.
In a recent work [7], Chatterjee studies the dependence between two variables by introducing
an empirical correlation coefficient based on rank statistics, see Section 2.3 below for the
precise definition. The striking point of his work is that this empirical correlation coefficient
converges almost surely to the Cramér-von-Mises index introduced in [14] as the sample size
goes to infinity. In this paper, we show how to embed Chatterjee’s method in the GSA
framework, thereby eliminating the two drawbacks of the classical Pick-Freeze estimation
mentioned above. In addition, we generalize Chatterjee’s approach to allow the estimation
a large class of GSA indices which include the Sobol indices and the higher order moment
indices proposed by Owen [27, 26, 25]. Using a single sample of size n, it is now possible to
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estimate at the same time all the Sobol indices at any order, the Cramér-von-Mises indices,
and other useful sensitivity indices. Last but not least, this estimation scheme also allows to
estimate the Shapley effects defined in [28] for correlated inputs.
The paper is organized as follows. In Section 2, we recall the definition of the Cramér-von-
Mises indices and their classical Pick-Freeze estimation. Further, we show how they can
be also estimated using Chatterjee’s method. In Section 3, we present the generalization
Chatterjee’s method to estimate other sensitivity indices and in particular the Sobol indices.
Extensions are presented in Section 4. The higher order Sobol indices and the Shapley effects
are considered. Section 5 is dedicated to a numerical comparison between the Pick-Freeze
estimation procedure and Chatterjee’s method. We first compare the numerical performance
of both estimators on a linear model. Finally, we consider a real life application. As expected,
Chaterjee’s estimation method outperforms the classical Pick-Freeze procedure, even for small
sample sizes (which are common in practice). Conclusions and perspectives are offered in
Section 6.

2 Sensitivity analysis based on Cramér-von-Mises in-
dices

2.1 Definition of Cramér-von-Mises indices
The quantity of interest (QoI) Y is obtained from the numerical code and is regarded a function
f of the vector of the distributed input (Xi)i=1,··· ,p

Y = f(X1, . . . , Xp), (1)
where f is defined on the state space E1 . . .× Ep, Xi ∈ Ei, i = 1, . . . , p. Classically, the Xi’s
are assumed to be independent random variables and a sensitivity analysis is performed using
the Hoeffding decomposition [2, 37] leading to the standard Sobol indices [34]. More precisely,
assume f to be real-valued and square integrable and let u be a subset of {1, . . . , p} and ∼u
its complementary set in {1, . . . , p}. Setting Xu = (Xi, i ∈ u) and X∼u = (Xi, i ∈∼ u), the
corresponding Sobol indices take the form

Su = Var (E[Y |Xu])
Var(Y ) and S∼u = Var (E[Y |X∼u])

Var(Y ) . (2)

By definition, the Sobol indices quantifies the fluctuations of the output Y around its mean.
When the practitioner is not interested in the mean behavior of Y but rather in its median,
in its tail, or even in its quantiles, the Sobol indices become less appropriate to quantify
sensitivity. GSA must then be performed in a framework which takes into account more than
one specific moment, such as the variance for Sobol indices. The Cramér-von-Mises indices
introduced in [14] provide alternative indices based on the whole distribution. They are defined
by

Su
2,CVM =

∫
R E

[
(F (t)− Fu(t))2

]
dF (t)∫

R F (t)(1− F (t))dF (t) (3)

where F is the cumulative distribution function of Y
F (t) = P (Y 6 t) = E

[
1{Y 6t}

]
(t ∈ R)

and Fu is its Pick-Freeze version, namely the conditional distribution function of Y condition-
ally on Xu:

Fu(t) = P (Y 6 t|Xu) = E
[
1{Y 6t}|Xu

]
(t ∈ R).

Such a definition stems from the Hoeffding decomposition of the collection of variables (1{Y 6t})t∈R.
It is worth noting that this definition naturally extends to multivariate outputs.
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2.2 Classical estimation of Sobol and Cramér-von-Mises indices us-
ing the Pick-Freeze method

The estimation of the Cramér-von-Mises index (3) reduces to the estimation of both its nu-
merator and its denominator. The numerator of Su

2,CVM can be rewritten as∫
R
E
[
(F (t)− Fu(t))2

]
dF (t) = EW

[
EXu

[
(F (W )− Fu(W ))2

]]
= EW

[
VarXu

(
EY

[
1{Y 6W}|Xu

])]
where W is an independent copy of Y and where, for a random quantity Z, EZ and VarZ
denote respectively the expectation and the variance with respect to Z. When no confusion
is possible, we only write E and Var in the rest of the paper. A Monte-Carlo scheme can
be used to estimate the Cramér-von-Mises indices. The corresponding Pick-Freeze approach
from [13, 14, 20] relies on expressing the variances of the conditional expectations in terms of
covariances which are easily and well estimated by their empirical versions. To that end, we
define, for any subset u of {1, . . . , p}

Y u := f(Xu). (4)

where Xu is such that Xu
u = Xu and Xu

i = X ′i if i ∈∼ u, X ′i being an independent copy of Xi.
The estimation procedure relies on the following lemma which is still valid for any function
g ∈ L2, not just g(y) = 1{y6t}.

Lemma 2.1.

Var(E[1{Y 6t}|Xu]) = Cov(1{Y 6t},1{Y u6t}). (5)

Proof. Let Z = 1{Y 6t} and Zu = 1{Y u6t}. Since, Z and Zu shares the same distribution and
are independent conditionally to Xu, we have

Var(E[Z|Xu]) = E[E[Z|Xu]2]− E[E[Z|Xu]]2

= E[E[Z|Xu]E[Zu|Xu]]− E[E[Z|Xu]]E[E[Zu|Xu]]
= E[E[ZZu|Xu]]− E[Z]E[Zu]
= E[ZZu]− E[Z]E[Zu]
= Cov(Z,Zu).

Consequently, the Monte-Carlo estimation can be done as follows. A n sample (Y1, . . . , Yn)
of the output Y and a n sample (Y u

1 , . . . , Y
u
n ) of its Pick-Freeze version Y u are required. In

addition, in order to deal with the integral with respect to dF (t) in (3), a third independent n
sample (W1, . . . ,Wn) of the output Y is necessary. Then the empirical estimator of S1

2,CVM is

S1
n,2,CVM =

1
n

∑n
k=1

(
1
n

∑n
j=1 1{Yj6Wk}1{Y u

j 6Wk} − 1
n

∑n
j=1 1{Yj6Wk}

1
n

∑n
j=1 1{Y u

j 6Wk}
)

1
n

∑n
j=1

(
1
n

∑n
j=1 1{Yj6Wk} −

(
1
n

∑n
j=1 1{Yj6Wk}

)2
) . (6)

As showed in [14], this estimator is consistent and asymptotically Gaussian (i.e. the rate of
convergence is

√
n). The limiting variances can be computed explicitly, allowing the practi-

tioner to build confidence intervals. In particular, if one wants to estimate all the first-order
indices (that is the p first-order Sobol indices) and the p Cramér-von-Mises indices, (p + 2)n
calls of the computer code are required. The number of calls grows linearly with respect to the
number of input parameters. This is a practical issue for large input dimension domains. A
second drawback of this estimation scheme comes from the need of the particular Pick-Freeze
design that is not always available.
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2.3 Chatterjee’s method
In [7], Chatterjee considers a pair of random variables (V, Y ) and an i.i.d. sample (Vj, Yj)16j6n.
In order to simplify the presentation, we assume that the laws of V and Y are both diffuse
(ties are excluded). The pairs (V(1), Y(1)), . . . , (V(n), Y(n)) are rearranged in such a way that

V(1) < . . . < V(n).

Let rj be the rank of Y(j), that is,

rj = #{j′ ∈ {1, . . . , n}, Y(j′) 6 Y(j)}.

The new correlation coefficient defined by Chatterjee in [7] is

ξn(V, Y ) := 1−
3∑n−1

j=1 |rj+1 − rj|
n2 − 1 . (7)

The author proves that ξn(V, Y ) converges almost surely to a deterministic limit ξ(V, Y ) which
is equal to the Cramér-von-Mises sensitivity index SV2,CVM with respect to V as soon as V is
one of the random variables X1, ..., Xp in the model (1). Further, he also proves a central
limit theorem (CLT) when V and Y are independent.
Chatterjee also provides a rank statistics analog to Lemma 2.1. More precisely, let π(j) be
the rank of Vj in the sample (V1, . . . , Vn) of V and define

N(j) =

π−1(π(j) + 1) if π(j) + 1 6 n,

π−1(1) if π(j) = n.
(8)

Observe that ξn(V, Y ) can be rewritten as Qn/Sn where

Qn = 1
n

n∑
j=1

min{Fn(Yj), Fn(YN(j))} −
1
n

n∑
j=1

Fn(Yj)2

= 1
n

n∑
j=1

 1
n

n∑
k=1

1Yk6Yj1Yk6YN(j) −
(

1
n

n∑
k=1

1Yk6Yj

)2
 ,

Sn = 1
n

n∑
j=1

Fn(Yj)(1− Fn(Yj)),

where Fn stands for the empirical distribution function of Y : Fn(t) = 1
n

∑n
j=1 1{Yj6t}. The

analogue of the Pick-Freeze version Y V with respect to V of Y becomes YN and Lemma 2.1
is replaced by the formula

E[1{Yj>t}1{YN(j)>t}|V1, . . . , Vn] = GVj(t)GVN(j)(t) (9)

for all j = 1, . . . , n that is mentioned in the proof of Lemma 7.10 in [7, p.24], with GV the
conditional survival function: GV (t) = P(Y > t|V ).
Remark 2.2. In [7], the author considers also the random variables Vn,j due to the fact that ties
are possible. In our paper, we assume that the distributions of V and Y are diffuse rendering
the introduction of the Vn,j’s unworthy since in this case, Vn,j = VN(j).

Consequences of Chatterjee’s method

1. A unique n sample of input-output provides consistent estimations of the p first-order
Cramér-von-Mises indices.

2. Chatterjee’s central limit theorem allows to built statistical tests for testing

H0 : SV2,CVM = 0 against H1 : SV2,CVM 6= 0.

5



3 Generalization of Chatterjee’s method

3.1 A universal estimation procedure of sensitivity indices
In this section, we propose a universal estimation procedure of expectations of the form

E[E[f(Y )|V ]E[g(Y )|V ]].

This result is a generalization of (9) and can be interpreted as an approximation of (5). To
this end, we introduce the function ΨV defined by

ΨV (f) = E[f(Y )|V ] (10)

for any integrable function f . Let Fn be the σ-algebra generated by {V1, . . . , Vn}. Note that
in Section 2.3, we consider f(x) = ft(x) = 1x>t so that ΨV (f) = P(Y > t|V ) = GV (t).

Lemma 3.1. Let f and g be two integrable functions such that fg is also integrable. Let
(Vj, Yj)16j6n be a n sample of (V, Y ). Consider a Fn-measurable random permutation σn such
that σn(j) 6= j, for all j = 1, . . . , n. Then

E
[
f(Yj)g(Yσn(j))|V1, . . . , Vn

]
= ΨVj(f)ΨVσn(j)(g). (11)

Proof. Using the measurability of σn and by independence, we have

E
[
f(Yj)g(Yσn(j))|Fn

]
= E

[
f(Yj)

n∑
l=1,
l 6=j

g(Yl)1σn(j)=l|Fn
]

=
n∑
l=1,
l 6=j

1σn(j)=lE
[
f(Yj)g(Yl)|Fn

]

=
n∑
l=1,
l 6=j

1σn(j)=lE
[
f(Yj)|Fn

]
E
[
g(Yl)|Fn

]

= E
[
f(Yj)|Vj

] n∑
l=1,
l 6=j

1σn(j)=lE
[
g(Yl)|Vl

]

= ΨVj(f)
n∑
l=1,
l 6=j

1σn(j)=lΨVl(g) = ΨVj(f)ΨVσn(j)(g).

The previous lemma leads to a generalization of the first part of the numerator of ξn defined
in (7). Following the same lines as in [7], one may prove that such a quantity converges almost
surely as n→∞ under some mild conditions.

Proposition 3.2. Let f and g be two bounded measurable functions. Consider a Fn-measurable
random permutation σn with no fix point (i.e. σn(j) 6= j), for all j = 1, . . . , n. In addition,
we assume that for any j = 1, . . . , n, Vσn(j) → Vj as n → ∞ with probability one. Then
χn(V, Y ; f, g) defined by

χn(V, Y ; f, g) = 1
n

n∑
j=1

f(Yj)g(Yσn(j)) (12)

converges almost surely as n→∞ to

χ(V, Y ; f, g) = E[ΨV (f)ΨV (g)], (13)

where ΨV (f) has been defined in (10).
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Proof. We follow the steps of the proof of Corollary 7.12 in [7]. Our proof is significantly
simpler since σn is assumed to have no fix points and V is continuous so that the are no ties
in the sample. To simplify the notation, we denote χn(V, Y ; f, g) and χ(V, Y ; f, g) by χn and
χ respectively.
We first prove that, for any measurable function h,

h(V1)− h(Vσn(1))→ 0 (14)

almost surely as n→∞. Let ε > 0. By the special case of Lusin’ theorem (see [7, Lemma 7.5]),
there exists a compactly supported continuous function g : R → R such that P({x; h(x) 6=
g(x)}) < ε, where P stands for the distribution of V . Then for any δ > 0,

P(
∣∣∣h(V1)− h(Vσn(1)

∣∣∣ > δ) 6 P(
∣∣∣g(V1)− g(Vσn(1))

∣∣∣ > δ)
+ P(h(V1) 6= g(V1)) + P(h(Vσn(1)) 6= g(Vσn(1))). (15)

By continuity of g and since Vσn(1) → V1 as n→∞ with probability one, the first term in the
right hand side of (15) converges to 0 as n → ∞. By construction of g, the second term is
lower than ε. Turning to the third one, we have thus

E[h(Vσn(1))] = 1
n

n∑
j=1

E[h(Vσn(j))] = 1
n

n∑
j=1

n∑
l=1
l 6=j

E[h(Vl)1σn(j)=l]

= 1
n

n∑
l=1

n∑
j=1
j 6=l

E[h(Vl)1σn(j)=l] = 1
n

n∑
l=1

E[h(Vl)
n∑
j=1
j 6=l

1σn(j)=l]

= 1
n

n∑
l=1

E[h(Vl)] = E[h(V1)]

where we have used the fact that by assumption σn has no fix point and the Vi’s have no ties.
This yields

P(h(Vσn(1)) 6= g(Vσn(1))) = P(h(V1) 6= g(V1)) < ε,

and, since ε and δ are arbitrary, (14) is therefore proved.
Now, since x 7→ Ψx is a measurable function and applying (14), we have{

ΨV1(f)−ΨVσn(1)(f) → 0,
ΨV1(g)−ΨVσn(1)(g) → 0, in probability as n→∞. (16)

Lemma 3.5 and the dominated convergence theorem lead to

E[χn] = 1
n

n∑
j=1

E[f(Yj)g(Yσn(j))] = E[f(Y1)g(Yσn(1))]

= E[ΨV1(f)ΨVσn(1)(g)]→ E[ΨV (f)ΨV (g)] = χ(V, Y ; f, g) (17)

where we have taken into account the fact that ΨV (f) and ΨV (g) are bounded (due to the
boundedness of f and g) and used (16).
The last step of the proof consists in comparing E[χn] with χn using Mc Diarmid’s concentra-
tion inequality [24]. To be self-contained, we recall this result.
Theorem 3.3 (Mac Diarmid’s bounded difference concentration inequality [24]). Let W =
(W1, . . . ,Wn) be a family of independent variables with Wi taking its values in a set Ak.
Consider a real-valued function h defined on Πn

k=1Ak satisfying

|h(w)− h(w′)| 6 ck (18)
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as soon as the vectors w and w′ differ only on the k-th coordinate. Then we have, for any
t > 0,

P (|h(W )− E[h(W )]| > t) 6 2 exp
(
− 2t2∑n

k=1 ck

)
.

Assume that for some i 6 n, the pair (Vi, Yi) is replaced by a different value (V ′i , Y ′i ). Then
there are at most three indices j such that the value of σn(j) changes after such a replacement,
and exactly one index, j = i, where Yj changes. Moreover, there can be at most one index j
such that σn(j) = i, both before and after the replacement. Using the boundedness of f and
g, this shows that χn changes by at most C/n due to this replacement.

Theorem 3.3 then implies

P(|χn − E[χn]| > t) 6 2e−2n2t2/C2
, (19)

and we conclude the proof by combining (17) and (19).

3.2 Recovering the classical first-order Sobol indices
We can now leverage the above results and construct a new family of estimators for Sobol
indices. Indeed, assume we want to estimate the Sobol index with respect to V = X1. We
then define N as in (8) where π is the rank of X1. Taking f(x) = g(x) = x and σn = N , (11)
provides the analogue to ξn to estimate the classical Sobol indices:

ξSobol
n (X1, Y ) :=

1
n

∑n
j=1 YjYN(j) −

(
1
n

∑n
j=1 Yj

)2

1
n

∑n
j=1(Yj)2 −

(
1
n

∑n
j=1 Yj

)2 , (20)

where the denominator reduces to the empirical variance of Y .
This estimator can be compared to the classical Pick-Freeze estimators which are constructed
as follows. For the estimation of S1 for instance, a n sample (Y 1, . . . , Y n) of the output Y and
a n sample (Y 1

k , . . . , Y
n
k ) of its Pick-Freeze version Yk are required. The natural estimator of

S1 is then given by

S1
n =

1
n

∑n
j=1 YjY

1
j −

(
1
n

∑n
j=1 Yj

) (
1
n

∑n
j=1 Y

1
j

)
1
n

∑n
j=1(Yj)2 −

(
1
n

∑n
j=1 Yj

)2 . (21)

A slightly different estimator is introduced in [20] to use all the information available:

T 1
n =

1
n

∑n
j=1 YjY

1
j −

(
1
n

∑n
j=1

Yj+Y 1
j

2

)2

1
n

∑n
j=1

(Yj)2+(Y 1
j )2

2 −
(

1
n

∑n
j=1

Yj+Y 1
j

2

)2 . (22)

As for the Cramér-von-Mises estimation scheme, such an estimation procedure has been proved
to be consistent and asymptotically normal (i.e. the rate of convergence is

√
n) in [20, 13].

The limiting variances can be computed explicitly, allowing the practitioner to build confidence
intervals. In addition, the sequence of estimators (T 1

n)n is asymptotically efficient to estimate
S1 from such a design of experiment (see, [37] for the definition of the asymptotic efficiency
and [13] for the details of the result).
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3.3 Sensitivity indices in general metric spaces
In this section, we consider a computer code valued in a general metric space X as presented
in [15]. In this context, the authors of [15] consider a family of test functions parametrized by
m elements of X (m ∈ N∗). For any a = (ai)i=1,...,m ∈ Xm, the test functions

Xm ×X → R
(a, x) 7→ Ta(x)

are assumed to be L2-functions with respect to the product measure P⊗m ⊗ P on Xm × X
where P is the distribution of Y . Then they define the general metric space sensitivity index
with respect to X1 by

S1
2,GMS :=

∫
Xm E

[
(E[Ta(Y )]− E[Ta(Y )|X1])2

]
dP⊗m(a)∫

Xm Var(Ta(Y ))dP⊗m(a) . (23)

This general class of indices encompasses the classical sensitivity indices, for instance, the
Sobol indices and the Cramér-von-Mises indices. Naturally, a Monte-Carlo procedure based
on the Pick-Freeze scheme can be performed to estimate S1

2,GMS.

Estimation procedure based on U-statistics In [15], the authors propose a more efficient
estimation procedure based on U-statistics (see [15, Equation (13)]). More precisely, for any
1 6 i 6 m+ 2, we let yi = (yi, y1

i ) and we define

Φ1(y1, . . . ,ym+1) := Ty1,...,ym(ym+1)Ty1,...,ym(y1
m+1)

Φ2(y1, . . . ,ym+2) := Ty1,...,ym(ym+1)Ty1,...,ym(y1
m+2)

Φ3(y1, . . . ,ym+1) := Ty1,...,ym(ym+1)2

Φ4(y1, . . . ,ym+2) := Ty1,...,ym(ym+1)Ty1,...,ym(ym+2).

We set

m(1) = m(3) = m+ 1 and m(2) = m(4) = m+ 2 (24)

and we define for j = 1, . . . , 4,

I(Φj) :=
∫
Xm(j)

Φj(y1, . . . ,ym(j))dP⊗m(j)
Y (y1 . . . ,ym(j)), (25)

where PY stands for the law of Y = (Y, Y 1)>. Finally, we introduce the application Ψ from
R4 to R defined by

ψ : R4 → R
(x, y, z, t) 7→ x−y

z−t .
(26)

Then one can express S1
2,GMS in the following way

S1
2,GMS = ψ (I(Φ1), I(Φ2), I(Φ3), I(Φ4)) . (27)

Following the framework of Hoeffding [18], we replace the functions Φ1,Φ2, Φ3 and Φ4 by their
symmetrized version Φs

1,Φs
2, Φs

3 and Φs
4:

Φs
j(y1, . . . ,ym(j)) = 1

(m(j))!
∑

τ∈Sm(j)

Φj(yτ(1), . . . ,yτ(m(j)))

9



for j = 1, . . . , 4 where Sk is the symmetric group of order k. For j = 1, . . . 4, the integrals
I(Φs

j) are naturally estimated by U-statistics of order m(j). More precisely, we consider a n
i.i.d. sample (Y1, . . . ,Yn) with distribution PY and, for j = 1, . . . , 4, we define

Uj,n :=
(

n
m(j)

)−1 ∑
1≤i1<···<im(j)≤n

Φs
j

(
Yi1 , . . . ,Yim(j)

)
. (28)

Theorem 7.1 in [18] ensures that Uj,n converges in probability to I(Φj) for any j = 1, . . . , 4.
Moreover, one may also prove that the convergence holds almost surely proceeding as in the
proof of Lemma 6.1 in [14]. Then we estimate S1

2,GMS by

S1
2,GMS,n := U1,n − U2,n

U3,n − U4,n
= ψ(U1,n, U2,n, U3,n, U4,n). (29)

A novel estimation procedure In light of Section 3.1, one can introduce a novel estimation
ξGMS
n (X1, Y ) of S1

2,GMS in (23) as follows. The Pick-Freeze scheme is replaced by the use of
the YN(i)’s where N is the permutation defined in (8) and the integration with respect to P⊗m
is handled using U-statistics. More precisely, for j = 1, . . . , 4, we define

Ũj,n :=
(

n
m(j)

)−1 ∑
1≤i1<···<im(j)≤n

Φ̃s
j

(
Yi1 , . . . ,Yim(j)

)
, (30)

where Φ̃s
j is the symetrized version of Φs

j with

Φ̃1(y1, . . . , ym+1) := Ty1,...,ym(ym+1)Ty1,...,ym(yN(m+1))
Φ̃2(y1, . . . , ym+2) := Ty1,...,ym(ym+1)Ty1,...,ym(yN(m+2))
Φ̃3(y1, . . . , ym+1) := Ty1,...,ym(ym+1)2

Φ̃4(y1, . . . , ym+2) := Ty1,...,ym(ym+1)Ty1,...,ym(ym+2).

Finally, the estimator writes as

ξGMS
n (X, Y ) := Ũ1,n − Ũ2,n

Ũ3,n − Ũ4,n
= ψ(Ũ1,n, Ũ2,n, Ũ3,n, Ũ4,n). (31)

3.4 Owen higher-order moment indices
Following [25, 26], we consider extensions to Sobol indices obtained by replacing the numerator
by higher-order moments. More precisely, for any integer q > 2, we set

H1
q := E [(E[Y |X1]− E[Y ])q] ,

see [14] for known properties H1
q .

In order to construct a Pick-Freeze estimator for H1
q , we first observe that

H1
q = E

[ q∏
m=1

(
(Y 1)m − E[Y ]

)]
=

q∑
l=0

(
q

l

)
(−1)q−lE [Y ]q−l E

[
l∏

m=1
(Y 1)m

]

with the usual convention ∏0
m=1(Y 1)m = 1. Here, Y 1

1 = Y and for i = 2, . . . , q, Y 1
i is

constructed independently (similarly to Y 1 in (5)). Now we construct a Monte-Carlo scheme
and consider the following Pick-Freeze design constituted by a n-sample

(
Y 1
i,j

)
(i,j)∈Iq×In

of(
Y 1

1 , . . . , Y
1
q

)
where, for any positive integer k, Ik stands for the set {1, . . . , k}.
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The resulting Monte-Carlo estimator is then

H1
q,n =

q∑
l=0

(
q

l

)
(−1)q−l

(
P

1
1

)q−l
P

1
l

where for any positive integer n, j ∈ In and l ∈ Iq, we have set

P 1
l,j =

(
q

l

)−1 ∑
k1<...<kl∈Iq

(
l∏

i=1
Y 1
ki,j

)
and P

l
u = 1

N

N∑
j=1

P 1
l,j.

This setting generalizes the estimation procedure from [13] and uses all the available informa-
tion by considering the means over the set of indices k1, . . . , kl ∈ Id, kn 6= km.
Remark 3.4. While the collection of all indices

(
H1
q

)
q
is much more informative than the

classical Sobol indices, it also has several drawbacks. First, these indices are moment-based
and, as is well known, they are not stable when the moment order increases. Second, they may
be negative when q is odd. To overcome this fact, one may introduce E [|E[Y |X1]− E[Y ]|q] but
the Pick-Freeze estimation procedure is then lost. Third, the Pick-Freeze estimation procedure
is computationally expensive and may be unstable: it requires a q × n-sample of the output
Y . In order to properly assess the influence of an input on the law of the output, we need to
estimate the first K − 1 indices H1

q : H1
2 , . . . , H1

K . Hence, we need to run the code K × n
times. These indices are thus not attractive in practice.
We introduce below a new sensitivity index which is based on the conditional distribution
of the output and requires only 3 × n runs. This index compares the output distribution to
the conditional one whereas the q higher-order moment indices only compare the q-th output
moment to the conditional one.

A novel estimation procedure We generalize the procedure proposed by Chatterjee in
order to estimate higher-order moment indices. To that end, we introduce, for all m ∈
{1, . . . , q − 1} and j ∈ {1, . . . , n},

Nm(j) =

π−1(π(j) +m) if π(j) +m 6 n,

π−1(π(j) +m− n) if π(j) +m > n.
(32)

Note that N1(j) = N(j) for all j. It remains to update Lemma 3.1 as follows.

Lemma 3.5. Let (fm)m=0,...,q−1 a family of measurable functions in L1(R). Let (Vj, Yj)16j6n
be a n sample of (V, Y ). Then

E

 q−1∏
m=0

fm(YNm(i))|V1, . . . , Vn

 =
q−1∏
m=0

ψVNm(i)(fm), (33)

where by convention N0(j) = j for all j = 1, . . . , n.

It suffices to take fm(y) = y, for all y ∈ R and m = 0, . . . , q − 1.

4 Extensions

4.1 Estimating all Sobol indices with a single sample
We consider higher order indices such as

S1,2 = VarE[Y |X1, X2]
Var(Y ) .

11



We want to estimate S1,2 using the analogue to Chatterje’s procedure; S1,2 could be replaced
by any two order index as for example the Cramér-von-Mises index. Let Wj = (X1,j, X2,j),
1 6 j 6 n, be n sample in R2. To define the analogue of the permutation given by (8), observe
that it is the unique permutation (when we have no ties) that minimizes

n∑
j=1
|Vσ(j) − Vσ(j)+1| (34)

over the permutation σ, which is exactly the solution in dimension one of the traveling salesman
problem. The reader is refered to, e.g., [3, 16] for a complete presentation of the traveling
salesman problem. In dimension greater than one, we then naturally consider the permutation
of the points Wi that solves the traveling salesman problem. Hence it is enough to consider
the estimator (20) in order to estimate S1,2.
Consequently, we are now able to extend easily Chatterjee’s method

1. to estimate any sensitivity index of any order (for example, for an index of order k, it
suffices to consider a permutation that solves the traveling salesman problem in Rk);
Moreover one can use the same n sample to estimate all Sobol indices of any order.

2. to consider codes whose inputs are not real-valued but take their values in any metric
space.

In practice, one generally uses approximation algorithms to solve the traveling salesman prob-
lem (see, [3] and e.g., [21] for a genetic algorithm), which is not restrictive. Indeed, the only
crucial point is be able to propose a permutation without fix point such that σ(i) is close to i
for any generic i.

4.2 Application: estimating all Shapley effects for correlated inputs
Shapley values were first introduced in game theory and economics [32] and later in the
framework of sensitivity analysis in [28]. In this context, these indices have been called Shapley
effects. They are used to quantify the importance of some input variables for correlated inputs.
We refer to [28, 35, 29, 19] and the references therein for more details on Shapley effects. Here,
we then consider that the input variables are no longer independent. In this case, it is still
possible to define, for any u ⊂ Ip,

Su = Var (E[Y |Xu])
Var(Y )

but its interpretation is no longer obvious. To overcome this difficulty, one can consider the
so-called Shapley effects defined, for any 1 6 i 6 p, by

Shi :=
∑

w⊂{1...,p},i∈w

1
|w|

∑
v⊂w

(−1)|w|−|v|Sw (35)

or equivalently,
Shi :=

∑
w⊂∼i

(p− |w| − 1)!|w|!
p! (Sw∪{i} − Sw). (36)

In the case of independent input variables, one has

Si 6 Shi 6 Si,Tot

In [35], the authors propose two algorithms to estimate the Shapley effects from (36). The
first one need to browse all the possible combinations of the input variables while the second
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one sample randomly permutations of the input variables. At each iteration, the expectation
of a conditional variance has to be computed by the algorithm. In [4], the authors implement
a bootstrap sampling in the existing algorithms to estimate confidence intervals of the indices
estimation.
Now, using the result of Section 4.1 with a single n sample, one can consistently estimate all
Sobol indices Su and all Shapley effects at the same time.

5 Numerical experiments

5.1 Numerical comparison on the Sobol g-function: conventional
Pick-Freeze estimators vs Chatterjee’s estimators

In this section, we compare the performances of both estimation procedures on an analytic
function, the so-called Sobol g-function, that is defined by:

g(X1, . . . , Xp) =
p∏
i=1

|4Xi − 2|+ ai
1 + ai

, (37)

where (ai)i∈N is a sequence of real numbers and the Xi’s are i.i.d. random variables uniformly
distributed on [0, 1]. In this setting, one my easily compute the exact expression of the first-
order Sobol indices:

Si = 1/(3(1 + a2
i ))

[∏p
i=1 1/(3(1 + a2

i ))]− 1 .

As expected, the lower the coefficient ai, the more significant the variable Xi. In the sequel,
we simply fix ai = i.
Due to its complexity (non-linear and non-monotonic correlations) and the analytical expres-
sion of the Sobol indices, the Sobol g-function is a classical test example commonly used in
global sensitivity analysis (see e.g. [30]).

Convergence as the sample size increases In Figure 1, we compare the estimations of
the six first-order Sobol indices given by both methods. In the Pick-Freeze estimations, several
sizes of sample N have been considered: N = 100, 500, 1000, 5000, 10000, 50000, 100000,
and 500000. The Pick-Freeze procedure requires (p + 1) samples of size N . To have a fair
comparison, the sample sizes considered in the estimation of ξSobol

n are n = (p + 1)N = 7N .
We observe that both methods converge and give precise results for large sample sizes.

Comparison of the mean square errors Now we want to compare the efficiency of both
methods at a fixed sample size. In that view, we assume that only n = 700 calls of the
computer code f are allowed to estimate the six first-order Sobol indices. We repeat the
estimation procedure 500 times. The boxplot of the mean square errors for the estimation of
the first-order Sobol index S1 with respect to X1 has been represented in Figure 2. We observe
that, for a fixed sample size n = 700 (corresponding to a Pick-Freeze sample size N = 100),
Chatterjee’s estimation procedure performs much better than the Pick-Freeze method with
significantly lower mean errors. The same behavior can be observed for all the first Sobol
indices as can be seen in Table 1 that provides some characteristics of the mean squares
errors.

Performances for small sample sizes or for large number of input variables As
expected, we can observe in Table 2 that Chatterjee’s procedure proceeds much better than
the Pick-Freeze methodology for small sample sizes. Similarly, if the number of input variables
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Figure 1: The Sobol g-function model (37). Convergence of both methods when N increases.
The sixth first-order Sobol indices have been represented from left to right and up to bottom.
Several sample sizes have been considered: N = 100, 500, 1000, 5000, 10000, 50000, 100000,
and 500000 for the Pick-Freeze estimation procedure and correspondingly (p + 1)N for the
estimation procedure proposed in [7]. The x-axis is in logarithmic scale.

increases drastically, we can observe the same behavior as can be seen in Figure 3. In that
case, we consider the model (37) for several values of p: 6, 10, 15, 20, 30, 40, and 50.

5.2 An application in biology
Now we illustrate the nature and performance of the Cramér-von-Mises indices and their
corresponding Chaterjee estimators as a screening mechanism for high-dimensional problems.
To do so, we consider the neurovascular coupling model from [17]. Mathematically, this
corresponds to the following differential-algebraic equation (DAE) system

dW

dt
= G(W,Z,X), (38)

0 = H(W,Z,X), (39)

where W = (W1, . . . ,WN) and Z = (Z1, . . . , ZM) correspond respectively to the differential
and algebraic state variables of the models. The variables X = (X1, . . . , Xp) correspond to the
uncertain parameters of the model. Our quantity of interest corresponds to the time average
over [0, T ] of W ∗ (which is one of the differential state variables W1, ..., WN), i.e.

Y = 1
T

∫ T

0
W ∗(t) dt. (40)

As above, we regard Y as a function of the unknown parameters, i.e., Y = f(X1, . . . , Xp).
In our implementation, the values of W ∗ are obtained by solving the above DAE system
(Equations (38) and (39)) by the MATLAB routine ode15s (it can be checked that (38) and
(39) form an index one system). Further, in the current example, N = 67 and p = 160 and the
distributions of most of the Xi’s are uniform and allowed to vary ±10% from nominal values
(see [17] for additional details).
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Figure 2: The Sobol g-function model (37). Boxplot of the mean square errors of the estimation
of S1 with a fixed sample size and 500 replications. The results of Chatterjee’s methodology
with n = 700 are provided in the left panel. The results of the Pick-Freeze estimation procedure
with N = 100 are provided in the right panel.

Figure 3: The Sobol g-function model (37). Mean square errors of the estimation of the six
first-order Sobol indices with respect to the number of input variables with a fixed sample size
and 500 replications. We consider the sample sizes n = 200 in Chatterjee’s methodology and
N = n/(p + 1) in the Pick-Freeze procedure. The number of input variables considered are
p = 6, 10, 15, 20, 30, 40, and 50.

We compare the results from the Chaterjee estimators as described above to those resulting
from the linear regression

f(X1, . . . , X160) ≈ λ0 +
160∑
j=1

λjXj.
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Pick-Freeze Chatterjee
Mean Median Stdev Mean Median Stdev

mse S1 0.0095548 0.0039458 0.0145033 0.0010218 0.0004498 0.0013999
mse S2 0.0105727 0.0046104 0.0148873 0.0017314 0.0006870 0.0027436
mse S3 0.0101785 0.0041789 0.0143846 0.0016667 0.0006409 0.0024392
mse S4 0.0105463 0.0047284 0.0178064 0.0018522 0.0008126 0.0025296
mse S5 0.0097979 0.0042995 0.0135533 0.0016285 0.0006855 0.0024264
mse S6 0.0096109 0.0046822 0.0134822 0.0015590 0.0007080 0.0021333

Table 1: The Sobol g-function model (37). Some characteristics of the mean square errors for
the estimation of the six first-order Sobol indices with a fixed sample size and 500 replications.
In Chatterjee’s methodology, the sample size considered is n = 700 while in the Pick-Freeze
estimation procedure, it is N = 100.

Pick-Freeze Chatterjee
N = 10 N = 50 N = 100 n = 70 n = 350 n = 700

mse S1 0.1128686 0.0172275 0.0095548 0.0116790 0.0022941 0.0010218
mse S2 0.1509575 0.0223196 0.0105727 0.0177522 0.0033719 0.0017314
mse S3 0.1469124 0.0220015 0.0101785 0.0175517 0.0032474 0.0016667
mse S4 0.1591130 0.0196357 0.0105463 0.0159360 0.0033948 0.0018522
mse S5 0.1646339 0.0240353 0.0097979 0.0158563 0.0032230 0.0016285
mse S6 0.1466408 0.0217638 0.0096109 0.0166701 0.0029653 0.0015590

Table 2: The Sobol g-function model (37). Mean squares errors of the estimation of the six
first-order Sobol indices with small sample sizes and with both methods.

As shown in [17], the above approximation performs well for the considered QoI. We assign
to each variable X1, . . . , X160 a relative importance Lj where

Lj = |λj|∑160
`=1 |λ`|

, j = 1, . . . , 160.

Figure 4 displays the results. Both screening approaches identify the same to three influen-
tial parameters. More parameters are identified as being non-influential through the linear
regression approach than using the Cramér-von-Mises indices.

6 Conclusion
In this paper, we explain how to use the estimator proposed by Chatterjee in [7] to provide
a very nice and mighty procedure to estimate both all the order one Sobol indices and the
so-called Cramér-von-Mises indices [14] at a small cost (only n calls of the computer code).
We also extend Chatterjee’s method to estimate more general quantities. As examples, we
consider two indices already introduced in sensitivity analysis: the indices adapted to output
valued in general metric spaces defined in [15] and the higher-moment indices [25, 26]. In
addition, we extend the procedure to estimate not only the first-order indices but also second-
order and even higher-order indices. Consequently, the Shapley effects defined for correlated
inputs are then also easily estimated.
Our analysis paves the way for further research directions. For instance, Chaterjee proves a
central limit theorem for (7) when X and Y are independent. A first interesting step would
be to establish a central limit theorem for the estimators (7) and more generally (12) in any
case.
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Figure 4: Chaterjee estimators corresponding to the Cramér- von-Mises indices as a screening
mechanics for the DAE system given by (38) and (39).
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