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Abstract

We propose a new statistical estimation framework for a large family of global
sensitivity analysis indices. Our approach is based on rank statistics and uses an
empirical correlation coefficient recently introduced by Chatterjee [9]. We show
how to apply this approach to compute not only the Cramér-von-Mises indices,
directly related to Chatterjee’s notion of correlation, but also first-order Sobol’
indices, general metric space indices and higher-order moment indices. We establish
consistency of the resulting estimators and demonstrate their numerical efficiency,
especially for small sample sizes. In addition, we prove a central limit theorem for
the estimators of the first-order Sobol” indices.

1 Introduction

The use of complex computer models for the analysis of applications from the sciences,
engineering and other fields is by now routine. Often, the models are expensive to run in
terms of computational time. It is thus crucial to understand, with just a few runs, the
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global influence of one or several inputs on the output of the system under study [33].
When these inputs are regarded as random elements, this problem is generally referred
to as Global Sensitivity Analysis (GSA). We refer to [12, 32, 35] for an overview of the
practical aspects of GSA.

A popular and highly useful tool to quantify input influence is the Sobol” indices. These
indices were first introduced in [36] and are well tailored to the case of scalar outputs (and
even to the case of vectorial and functional outputs). Thanks to the Hoeffding decomposi-
tion [24], the Sobol” indices compare the conditional variance of the output knowing some
of the input variables to the total variance of the output. Since Sobol’” indices are variance
based, they only quantify the second-order influence of the inputs. Many authors proposed
other criteria to compare the conditional distribution of the output knowing some of the
inputs to the distribution of the output (see, e.g., higher moments indices in [29, 31, 30],
indices using divergences or distances between measures in [4, 5, 10], goal-oriented indices
using contrast functions in [15], distribution-based indices as Cramér-von-Mises indices
in [19]).

Many different estimation procedures of the Sobol’ indices have been proposed and stud-
ied. Some estimation procedures are based on different designs of experiment using for
example polynomial chaos (see [37] and the reference therein for more details). Some other
natural procedures are based on Monte-Carlo or quasi Monte-Carlo design of experiments
(see [26, 29] and references therein for more details). In particular, an efficient estimation
of the Sobol’ indices can be performed through the so-called Pick-Freeze method. See
Section 2.1 below for its description. Observe that the Pick-Freeze estimation procedure
allows the estimation of several sensitivity indices: the classical Sobol” indices for real-
valued outputs, as well as their generalization for vectorial-valued codes, but also the
indices based on higher moments [31] and the Cramér-von-Mises indices which take into
account on the whole distribution (see [19, 16] and Section 2.2 below for more details on
such indices). In addition, the Pick-Freeze estimators have desirable statistical properties
such as consistency, central limit theorem (CLT) with a rate of convergence in y/n, con-
centration inequalities and Berry-Esseen bounds, and asymptotic efficiency (see [25, 18]
and Section 2.1 below for more details). However, the Pick-Freeze scheme has two major
drawbacks. First, it relies on a particular experimental design that may be unavailable
in practice. Second, its cost may be prohibitive when estimating several indices. Natu-
rally, the cost of an estimator depends on the cost of each evaluation of the code and on
the number of evaluations. The number of model calls to estimate all first-order Sobol’
indices grows linearly with the number of input parameters. For example, if we consider
p = 99 input parameters and only n = 1000 calls are allowed, then only a sample of size
n/(p + 1) = 10 is available to estimate each single first-order Sobol” index. It is a poor
amount of information to get a satisfying estimation of the Sobol’ indices.

In a recent work [9], Chatterjee studies the dependence between two variables by intro-
ducing an empirical correlation coefficient based on rank statistics, see Section 3.1 below
for the precise definition. Further, the quantification of the dependence has also been
investigated in the bivariate case (namely, in the copula setting), see [38, 13, 3]. The
striking point of [9] is that this empirical correlation coefficient converges almost surely
(a.s.) to the Cramér-von-Mises index priorly introduced in [19] as the sample size goes to
infinity.

In this paper, we show how to embed Chatterjee’s method in the GSA framework, thereby
eliminating the two drawbacks of the classical Pick-Freeze estimation mentioned above.



Thus no particular design of experiment is needed for the estimation that can be done
with a unique n-sample. In addition, we generalize Chatterjee’s approach to allow the
estimation of a large class of GSA indices which includes the Sobol’ indices and the higher-
order moment indices proposed by Owen [29, 31, 30] (see Section 2.1 below). Using a single
sample of size n, it is now possible to estimate at the same time all the first-order Sobol’
indices, the Cramér-von-Mises indices, and other useful sensitivity indices. Furthermore,
we show that this new procedure provides estimators also converging at rate /n by
proving a CLT in the estimation of the first-order Sobol” indices.

The paper is organized as follows. In Section 2, we recall the context of GSA, the definition
of the Sobol’ indices and Cramér-von-Mises indices, and their classical Pick-Freeze estima-
tions. Section 3 focuses on Chatterjee’s method, called rank-based method in this paper.
More precisely, we show how the Cramér-von-Mises indices can be also estimated using the
rank-based method (Section 3.1) and we present its generalization to estimate sensitivity
indices together with the consistency of the estimation procedure (Section 3.2). Section
4 is dedicated to Sobol’ indices. We prove the asymptotic normality of their estimators
based on rank statistics. In addition, we propose a comparison of the different estimation
procedures in Section 4.3 while Section 4.4 considers other classical sensitivity indices.
Section 5 is dedicated to a numerical comparison between the Pick-Freeze estimation pro-
cedure and the rank-based method. We first compare the numerical performances of both
estimators on a linear model. Finally, we consider a real life application. As expected,
the rank-based estimation method outperforms the classical Pick-Freeze procedure, even
for small sample sizes (which are common in practice). Conclusions and perspectives are
offered in Section 6.

After a first submission of this paper, we have been aware of the very nice work of Broto
et al [8] concerning the statistical estimation of Shapley effect where the use of closest
neighbors is also put in action to built consistent estimates. We also notice that there is
actually a strong scientific interest around asymptotic behavior for the statistical method
introduced in [9]. Indeed, during the revision of this paper, we have a look on the very
nice paper [2] where an asymptotic contiguity study is performed.

2 Global sensitivity analysis and Pick-Freeze estima-
tion

2.1 Sobol’ indices

Context and definition of the Sobol’ indices The quantity of interest (Qol) Y is
obtained from the numerical code and is regarded as a function f of the vector of the
distributed input (X;)i=1,.,

Y =f(Xy,..., X)), (1)

where f is defined on the state space £y x ... x E,, X; € E;, i = 1,...,p. Classically,
the X;’s are assumed to be independent random variables and a sensitivity analysis is
performed using the Hoeffding decomposition [1, 39] leading to the standard Sobol” indices
[35]. This assumption is made throughout the paper, unless explicitly stated otherwise.
More precisely, assume f to be real-valued and square integrable and let u be a subset
of {1,...,p} and ~u its complementary set in {1,...,p}. Setting X, = (X;,7 € u) and



X.ou = (X;,i €~u), the corresponding Sobol’ indices take the form

_ Var (E[Y|Xu)) and S~ — Var (E[Y | X .4])

5 Var(Y) Var(Y) @)

By definition, the Sobol’ indices quantify the fluctuations of the output Y around its
mean. When the practitioner is not interested in the mean behavior of Y but rather in
its median, in its tail, or even in its quantiles, the Sobol’ indices become less appropriate
to quantify sensitivity. GSA must then be performed in a framework which takes into
account more than one specific moment, such as the variance for Sobol’ indices.

Pick-Freeze estimation procedure of the Sobol’ indices A Monte-Carlo scheme
can be used to estimate the Sobol’ indices. The corresponding Pick-Freeze approach from
[18, 19, 25] relies on expressing the variances of the conditional expectations in terms of
covariances which are easily and well estimated by their empirical versions. To that end,
we define, for any subset u of {1,...,p}

Y= F(XY). (3)

where X" is such that X} = X, and X* = X if i €~ u, X] being an independent copy
of X;. The estimation procedure relies on the following result

Var(E[Y|X,]) = Cov(Y, V™). (4)

The reader is referred to [25, Lemma 1.2] for its proof.
The natural estimator of S™ is then given by

% ?:1 YJY;“ - (% ?:1 YJ) (% ?:1 YJu)

Ly )2 - (fx )

A slightly different estimator that uses all the information available is introduced in [25]:

Su =

n

()

1y yyu_ (Lywn Y2
n 2"
Lyn OHOPR () o Yy
n &j=1 2 n ~j=1 2

Asymptotic study Such estimation procedures have been proved to be consistent and
asymptotically normal (i.e. the rate of convergence is \/n) in [25, 18]. The limiting vari-
ances can be computed explicitly, allowing the practitioner to build confidence intervals.
In addition, the sequence of estimators (7)), is asymptotically efficient to estimate S
from such a design of experiment (see, [39] for the definition of the asymptotic efficiency
and [18] for the details of the result).

2.2 Cramér-von-Mises indices

Definition of the Cramér-von-Mises indices The Cramér-von-Mises indices intro-
duced in [19] provide alternative indices based on the whole distribution rather than on
the second moment of the output Y only. The main idea of Cramér-von-Mises indices is
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to compare the conditional cumulative distribution function (c.d.f.) to the unconditional
one via the L2-norm. As for the Sobol’ indices, they compare the conditional expectation
of the output to the unconditional one. Notably, they are constructed following a similar
scheme so that any procedure that estimates one index can be adapted to estimate the
other.

More precisely, the Cramér-von-Mises indices are defined by

o RE[(FQ) - F0)Y]dF@) 7)
2CVM T F()(1 — F(2)dF(¢)

where F' is the cumulative distribution function of YV
Fit)=P(Y <t)=E|lyey| (teR)
and F'" is its Pick-Freeze version:
FU(t) =P(Y < t[Xu) = E[Lyy<yl Xu| (tE€R).

This definition stems from the Hoeffding decomposition of the collection of r.v. (L{y <} )ser.

Pick-Freeze estimation procedure of the Cramér-von-Mises indices The esti-
mation procedure relies on (4) with Y <= Ly <py:

Var(]E[]]_{Ygt”Xu]) = COV(]]_{Ygt}, ]]_{Yugt}). (8)

Consequently, the Monte-Carlo estimation can be done as follows. In addition to the clas-
sical design of experiment required to estimate the Sobol’ indices (an n-sample (Y7, ...,Y},)
of the output Y and an n-sample (Y, ..., Y,") of its Pick-Freeze version Y"), a third in-
dependent n sample (Wy,..., W,,) of the output Y is necessary in order to deal with the
integral with respect to dF'(t) in (7). Then the empirical estimator of S5y is

Iy (A2 Ty ewg Lyveewyy — 2500 Lyewy S0 Tyeawy )

> 9)
1 n 1 n 1 n
w k=1 <n 2 =1 Lyyewiy — (E 2 =1 ]1{19<Wk}) )

Asymptotic study As showed in [19], this estimator is consistent and asymptotically
Gaussian (i.e. the rate of convergence is \/n). The limiting variance can be computed
explicitly, allowing the practitioner to build confidence intervals.

3 A novel generation of estimators based on rank
statistics

3.1 Chatterjee’s correlation coefficient

In [9], Chatterjee considers a pair of real-valued random variables (V,Y) and an i.i.d.
sample (V;,Y;)1<j<n. In order to simplify the presentation, we assume that the laws of



V and Y are both diffuse (ties are excluded). The pairs (Vi1),Y(1)), ..., (Vin), Y(n)) are
rearranged in such a way that
Viy < ... < V.

Then let 7(j) be the rank of V; in the sample (Vi,...,V},) of V and define

, 7 x(j)+1) ifr(j)+1<n,

N =T T L) (10)
J if m(j) = n.

The new correlation coefficient defined by Chatterjee in [9] is denoted &, (V,Y') and given

by

1 n 1 n 1 n 2 1 n

3 (X e enyg — (5 2 ey ) /5 S RO - F) (1)

NG\ S Ny ni3

where F), stands for the empirical distribution function of Y: F, (t) = %2221 Liyve<t}-

The author proves that &,(V,Y) converges a.s. to a deterministic limit £(V,Y") which is

equal to the Cramér-von-Mises sensitivity index S;{ cvam With respect to V' as soon as

V' is one of the random variables Xi, ..., X, in the model (1) that are assumed to be

real-valued. Further, he also proves a CLT when V and Y are independent.

Observe that the analogue of the Pick-Freeze version YV with respect to V of Y becomes

Y and (8) is replaced by the formula

]E[]l{YjBt}]l{YN/(j)>t}|‘/la ey Vn] — GV] (t)GVN/(j) (t) (12)

for all j = 1,...,n that is mentioned in the proof of Lemma 7.10 in [9, p.24], with Gy
the conditional survival function: Gy (t) = P(Y > t|V).

It is worth noticing that a unique n sample of input-output provides consistent estimations
of the p first-order Cramér-von-Mises indices.

3.2 Generalization of Chatterjee’s method
In this section, we propose a universal estimation procedure of expectations of the form
EE[g(Y)VIE[RY)[V]],

for two integrable functions g and h. In fact, we consider a more general random element
V' (no longer assumed to be real) and a more general permutation denoted by 7,. This
result is a generalization of (12) and can be interpreted as an approximation of (4). To
this end, we introduce the function Wy defined by

Uy (g) = Elg(YV)[V] (13)

for any integrable function g. Let F,, be the o-algebra generated by {Vi,...,V,}. Note
that in Section 3.1, we have considered g(x) = g4(z) = L{z>4 so that Uy (g) = P(Y >
tlV) = Gy ().

Lemma 3.1. Let g and h be two integrable functions such that gh is also integrable. Let
(V;, Yi)1<j<n be an n-sample of (V,Y). Consider a F,-measurable random permutation T,
such that 1,(j) # j, for all j =1,...,n. Then

E [g(Y)h(Ye) Vi, -, Va| = Wy, (9) 0y, (). (14)
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The previous lemma (the proof of which has been postponed to Appendix A) leads to
a generalization of the first part of the numerator of ¢, defined in (11). Following the
same lines as in [9], one may prove that such a quantity converges a.s. as n — oo under
some mild conditions. The reader is referred to Appendix A for the detailed proof of
Proposition 3.2.

Proposition 3.2. Let g and h be two bounded measurable functions. Consider a JF,-
measurable random permutation T, with no fix point (i.e. 7,(j) # j forallj =1,...,n)

and such that V. g £ Vi) forany @ and j = 1,...,n. In addition, we assume that for
any j=1,...,n, Vo ;) = V; asn — oo a.s. Then x»(V,Y;g,h) defined by

xn(V,Y59,h) = ig(Yj)h(Ym(a‘)) (15)

converges a.s. asn — oo to x(V,Y;g,h) = E[Wy(g9)¥y(h)], where Uy has been defined
n (13).
Notice that the permutation 7,, = N defined by

s (16)

1
n.

N 7 w(j)+1) if n(j) +
= {wlm i£7()

satisfies the assumptions of Lemma 3.1 and Proposition 3.2. Observe that N only differs
from N’ defined in (10) at j such that 7(j) = n.

4 The rank estimator of the first-order Sobol’ indices

4.1 Estimation procedure based on rank statistics

We can now leverage the above results and construct a new family of estimators for Sobol’
indices. More precisely, let us consider the model (1) and assume we want to estimate
the first-order Sobol” index S' defined in (2) with respect to V' = X; assumed to be real-
valued. We then define N as in (16) where 7 is the rank of X;. Taking g(z) = h(z) =
and 7, = N, (14) provides the analogue to &, to estimate the classical Sobol” indices:

2
Zg 1 JYN(j)_< Zg 1 ])
%Zj=1< i) = ( 2i=1 J)

where the denominator is reduced to the empirical variance of Y. As the functions g
and h are here unbounded, Proposition 3.2 does not apply and thus offers no asymptotic
information. However, the quantity of interest Y being generally bounded in practice,
appropriately truncated versions of g and h could be considered.

XY o=

, (17)

4.2 A central limit theorem

We establish a CLT for the estimator £5°°°'(X;,Y) of the first-order Sobol’ index with
respect to X; (assumed to be real-valued) under some mild assumptions on the model f
and the random input X; in (1). The proof of the theorem is given in Appendix B.
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Theorem 4.1. Assume that X, is uniformly distributed on [0,1] and f in (1) is a twice
differentiable function with respect to its first coordinate. Further, we suppose that f and
its two first derivatives (with respect to its first coordinate) are bounded. Then

\/ﬁ (fgobol’(Xb Y) . Sl)

is asymptotically Gaussian with zero mean and explicit variance o? given in Appendiz

B.J.

Remark 4.2. The boundedness of f implies that f has a fourth moment, that is the
minimal assumption to get a CLT.

Moreover, let us observe that Theorem 4.1 only implies the convergence in probability.
Nevertheless, under the assumptions of Theorem 4.1 (f bounded so is Y'), Proposition 3.2
applies to derive the almost sure convergence of £5°°/(X1,Y).

The assumption on the distribution of X; can be relaxed as stated in the following corol-
lary.

Corollary 4.3. Let Fyx, be the cumulative distribution function of X,. Assume that
fo Fg} is a twice differentiable function such that f o F)Ell and its two first derivatives
are bounded. Then the conclusion of Theorem 4.1 still holds.

Theorem 4.1 and Corollary 4.3 naturally allow to build statistical tests for testing H :
St =0 against Hj:S'# 0. One can note that Chatterjee [9] result allows to test the
independence of the input X; with respect to the output Y which is a stronger assumption
than S' = 0, this was for example studied in [34]. In addition, our result allows to compute
the power of the statistical test against any alternative of the kind Hi o : S > s§ for any
sg > 0.

Remark 4.4. A careful reading of the different steps of the proof shows that Theorem 4.1
can be slightly extended to more general situations involving more than two successive
order statistics and with more general second variable (Xo, ..., X,,). See the forthcoming
paper [20].

The proof of our CLT is a bit long and technical and is postponed to the Appendix B. In
a nutshell, this proof stands on three main ingredients. First, the regularity assumption
on the function f allows to expand the statistic under study as a quadratic functional
of the two independent sequences of random variables. The quadratic part for the first
sequence involves order statistics of the uniform distribution and may be linearized. The
second ingredient is the distribution representation of uniform order statistics by ratios of
exponential convolution. The third ingredient is less classical and involves a conditional
trick to show a central limit theorem for an empirical mean of a product. Let sketch the
idea on a simple example. Let (&,), and (d,), be two independent sequences of centered
square integrable random variables. We set M,, = n~'/? i-1&;0; and let T be the o-field
generated by the sequence (d,). Of course, the classical CLT gives that M, converges
in distribution towards a centered Gaussian distribution with variance Var(&;)Var(dy).
A less classical proof of this result consists in showing that, a.s., conditionally to T the
same convergence in distribution holds. Indeed, this last result follows directly from the

. —-1xn 2
Lindeberg CLT and the strong law of large numbers for n 1105



4.3 Comparison of the different estimation procedures

The estimator based on rank statistics £€5°°°'(X;,Y’) defined in (17) can be compared to
the classical Pick-Freeze estimators S} and T, given in (5) and (6) respectively (with

u = {1}) but also to a sequence of estimators involving the estimators T, introduced in
[11].

Required sample sizes With the rank-based procedure, a unique n-sample of input-
output provides consistent and asymptotically normal estimations of the p first-order
Sobol’ indices (together with consistent and asymptotically normal estimations of the p
first-order Cramér-von-Mises indices with no extra cost). In contrast, using the Pick-
Freeze estimation, if one wants to estimate all the p first-order Sobol’ indices and the p
Cramér-von-Mises indices, (p + 2)n calls of the computer code are required. The number
of calls grows linearly with respect to the number of input parameters. This is a practical
issue for large input dimension domains. A second drawback of the Pick-Freeze estima-
tion scheme comes from the need of the particular Pick-Freeze design that is not always
available.

Limiting variances Since the empirical mean and variance are already known to be
asymptotically efficient in the statistical sense! to estimate the expectation and the vari-
ance of the output, we restrict our study to the comparison of the limiting variances ob-
tained via the Pick-Freeze and the rank-based procedures in the estimation of E[E[Y|X]?]
only.

In view of the proof of [25, Proposition 2.2], the Pick-Freeze limiting variance obtained
using both S} and T} in estimating E[E[Y|X;]?] = E[Y'Y"] is simply given by Var(YY!),
where Y! = f(X;,W?!) is the Pick-Freeze version of Y = f(X1, Xo,..., X,) = f(X1, W).
Using the above Lemmas B.1 and B.2 together with (41) leads to the rank-based limiting
variance obtained using £¢5°"°"( X, Y):

S5+ 8¢ =E [Var (YY'X1) | + E [Cov (YY!, VY X1)| = E[(Y + Y7) £ (X0, W)X, ]?
FE[(Y + Y)Y 4+ V) f( X, W) fo(X1, W) (X1 A X)), (18)

where YV = f(X1,Xo,...,X,) = f(X1, W), Y! = f(Xq, W), Y = f(X;, W), Y =
f(X1, W), and Y = f(X,, W) with X; and X; iid., W, W, W', and W' iid. also
independent of X; and X;. Note that Y and Y'' (respectively Y') are Pick-Freeze
versions of Y (resp. 37). The paragraph’s aim is to compare the limiting variances
obtained by the two methods (Pick-Freeze and rank-based).

To do so, we recall that the Pick-Freeze experiment requires n(p + 1) observations (or
computations of the black-box code) to estimate the p first-order Sobol” indices. In order
to have a fair comparison of both estimation methods, we then consider that we have
n(p + 1) i.i.d. observations of Y given by model (1) to estimate the p first-order Sobol’
indices using the rank statistics. With n(p+ 1) observations instead of n, the asymptotic
variance obtained using the rank-based methodology is divided by (p 4+ 1), so that we
want to compare

Vor i= (p4 1) (Var(YY?),. .., Var(YY?)T to Viank i= (25" + 28", ..., S0P 4 327) T

IThe reader is referred to [39, Section 25] for the definition of the asymptotic efficiency and related
results.



where Y is the Pick-Freeze version of Y with respect to X; (fori =2,...,p) and Eg—l—zic’i
has the same expression as 2}511 +Eé€1 in (18) replacing the superscripts and the subscripts
Lbyi (fori=2,...,p).

Example. We consider the following linear model
Y:f(Xl,...,Xp):OCX1+X2+...+XP, (19)

where o > 0 is a fixed constant, X;, Xs, ..., and X, are p independent and uniformly
distributed random variables on [0, 1].

We denote by m, , and ms,, the two first moments of 7, := Xy + ...+ X, and m,,, and
Mo p.o the two first moments of 7, , := aX; + X35 + ...+ X,. In addition, let v, and v, ,
be the variances of Z, of Z, . Hence v, = ma, —m3 ,, Upo = Mapa — M,

1 1 1 1
mip=-(p—1), mgy= E(p —1)Bp—2), Mmip.= §(Oé +mip1) = §(a+p— 2),

1 1 1 1
Mo pa = 5042 +ami, 1 +mo, g = gOéQ + §(p —2)a+ E(p —2)(3p—5).

[\]

By symmetry, after obvious computations, one gets, for : = 2,...,p,

4 1 1
Var(YY?') = 4—5044 + gmlma?’ + 3 <21)p + mip> o + 2my pupa + v, (v, + Qmip),

) 4 1 1
Var(YY?) = e + gml,p«x + 3 (22}1,704 + m%7p7a> +2m1 o Upa + Upa(Upa + 2mip7a)

while

4 1 1
foank = 4—5044 + gml,pag’ + 3 <4vp + mf’p> a? + 4dmy pupa+ vy (vp + 4mip),

, 4 1 1
Véank = 7c + 7m1)p7a + 9 (4Upua + m%yP;C\l) + 4m17paavp7a + /l)p7a </Up)a + 4m§:p’a> ’

45 3 3
We compare these limiting variances in Figures 1 and 2. The results are clear and illustrate
the fact that the rank-based methodology works much better for all value of p > 2. In
addition, the more the value of p increases the greater the gain, as expected.

Remark 4.5. Observe that a more precise comparison should consists in comparing (via
definite-positiveness) the limiting covariance-variance matrices involving both the limiting
variances and the limiting covariances. If it is straightforward to compute the covariance
terms for the Pick-Freeze methodology: for i =2,... p,

4 1 1 7 1 1 1\2
COV<YY1> YYZ) = ﬁO/L + Eml,p*1a3 + (m + Evpfl + 6 (ml,pl + 2) )Oé2

1 1 1 1\?

+ <8 + Emle—l + 51 + ,Up—lm17p—1)a + vp_1 (ml,p—l + 2> ,

it is much more tricky to deal with the rank-based procedure. Indeed, to do so a joint

CLT is required for the vector of all p first-order Sobol’ indices whose proof is not a

direct generalization of the proof of Theorem 4.1. Such an extension will be done in a
forthcoming paper.
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Figure 1: Linear model defined in (19). The limiting variances with respect to X; (plain
lines) and to X» (plain lines with +) are plotted. The rank-based estimation procedure
is represented in blue while the Pick-Freeze estimation procedure is represented in red.
As explained, the Pick-Freeze estimation procedure has been weighted by (p + 1) to have
a fair comparison. The number of variables involved in the model varies from p = 2 to
p=T.
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Figure 2: Linear model defined in (19). The difference between the limiting variances
with respect to X (left panel) and to X5 (right panel) are plotted. As explained, the
Pick-Freeze estimation procedure has been weighted by (p+ 1) to have a fair comparison.
The number of variables involved in the model varies from p =2 to p = 7.

Asymptotic efficiency The two previous procedures do not rely on the same design
of experiment so that it is not possible to determine which one is the more efficient in the
sense of [39, Section 25].

By [18, Proposition 2.5], the sequence of estimators (T7!), is asymptotically efficient to
estimate S' when the distribution P of (Y,Y!) belongs to P, the set of all c.d.f. of

11



exchangeable random vectors in L?(R?).

Using a unique n-sample, one may compare the rank-based estimators introduced in
this paper and the procedure involving the estimators T,, defined in [11, page 11]. Such
estimator is particularly tricky to compute and not easily tractable in practice. More
precisely, the initial n-sample is split into two samples of sizes n; and ny = n — n;. The
first sample is dedicated to the estimation of the joint density of (X,Y") while the second
one is used to compute a Monte-Carlo estimation of the integral involved in the quantity
of interest. In a work under progress [22], another estimator based on kernels and the
same design of experiment is proposed. This estimator is more tractable in practice.

By [11, Theorems 3.4 and 3.5], the sequence of estimators (T},), is asymptotically efficient
to estimate E[E[Y]|X]?] leading to an asymptotically efficient sequence of estimators of
S1. The proof of the following proposition has been postponed in Appendix C.

Proposition 4.6. Consider the sequence of estimators T, introduced in [11, page 11].
Assume that the joint distribution P of (X,Y) is absolutely continuous with respect to
the product probability Px ® Py, namely P(dx,dy) = f(z,y)Px(dz)Py(dy). Then the
sequence (RL),

L~ (5 Y)
Lyr vz - (bxn v

R! =

2

is asymptotically efficient in estimating S*. In addition, its (minimal) variance o2, is

o2, = W Var (2E[Y)(1 = SY)Y + 8'Y? + E[Y | X](E[Y|X] - 2Y)) .

Thus we are interested in the comparison of 02, and o? given in Theorem 4.1. Let us
consider again the example of the linear model (19) introduced in the previous paragraph.
Example (continued). We consider the model defined in (19). As done in the previous
paragraph, we only compare Vi; := Var(E[Y|X1](2Y — E[Y|X}])) to 3" + 25" and
Vig = Var(E[Y|X;](2Y — E[Y|X)]) to ¥% + X% for i = 2,...,p. After some trivial
computations, one gets

4 1 1
VEIff = 4—5044 + gmlvpoz‘g + 3 <4vp + mip> a? + 4dm pupa + 4vpmip,
) 4 1 1
Vg = I + gmLpu + 3 (41)1,’& + mimx) +4my paUpa + 4vp7amip’a.

We compare these limiting variances in Figure 3. We observe that the limiting variances
obtained with the rank methodology do not differ much from the efficient variances.

4.4 Recovering other classical indices

In [16], the authors considered computer codes of the form (1) valued on a compact Rie-
mannian manifold. In this framework, they proposed a sensitivity index in the flavour of
the Cramé-von-Mises index and they used the Pick-Freeze scheme to provide a consistent
estimator. The authors of [21] extend the previous indices to the context of general met-
ric spaces and propose U-statistics-based estimators improving the classical Pick-Freeze

12



Figure 3: Linear model defined in (19). The limiting variances with respect to X; (plain
lines) and to X» (plain lines with +) are plotted. The rank-based estimation procedure
is represented in blue while the efficient variances are represented in red. The number of
variables involved in the model varies from p =2 to p = 7.

procedure. In light of Section 3.2, one may introduce a novel estimation of the indices
introduced in [21] requiring a unique n-sample. The reader is referred to [14] for more
details on the procedure.

Following [30, 31], extensions to Sobol’ indices are obtained by replacing their numerator
by higher-order moments. In [19], the authors construct a Pick-Freeze estimator for such
extensions. One again, we are now able to propose another estimation scheme based on a
unique n-sample. The reader is referred to [20] for the generalization of Lemma 3.1 and
the corresponding asymptotic study.

5 Numerical experiments

5.1 Numerical comparison on the Sobol’ g-function: conven-
tional Pick-Freeze estimators vs rank estimators

In this section, we compare the performances of both estimation procedures on an analytic
function: the so-called Sobol’ g-function, that is defined by

9(X1,.. %) =1 , (20)

where (a;);en is a sequence of real numbers and the X;’s are i.i.d. random variables uni-
formly distributed on [0, 1]. In this setting, one may easily compute the exact expression
of the first-order Sobol’ indices:

B (1+a?)"1/3
3P (1 +af) -1

i
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As expected, the lower the coefficient a;, the more significant the variable X;. In the sequel,
we simply fix a; = i. Due to its complexity (non-linear and non-monotonic correlations)
and the analytical expression of the Sobol” indices, the Sobol” g-function is a classical test
example commonly used in GSA (see e.g. [32]).

Convergence as the sample size increases In Figure 4, we compare the estimations
of the six first-order Sobol’ indices given by both methods (p = 6). In the Pick-Freeze
estimations given by (6), several sizes of sample N have been considered: N = 100,
500, 1000, 5000, 10000, 50000, 100000, and 500000. The Pick-Freeze procedure requires
(p+ 1) = 7 samples of size N. To have a fair comparison, the sample sizes considered in
the estimation of £5°°°"" are n = (p+ 1)N = 7N. Both methods converge and give precise
results for large sample sizes.

5 £ & & %

Figure 4: The Sobol’ g-function model (20). Convergence of both methods when N
increases. The sixth first-order Sobol’ indices have been represented from left to right
and up to bottom. Several sample sizes have been considered: N = 100, 500, 1000, 5000,
10000, 50000, 100000, and 500000 for the Pick-Freeze estimation procedure (in blue) and
correspondingly (p+ 1)N for the rank estimation procedure (in red). The true indices are
displayed in black plain line. The z-axis is in log. scale.

Comparison of the mean square errors We now compare the efficiency of both
methods at a fixed sample size. In that view, we assume that only n = 700 calls of the
computer code f are allowed to estimate the six first-order Sobol’ indices. We repeat the
estimation procedure 500 times. The boxplot of the mean square errors for the estimation
of the first-order Sobol” index S! with respect to X; has been represented in Figure 5.
We observe that, for a fixed sample size n = 700 (corresponding to a Pick-Freeze sample
size N = 100), the rank estimation procedure performs much better than the Pick-Freeze
method with significantly lower mean errors. The same behavior can be observed for all
the first Sobol” indices as can be seen in Table 1 that provides some characteristics of the
mean squares errors.
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Figure 5: The Sobol’ g-function model (20). Boxplot of the mean square errors of the
estimation of S! with a fixed sample size and 500 replications. The results of the rank
methodology with n = 700 are provided in the left panel. The results of the Pick-Freeze
estimation procedure with N = 100 are provided in the right panel.

Performances for small sample sizes or for large number of input variables As
expected, we can observe in Table 2 that the rank estimation procedure proceeds much
better than the Pick-Freeze methodology for small sample sizes. Similarly, if the number
of input variables increases drastically, we can observe the same behavior as can be seen
in Figure 6. In that case, we consider the model (20) for several values of p: 6, 10, 15, 20,
30, 40, and 50.

5.2 An application in biology

Here, we illustrate the nature and the performance of the Cramér-von-Mises indices and
their corresponding rank estimators as a screening mechanism for high-dimensional prob-
lems. To do so, we consider the neurovascular coupling model from [23]. Mathematically,
this corresponds to the following differential-algebraic equation (DAE) system

aw
where W = (W4,...,Wx) and Z = (Z3, ..., Zy) correspond respectively to the differen-
tial and algebraic state variables of the models. The variables X = (X7,...,X,,) corre-

spond to the uncertain parameters of the model. Our quantity of interest corresponds to
the time average over [0, 7] of W* (which is one of the differential state variables Wy, ...,
WN), i.e.

1 /7T
Y = / W(t) dt. (22)

T Jo
As above, we regard Y as a function of the unknown parameters, i.e., Y = f(X1,..., X,).

In our implementation, the values of W* are obtained by solving the above DAE system
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Pick-Freeze

Rank

Mean

Median

Stdev

Mean

Median

Stdev

mse S?
mse 52
mse S°
mse S*
mse S°
mse S°

0.0095548
0.0105727
0.0101785
0.0105463
0.0097979
0.0096109

0.0039458
0.0046104
0.0041789
0.0047284
0.0042995
0.0046822

0.0145033
0.0148873
0.0143846
0.0178064
0.0135533
0.0134822

0.0010218
0.0017314
0.0016667
0.0018522
0.0016285
0.0015590

0.0004498
0.0006870
0.0006409
0.0008126
0.0006855
0.0007080

0.0013999
0.0027436
0.0024392
0.0025296
0.0024264
0.0021333

Table 1: The Sobol’ g-function model (20). Characteristics of the mean square errors
for the estimation of the six first-order Sobol’ indices with a fixed sample size and 500
replications. In the rank methodology, the sample size is n = 700 while in the Pick-Freeze

estimation procedure, it is N = 100.

Pick-Freeze

Rank

N =10

N =50

N =100

n="70

n = 350

n = 700

mse ST
mse 52
mse S3
mse S*
mse S°
mse S6

0.1128686
0.1509575
0.1469124
0.1591130
0.1646339
0.1466408

0.0172275
0.0223196
0.0220015
0.0196357
0.0240353
0.0217638

0.0095548
0.0105727
0.0101785
0.0105463
0.0097979
0.0096109

0.0116790
0.0177522
0.0175517
0.0159360
0.0158563
0.0166701

0.0022941
0.0033719
0.0032474
0.0033948
0.0032230
0.0029653

0.0010218
0.0017314
0.0016667
0.0018522
0.0016285
0.0015590

Table 2: The Sobol’” g-function model (20). Mean squares errors of the estimation of the
six first-order Sobol’ indices with small sample sizes and with both methods.

(Equation (21)) by the MATLAB routine odel5s (it can be checked that (21) form an
index one system). Further, in the current example, N = 67 and p = 160 and the
distributions of most of the X;’s are uniform and allowed to vary 10% from nominal
values (see [23] for additional details).

We compare the results from the rank estimators as described above to those resulting
from the linear regression

160
. 7X160) = AO + Z )\]XJ

J=1

f(Xl, ..

As shown in [23], the above approximation performs well for the considered Qol. We
assign to each variable X, ..., X690 a relative importance L; where
—
TS AL
Figure 7 displays the results. Both screening approaches identify the same to three in-
fluential parameters. More parameters are identified as being non-influential through the
linear regression approach than using the Cramér-von-Mises indices.

j=1,...,160.

6 Conclusion

In this paper, we explain how to use the estimator proposed by Chatterjee in [9] to provide
a very nice and mighty procedure to estimate both all the first-order Sobol’ indices and
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Figure 6: The Sobol’ g-function model (20). Mean square errors of the estimation of
the six first-order Sobol” indices with respect to the number of input variables with a
fixed sample size and 500 replications. We consider the sample sizes n = 200 in the rank
methodology (in red) and N = n/(p + 1) in the Pick-Freeze procedure (in blue). The
number of input variables considered are p = 6, 10, 15, 20, 30, 40, and 50.
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Figure 7: Rank estimators corresponding to the Cramér-von-Mises indices as a screening
mechanics for the DAE system given by (21) and (21).

the so-called Cramér-von-Mises indices [19] at a small cost (only n calls of the computer
code). We emphasize on the fact that this estimation procedure requires a unique sample
contrary to the Pick-Freeze procedure based on a particular design of experiment, the size
of which is 2n when estimating a single index and increases with the number of indices
to estimate. We also extend Chatterjee’s method to estimate more general quantities.
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Furthermore, we show a CLT for our estimations of Sobol’ indices. As examples, we
consider two indices already introduced in sensitivity analysis: the indices adapted to
output valued in general metric spaces defined in [21] and the higher-moment indices
[30, 31]. A general CLT will be established soon in [20].
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A Proof of the consistency

Proof of Lemma 3.1. Since 7, has no fix point, and using the measurability of 7,, and the
independence, we have

B o501 ] = E[0005) 3 0D L0 = 3 Leip-aE a0

=1,

I£] l#
= 3 L= |91 B [BODIE] = E[905)1Vi] T 10,00 E[B¥DIV]
=1, I=1,
I#§ I#j
= \I/VJ Z ]l{Tn l}\I/Vl h) = \Ilvj (g)\I/VTn(j)(h). ]

l#]

Proof of Proposition 3.2. We follow the steps of the proof of Corollary 7.12 in [9]. Our
proof is significantly simpler since 7,, is assumed to have no fix points and V' is continuous
so that there are no ties in the sample. To simplify the notation, we denote x,(V,Y’; g, h)
and x(V,Y;¢g,h) by x,, and x respectively.

We first prove that, for any measurable function ¢,

o(V1) = o(Vr, 1)) = 0 (23)

in probability as n — oco. Let ¢ > 0. By the special case of Lusin’s theorem (see [9,
Lemma 7.5]), there exists a compactly supported continuous function ¢: R — R such
that P({z; ¢(z) # ¢(x)}) < e, where P stands for the distribution of V. Then for any
0 >0,

]P’( (Vi) = (V)| > 5) <P ([p(V) = ¢(Veury)| > 9)
+P (p(Vi) £ (V) + P(e(Veuy) £ @(Veuw))) - (24)

By continuity of ¢ and since V;, 1y — Vi as n — oo with probability one, the first term
in the right hand side of (24) converges to 0 as n — oo. By construction of ¢, the second
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term is lower than . Turning to the third one, we have thus

1 n 1 n n
Elp(Ve,)l =~ > Elp = > Elo(Vi)lir, (=1
j=1 j=11=1
1%
S S R () L)) = — S Ell Zﬂ{w =) = = D _E[io( E[p(11)]
== na=5 a4
J#l J#l
where we have used the fact that 7, has no fix point, V, @ £ () for any i and j =

1,...,n, and the V;’s have no ties. This yields

Plo(Vry) # 6(Vey)) = Ple(V1) # 6(V1)) <,

and, since € and ¢ are arbitrary, (23) is therefore proved. Now, since z — VU, is a
measurable and bounded function and applying (23), we have

{ \I]V1 (g) - \IIVTn(D(g) — 0,

Ty (h) — Ty (B) =0 in probability as n — oc. (25)
1 ™ (1) ’

Lemma 3.1 and the dominated convergence theorem lead to
Elx,] = ZE h(Yz, ()] = Elg(Y1)h(Yr, 1)) = E[Pv, (9)¥v,, , (B)] = E[¥v (9)¥v (h)] = x (26)

where we have taken into account the fact that Wy (g) and Wy (h) are bounded (due to
the boundedness of g and h) and used (25).

The last step of the proof consists in comparing x,, with E[y,] using Mc Diarmid’s concen-
tration inequality [27]. Sharper constants can be obtained in Mc Diarmid’s inequality by
using the inequalities from [6, 7]. As we are interested in asymptotic results the accuracy
of the constant has no impact on the result. Following the same lines as in the proof of
9, Lemma 7.11], Mc Diarmid’s concentration inequality in [27] then implies

P(xn — E[x]| > 1) < 2exp{—2n%2/C?}, (27)

where C' is a universal constant and we conclude the proof by combining (26) and (27). [

B Proof of the asymtotic normality

Framework and goal We consider the model defined in (1) that can be rewritten as
Y = f(X,W) where X = X; and W = (Xy,...,X,) are two independent inputs of the
numerical code f that is assumed to be bounded.

The random variables X and W are defined on a product space 2 = Qx X Qu; so
that for any w € , there exists wx € Qx and wy € Qu and we have (X, W)(w) =
(X(wx), W(ww)). Further, we consider my, the projection on 2y and the product measure
P=Pxy®Py =Lx ® Ly, where Lx is the distribution of X and Ly is the distribution
of W. Naturally, Py = P o 7y,
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We aim to prove a CLT for the estimator £5°°°'(XY") of the classical first-order Sobol’
index with respect to X given by (2), the estimator of which defined in (17) is given by

ny(.) _ (l n y.)Q

]1] j=1"J

L= (A )

620bol’ (Xla Y)

where N is defined in (16). Notice that the denominator is reduced to the empirical
variance of Y. As explained in Section 3.1, we denote by Y(;) the output associated to
X(;) where X;) stands for the j-th order statistics of (X,...,X,). Then observing that

Z Y;YnG) Z Y)Y = Y Yo, ) You i)
j=1 j=1

where, to avoid any confusion, o, stands for the permutation that rearranges the sample
(X1,...,X,), the estimator £5°*°"'(X,,Y") can be written as

Z" 1Y NYou(+1) — (% i1 Yan(j))Q.

€7§Ob017 (X17 Y) 2
2 1 n
=1 Yon(j) - <ﬁ Jj=1 Yan(j))

(28)

B.1 Proof of Theorem 4.1

The proof will proceed as follows. First, in view of (28), we prove a CLT for

1 7= 1 1 1 9
( ZYO'n ])Yan(J""l n Zyan(j)’nzyan(j)> '
j=1 J=1 J=1
that amounts to prove a CLT for
1 n—1 1 n—1 1 n—1 )
=~ Yo Yo~ 2 Youin — 2 Yoty |
"= Jj=1 Jj=1

since f is bounded. Secondly, we use the so-called delta method [39, Theorem 3.1] to
conclude to Theorem 4.1.

It is worth noticing that the permutation on the W’s do not affect the result as seen in
the sequel. For j =1,...n — 1, introducing

A, ji=f (Xo'n(j)7m) —f <n‘_7}_1,VV]) ;o Why= (n‘i17Wj) (29)

leads to an(j) =f (Xgn(j), Wgn(j)) £ f (Xgn(j), W]> Anj + f( ) and

You)You11) = F (Xouii)s Wout)) £ (Xout1 Wou1))
£ f (Xan(j)’Wj) f (Xan(j+1)7Wj+1)
- (f (Whj) + An,j) <f (Whjt1) + Aw‘ﬂ)
= [ (Wag) f Wagir) + Doy f Wagar) + Bojiaf (W) + DA i
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Thus we are led to establish a CLT for
1 n—1 f(Wn,])f(Wn j+1) + An ]f ( n]-i-l) + Anj+1f ( nj) + ARJATL J+1
Zn=—3" FWag) + Bnj | . (30)
=1 (F(Woy) + Any)

Let us discard the negligible terms in the CLT for Z,. In that view, noticing that

jn—j+1) ( j )2 4

E [Xan(j)} =

n+1

we first establish

J 1
Xon(G) — i Op (\/ﬁ) : (31)

As explained below, (31) will imply
1 "= 1 1 1= 1 1
1 Z Az =0 (n) and Z AnsAp i1 = Op (n> | (32)

First of all, we expand A, ; (resp. A, 1) using the Taylor-Lagrange formula, for any
7=1,...n—1 and we obtain

1
An,j = (Xan(J) n+ 1) f:v( n]) 5 (Xo'n(]) n+ 1) fwz ( n,59 crn(])) (33)

where 0,, ; (resp. 0y, ;41) lies in the unordered segment (X, (j), 7/(n+1)) (resp. (Xo, (1), (J+
1)/(n+1))) and where f, and f,, are the first and second derivatives of f with respect
to the first coordinate. This leads to expansions for A2 cand Ay, A, e

AL = (Xonu) ) (fx( Wag) + ;(Xanm )fm( i 0n<ﬂ>)>2

j j+1
BBt = (X""U) Tt 1) (X""U“) St 1)

(fx( Wai) + ; (Xon(J) )fm“( n.j> n(a)>)
(fx( Whjs1) + ; (Xon(j+1) s 1) oz ( n,j+1s Wcm(jﬂ)) :

Finally, using the boundedness of f, f,, and f,,, together with (31), (32) follows.
Remark that the proof of (32) yields also

from which it is clear that this term will contribute in the CLT on Z,. Then (32) entails
that the asymptotic study reduces to that of the empirical mean of Z,; = B, ; + C,;
where

(f (Wn,j)f(Wn,j—l—l)) ( ngf W) + B f (W ))
B, ;= FWa) and C,, ; := A, . (35)
f(Wn,j)2 2An7jf<Wn,j>

First, we consider B, ; in (35) and we establish the following result, the proof of which
has been postponed to Appendix B.2.
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Lemma B.1. As n — oo, the random vector B,, given by

1 n—1 1 n—1 T
E Z Bn,j - ﬁ Z (f (Wn,j) f (Wn,j—i-l) ) f (Wn,j) ) f (Wn,j)z)
=1 j=1
satisfies a CLT. More precisely, \/ﬁ<Bn - mB) 7Hio>o N3(0,X5), where
mp = (E[YY',E[Y],E[Y?]) (36)

Y' = f(X, W), W is an independent copy of W, and X has an explicit expression given
in Appendix B.2.

Remark that Y’ is the so-called Pick-Freeze version of Y with respect to X. Secondly,
we establish a conditional CLT for the empirical mean of the (), ;’s defined in (35). The
reader is referred to Appendix B.3 for the proof of this result.

Lemma B.2. There exists a measurable set 11 € Qv having Py -probability one such that,
for any ww € 11, we have

VG (- ww) =5 N3(0,5¢).
Moreover, X does not depend on wy and has an explicit expression given Appendiz B.3.

Considering the characteristic function of the vector v/n(B,, — E[B,],C,), one may write
E [ei(\/m&(anE[BnDH\/ﬁ(t,Cn»] —F [ei\/mSv(Bn*]E[Bn]))E [ei\/ﬁ@,Cn)

Fu]

for any s and ¢ € R®. On the one hand, E [eiﬁ(t’c’” ‘]—“W] converges a.s. to exp{—t' Xot/2}

which is not random. On the other hand, v/n(s, (B, — E[B,])) converges in distribution
to a Gaussian random variable denoted by B,. By Slutsky’s lemma,

(Viats, (B, = EIB,])).E [0 |5, )

converges in distribution to (B, exp{—t'Xct/2}). We consider the application h: (u,v) €
R x D(0,1) — e™v € C where D(0,1) is the unit disc in C. The continuity and the
boundedness of h lead to the convergence in distribution of e?v7s (Br—E[Bn]) [eiﬁ(t’0"> ]:W}

and we conclude to the asymptotic normality of v/n(B,, —E[B,], C,) to a six-dimensional

0 ¢
remains to apply the so-called delta method [39, Theorem 3.1] and Slutsky’s lemma to
get the required result. The details of the computation of the asymptotic variance o2 can
be found in Appendix B.4.

. . . . . (Y O
Gaussian random vector with zero mean and variance-covariance matrix ( It

B.2 Proof of Lemma B.1
One has



the first coordinate of which converges as n — oo to

JEU W) f (W] AL (2,0%) = [ ELF (W) (2,
E[f (X)X,
£ G W) £ (X, W)

W) da
=E W) 1X]]

=E =E[YY].
The two other coordinates can be handled similarly leading to

E[B.] — (E[YYE[YLE}Y?) =mp.

n—oo

We apply the CLT for dependent variables proved in [28] to E}W-, the centered version

of the random variables f(Ww)f(Wn,jH)/\/ﬁ with m = 1, @ = 0, and because f is
bounded (so is E}”) Assumptions (1) and (2) in [28] obviously hold, the assumption (3)
is naturally fulfilled and assumption (4) is a mere consequence of Chebyshev’s inequality
and the boundedness of f. Now, it remains to check that assumption (5) holds. We have

S Cov(B i Bly) = = 0 Cov (1 (Waa) f (Wagan) o f (W) £ (W)
n—1 n—2
= 711 Z Var (f (an) f (Wn,j+1)) + i Z Cov (f (an) f (Wn,j+1) f (Wn,j+1) f (Wn,j+2)) .

On the one hand, by [17, Lemma 1.1],

1 n—1

n ;Var (f Wag) f (W) T /Var(f (z, W) f (&', W) AL x x)(z, 2)
= /01 Var (f (z, W) f (z,W')) dz = E [Var (f (X, W) f (X, W') |X)] = E[Var (YY'|X)],

where W’ is an independent copies of W, Y = f(X, W), and Y’ = f(X,W’). On the
other hand, by [17, Lemma 1.1],

1 n—2

- Z Cov (f (Wag) f Wagsr) s f Waji1) f (Wi i)

= E [Cov (f (X, W) f(X, W), f (X, W) f(X,W")|X)]=E[Cov (YY" YY"|X)],
where W’ and W” are two independent copies of W. Further, Y = f(X,W), Y’ =
X, W), and Y = f(X, W"). Actually, notice that all linear combination of the coor-
dinates of

T

(FWa ) FWarjin), F(Wog), F(Wa)?) (37)

is a one-dependent random variable. In addition, following the same lines as above, one
may check that any linear combination still satisfies the assumptions of [28]. Hence, any
linear combination of the coordinates of B,, satisfies a CLT so that Lemma B.1 is proved,
up to the computation of the asymptotic variance-covariance matrix g done in what
follows.
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Computation of the asymptotic covariance matrix Xp

We consider a linear combination of the random vector in (37) given by

uf(Wn,j)f<Wn,j+1) + vf(Wn,j) + wf(Wn,j)2’

where (u,v,w) € R*® This one-dimensional random vector is one-dependent and its
centered version normalized by /n, denoted by B, ;, satisfies the assumptions of [28]. To
calculate the asymptotic variance-covariance matrix g, we compute explicitly the limit

of

n—1

Z COV(E,,M‘7 En,j)u

ij=1
as n — oo using [17, Lemma 1.1]. It remains to take (1,0,0), (0,1,0) and (0,0,1)
to get the diagonal terms of the asymptotic variance-covariance matrix and to solve a
three-dimensional system of equations to get the remaining terms. Finally, as computed
previously and using notation of [17, Lemma 1.1], the first diagonal term of ¥p is :

SE = [ Var(f (e, W) f (@', W) AL x) (@, @)
+2 [ Cov (f (o, W) (@', W) f (', W) £ (2", W) AL 0 (2,2, 2”)

= /OlVar(f (x, W)f(x,W/))dx+2/()1 Cov (f (x, W) f (z,W"), f (z, W) f (x, W")) dx

= E[Var (f (X, W) f (X, W) |X)] + 2E [Cov (f (X, W) f (X, W), f (X, W) f (X, W") |X)]
= E [Var (YY’|X)] + 2E [Cov (YY", YY" | X)],

where we remind that Y = f(X, W), Y/ = f(X, W), and Y = f(X,W") with W’ and
W" independent copies of W. The other terms are

I /01 Var (f (z,W))dz = E [Var (f (X, W) |X)] = E [Var(Y|X)],

w8 = /01 Var (f (2, W)?) de = E [Var (Y?|X)]

N2 2l 2/01 Cov (f (2, W) f (2, W), f (2, W)) dz = 2 [Cov (YY", V| X)],
I 3 2/01 Cov (f (, W) f (2, W'), f (z,W)*) dz = 2E [Cov (YY", V?|X)],
Iy /01 Cov (f (x, W), f (z,W)?) dz = E [Cov (Y, Y?|X)] .

B.3 Proof of Lemma B.2

Let wy € ITas defined in [17, Lemma 1.1]. The aim is to establish a CLT for /nC,, ; (-, ww ).
To ease the reading, we omit the notation (-, wy ) as classically done in probability. First,
dealing with the first coordinate f (W, j+1) Anj + f (Wh ;) Apj1 of Cp; defined in (35),
one has

F Wagin) g = (Xou = =22 ) | (Wagin) fo (W)

1 jo\?
+3 (Xon(j) o 1) f Wajs1) fax (003, W5)
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using the expansion of A, ; given in (33). By (31) and using the boundedness of f and
fez, we get that

1 n—1 ] 2
- Z < on(j) n+ 1> f(Wn,j-H) fxx (5n,j7Wj)

is Op (1/n). We follow the same lines to treat the term f (W, ;) A, ;41 and thus

1 n—1 1 n—1 ]
- Z f (Wn,j-H) An,j + f (Wn,j) An,j+1 = E Z (Xon(j) - > f (Wn ]+1) fx ( n])

ni= = n+1
711 ; ( on(j+1) iii)f( Wii) fo (Whjs1) + Op (i)
iz( = ) E W) (F W)+ F (Wagi)) + O (1)

So that, using again the expansion of A, ; given in (33), (31), and the boundedness of
f and f;, to handle the second and third coordinate of C,, ;, the study of C,, reduces to
that of the random vector

f(WnJ 1)+f( nj+1)

1nzl( 0 ) W o 33)

by the independence between o, and Wiy, ..., W,. In that view, let us consider the
following linear combination w(f(W, j—1)+f(Wh j41))+v+2w f( nj+1) where (u,v,w) €
R? and the empirical mean

3 (et ) e Wag) X (@ Wogor) + F W) + 0+ 20 (Wager)) - (39)

Now it remains to apply [17, Lemma 1.4] ? with x; = (W,_1, W;, W,41) and ¢ = Yy
with

j—1 J j+1
wuvw< +1 n+1 n+17 ]) fx( nj)( (f(W"] 1)+f( n]+1))—|—1}+2'lUf( n]+1))
(40)
noticing that, as n — oo, (1/n) > 5(J 1)/(n41),j/(n+1),(j4+1)/(n+1),x; converges in distri-

bution to @ = Lx,x,x) ® Lw ® ﬁW ® Ly by [17, Lemma 1.1]. Thus we deduce that
the empirical mean in (39) converges in distribution for any 3-uplet (u,v,w). Since any
linear combination of the components of the random vector defined in (38) satisfies a
CLT, so does the random vector itself. The proof of Lemma B.2 is now complete, up to
the computation of the asymptotic variance-covariance matrix ¥ done in the paragraph
that follows.

2A slightly generalization of this lemma is required to handle the pair (j/(n+1),(j+1)/(n+1)) rather
than the quantity j/n. Its proof comes directly following the same lines as in the proof of this lemma
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Computation of the asymptotic covariance matrix >

We use the explicit expression (4) in the proof of [17, Lemma 1.4] of the asymptotic
variance ai (actually a slightly generalized version of the lemma) with @ = Lix x,x) ®
Lw & Lw @ Ly and with ¢ given by (40). Then taking the values (1,0,0), (0,1,0)
and (0,0, 1) leads to the diagonal terms of the asymptotic variance-covariance matrix ¢
while solving a three-dimensional system of equations provides the remaining terms. For
instance, reminding that x; = (W;_1, W;, W,41) and W,,; = (j/(n + 1), W;) and

j—1 7 J+1
n+1'n+1"n+1’

o ( ) = Fo (W) (F (W) + F(Wog1)

(namely, ¥ With (u,v,w) = (1,0,0)), we have
Egl :/@/)100@1, x’l, Illlv X1)¢100($2, $/27 xg’, X2)331 Az N\ I/1 A $l2 A $,1/ N xlzl
2
X dQ(‘Th ‘Tllu 13/1/7 Xl)dQ<‘r27 13/2, $/2/, X2) - (/ 1/}100(‘7;7 Ila SL’//, X)$ A ‘T/ A l’//dQ<I, $/, ‘T//7 X))
=E[(Yy + V) (Ya + Y3) fo (X1, W) fu( X2, Wa) (X1 A Xo)] = E[(Y + V') fu(X, W) X]?,

where we remind that Y = f(X, W) and Y’ = f(X, W’) with W’ an independent copy of
W (and analogously for Y; and Y5). Finally, the remaining terms of ¥ are:

S8 = Efo (X1, Wh) fo(Xo, Wo) (X1 A Xo)] — E[f.(X, W) X]?

Se = AR[YTY; fo (X0, W) fo(Xo, Wa) (X0 A X)) — 4B[Y (X, W) X

S¢? =58 = E[(Y1 4 YY) (X0, Wh) fo(Xo, Wa) (X1 A Xo)] — EB[(Y +Y7) fo(X, W) XIE[f (X, W) X]
St = 3E = 2E[(Yy + YY) fo (X0, W)Yy fo( Xo, Wo) (X1 A X)) — 2E[(Y + Y') £ (X, W) XE[Y £ (X,
Y57 = B = 9R[f. (X1, W)Yy fo(Xa, Wo) (X1 A Xo)] — 2E[fo(X, W) XE[Y' f,(X, W)X].

B.4 Asymptotic variance o> of Theorem 4.1

We have proved yet that

aiflen) - (9) a5 )

where the explicit expressions of mp, X5 and ¢ are given in (36) of Lemma B.1, Appen-
dices B.2 and B.3 respectively. Applying the so-called delta method [39, Theorem 3.1] to
the linear function f(z,y) = x + y, we conclude that

Vi(Zy, —mp) = N3 (0,55 + S¢) (41)

Further, we notice that £3°*°'(X,Y) £ W(Z,) with U(z,y,2) = (z — y2)/(z — y?). The
so-called delta method [39, Theorem 3.1] then gives

VN (€271(X,Y) = 5%) 53 Mi(0.07)

where SX = Var(E[Y|X])/Var(Y) is the first-order Sobol” index with respect to X and
02 = g"(Zp + X¢)g with g = VU (mp). By assumption Var(Y) # 0, ¥ is differentiable
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at mp and we will see in the sequel that ¢" (X + X¢)g # 0, so that the application of
the delta method is justified. By differentiation, we get that, for any x, y, and 2z so that

z # y*

B L z—x x —y? i
VU (x,y,z) = (z—y2’ Qy(z—y2)2’ (z—y2)2> (42)
so that
1 E[YY|—E[y?] ¥ \' 1 « o
g=VU(mp)= (Var(Y)’Q Y] [ Va]r(Y)Q[ ]’_Var(Y)> :var(Y)(l,QE[Y](S —1),-5%)

Hence the asymptotic variance o2 in Theorem 4.1 is finally given by 0% = ¢" (X5 + X¢) g
where >.g and ¢ have been defined in Appendices B.2 and B.3 respectively. The matrix
Y. g rewrites as

Vo1 + 2001,02 2001,03 2001,00
ZB = 2001703 Var(Y)(l — SX) 2003,00
2¢o01,00 2¢03,00 Voo
where Vij = ]E[Var(AlAﬂX)], Cij kl = E[COV(AZA],AkAl|X)], Y Al Y/ A = Y//
and A3 = 1 (Y and Y” have been defined just before (37)). The matrix Yo rewrites as
81}100 S"z’llﬂ 812/)101
Yo = 812b110 Sgow 81/1011

Sv101 Son 81/1001

where s7, and 9y, have been defined in [17, Equation (4)] and (40) respectively.

C Proof of the asymtotic efficiency of R}

Proof of Proposition 4.6. By [11, Theorems 3.4 and 3.5] and classical results on efficiency,
observe that

n n T
(it
izl

is asymptotically efficient, componentwise, for estimating U = (E[E[Y|X]?], E[Y],E[Y2))".
The efficiency in product space [39, Theorem 25.50] yields the joint efficiency from this
componentwise efficiency. Now, we consider once again the function ¥ introduced in the
proof of Theorem 4.1. Since ¥ is differentiable on R3\ {(x, Y, 2) ‘ 2 # yQ}, the efficiency
and delta method result [39, Theorem 25.47] implies that (¥ (U,)), is asymptotically
efficient for estimating W(U). The conclusion follows as ¥(U) = S¥.

Let us compute the minimal variance. To do so, assume that the joint distribution P of
(X,Y) is absolutely continuous with respect to the Cartesian product Py ® Py, namely
P(dx,dy) = f(x,y)Px(dx)Py(dy). Then

f(z,y)
BYIX =] = [frixeso) Prldy) = [y Sp s Prldy)
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For any ¢ € (0, 1), let us introduce f;(x,y) := (14 th(z,y))f(x,y) and
Py(dz,dy) := (1 + th(z,y)) f(x,y) Px (dx) Py (dy)

where h(x,y) > —1 and [ h(z,y)f(z,y)P.(dz)Py(dy) = 0. Now we consider the function

L () o

Denoting by G(x.1) := [ yfu(x,y) Py (dy)/ | filx, y) Py (dy), one gets

- //$,y’ [QG(x,t);G(x,t)ft(x,y’) + G(Q?,i)%(x,y')f(;c,y’)] PX(d$>Py<dyl)

so that F'(0) = (E[Y|X = z](2y — E[Y|X = z]),h)p. The interest function I :=
E[Y|X](2Y — E[Y|X]) has E[E[Y|X]?] and variance Var(E[Y|X](2Y — E[Y|X])). Hence
it remains to apply the delta method to get the final (minimal) variance

Cov(I,Y)  Var(Y) Cov(Y,Y?)

Var(I)  Cov(I,Y) Cov(I,Y?)
(COV(I,YQ) Cov(Y,Y?) Var(Y?) )

where g := VU (U), and by (42),

EE[Y|X]?) -E[Y?] ¥ \' 1 x .
= 2ElY — = 1,2ElY|(S* —1),-S
g (Var(y> ? [ ] Var(Y)2 ’ Var(Y) Var(Y) ( ) [ ] ( )7 )
Finally, one gets the minimal variance mentioned in Proposition 4.6. n

Remark C.1. This result can be also obtained making a LAN perturbation of the func-
tional derivative on the tangent space. In this setting and following the notation of [39,
Chapitre 25], let us consider the functional ® defined by

Ep[Ep[Y|X]] — Ep[Y]?
Ep[Y?] — Ep[Y]?

O(P) =
Then, with the notation P, for ¢t € (0, 1) introduced in the above proof, one gets

([E[Y|X](2Y — E[Y|X]) — 2E[Y]Y — SX(Y2 — 2E[Y]Y), h)p

%Q)(Pt)lt:O - Var(Y)

leading to @ :=

(QIE[Y] (1—5%) + S¥Y2 — E[Y|X](E[Y|X] - 2Y)) and the min-
= Var(®) = ¢ s Var (2E[Y](1 — SY)Y + S¥Y? + E[Y | X](E[Y|X]
that coincides with the expression obtained via the delta method in Proposition 4.6.

Var(y
imal variance is given by o

min

Supplement: Technical results
We present and prove technical results that will be used in the proofs of the main results.
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