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Harmonics Prediction Algorithm to Solve Nonlinear Magnetostatic
Problems with the Harmonic Balance Method
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The problem of harmonics selection when solving an electromagnetic problem using harmonic balance method combined with
finite element method is still a challenge. In this paper, a new technique based on the time residual of the solution is proposed
to handle this kind of problem. Numerical results are provided to demonstrate the efficiency of our approach for the case of 2D
nonlinear magnetostatic problem.

Index Terms—Harmonic balance method, determination of harmonics, finite element method, nonlinear magnetostatic problem.

I. INTRODUCTION

Modeling electromagnetic problems can be carried out using
the finite element method combined either with time stepping
method (TS-FEM) or harmonic balance method (HB-FEM) [1],
[2]. When the transient phenomenon occurs, TS-FEM leads to
a substantial calculation time to reach the steady-state response.
To tackle this issue, the harmonic balance method (HBM)
may be one of the most suitable approaches. This method
relies on the representation of time-periodic functions by a
truncated Fourier series with a finite number of harmonics.
One specific HBM feature is that the accuracy of the solu-
tion depends on the harmonics considered in the summation.
Therefore, the most important problem when applying HBM
is the selection of harmonics. In electromagnetism, the non-
linear behavior as well as the movement of machines yield
coupling between the components at different frequencies and
so produce harmonics. Since computational cost increases with
each harmonic included in the solution, only harmonics with a
significant contribution must be taken into account for a given
precision. The issue of this work is so to predict these sufficient
harmonics. In the literature, some techniques, also known as
adaptive HBM are proposed in the field of structural dynamics
[3]. Some of these methods are based on the observation of the
relative variation for two consecutive harmonics. In this case,
the algorithm may stop before saturation which constitutes
a limitation of these methods. To avoid this drawback, we
propose in this paper, a novel approach based on the time
residual when using HBM applied to a nonlinear magnetostatic
problem. Up to our knowledge, although the HBM is widely
applied in electromagnetic problems, no such approach has
been proposed in the literature. In the next section, the FE
model of non-linear magnetostatic problem coupled with HBM
is presented. Then, the residual approach is described in the
third section. The proposed algorithm is applied to a 2D
example involving a transformer in the fourth section.

II. NONLINEAR MAGNETOSTATIC PROBLEM COUPLED
WITH HARMONIC BALANCE METHOD

Using the 2D magnetic vector potential, the formulation of
the non-linear magnetostatic problem under consideration is

curl (ν(B) curl A) = Js,

where ν(B) represents the reluctivity depending on the mag-
netic flux density B. Js(x, t) = N(x) i(t) is the current density
with N the unit current density and i the current flowing
through the stranded inductor. A is the unknown magnetic
vector potential. Applying the FEM, the system to be solved
can be represented as follows

M(A(t))A(t) = F(t), (1)

with A(t) ∈ RNx the 2D discretization of A(t) on the nodes.
Nx is the number of degrees of freedom. F(t) ∈ RNx is the
vector corresponding to Js and M(A) is the curl-curl matrix.
We choose to use a fixed-point algorithm to solve the equation
(1). Thus, we rewrite the system as

Mνfp
A(t) = F(t)−Mfp(A(t)), (2)

like the classical TS-FEM algorithm. Mνfp
is the curl-curl

matrix corresponding to a constant νfp and Mfp(A(t)) is
the vector corresponding to the virtual magnetization vector
Hfp(B) = (ν(B) − νfp)B. Here, the magnetic field H
has been expressed as H = νfpB + Hfp(B). Assuming the
solution A(t) to be periodic in time and of a fundamental
frequency ω, enables us to use HBM. A(t) is so developed as
a complex Fourier series, whose expansions must be truncated
to a specified number of harmonics N , i.e.

A(t) ≈
N∑
k=0

Ak e
j w k t. (3)

Then, by substitutingA in (2) with this summation, multiplying
by a set of test functions e− j w l t, 0 ≤ l ≤ N and integrating
the equation over a period T , a system of differential algebraic
equations is obtained under the form: 0 ≤ l ≤ N

Mνfp
Al =

1

T

∫
T

(F(t)−Mfp(A(t))e− j w l tdt. (4)

As detailed above, this equation is solved using a fixed point
algorithm.
The method proposed in the next section focuses on the
determination of the predominant harmonics to consider in (3).



III. HARMONICS PREDICTION APPROACH

The most important question when applying HBM is how
to select the harmonics used to approximate the solution (3).
In order to answer to this question, we present in this section,
a harmonic balance selection technique. This method is based
on the analysis of the time residual of the harmonic solution.
Indeed, first of all, we solve (4) taking into account only
the harmonics occurring in i(t). Then, the temporal solution
(A(tj))0≤j≤NT

is reconstructed from (3) for each time step
such as (t0, ..., tNT

) is a subdivision of the interval [0, T ]. The
next step is to compute the residual matrix R defined by

R(tj) = F(tj)−M(A(t))A(tj) ∀ 0 6 j 6 NT , (5)

where each row of the matrix represents the temporal evolution
over the period [0, T ] of the residual defined in one degree of
freedom. Finally, according to the FFT of the residual, one can
adjust the harmonics retained when solving (4). It is important
to note that one can only compute the FFT of the residual in
the non-linear subdomain due to the saturation, which reduces
the computational time. This method is summarized in the
algorithm below,where ε is the error criterion threshold chosen
by the user.

Algorithm 1: Harmonics prediction algorithm

1 begin
2 R(tj) = F(tj) for 0 6 j 6 NT .
3 while ||R||> ε do
4 Compute the FFT of the time residual R.
5 Retain the harmonics with a significant

contribution, from the FFT of the residual R
and add them to the set S of harmonics.

6 Solve the system (4) taking into account the
harmonics in S.

7 Reconstruct the solution (A(tj))06j6NT
(3).

8 Compute the residual (R(tj))06j6NT
(5) in the

domains of interest.
9 end

10 return the solution (A(tj))06j6NT
.

11 end

IV. NUMERICAL VALIDATION AND COMMENTS

To illustrate the efficiency of our proposed algorithm, a
2D nonlinear magnetostatic example, made of a single phase
transformer (Fig. 1) with a sinusoidal current sufficiently high
to ensure the saturation, is studied. The numerical results
demonstrate that after one iteration of the algorithm, one can
predict the predominant harmonics due to the nonlinear effects.
Indeed, the FFT of the residual, computed in an element
selected inside the nonlinear magnetic subdomain, indicates the
harmonics, that one should consider in the system (4)(see Fig.
2). A peak is observed for each harmonic with a significant
contribution. On the other hand, the FFT of the residual
obtained in the second iteration decreases since one considers
the new retained harmonics as illustrated in Fig. 3. To validate
the proposed approach, the results are compared with those
obtained from TS-FEM. The relative error in terms of the
magnetic potential vector obtained with our approach with
respect to the one obtained by TS-FEM is about 10−5. These

Fig. 1. Mesh of the geometry (3167 nodes, 6252 elements).

Fig. 2. FFT of the time residual R after the first iteration.

Fig. 3. FFT of the time residual R after the second iteration.

numerical results demonstrate therefore the effectiveness of the
algorithm proposed, whose implementation is straightforward.
The major advantage of the algorithm proposed is that it
requires only harmonics occurring in the current source to
predict the predominant harmonics. Moreover, the proposed
approach can be easily extended to the case of electrical
machines in movement.
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