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ABSTRACT

Convolutional Neural Networks (CNN) have been used
in Automatic Speech Recognition (ASR) to learn represen-
tations directly from the raw signal instead of hand-crafted
acoustic features, providing a richer and lossless input signal.
Recent researches propose to inject prior acoustic knowledge
to the first convolutional layer by integrating the shape of the
impulse responses in order to increase both the interpretabil-
ity of the learnt acoustic model, and its performances. We
propose to combine the complex Gabor filter with complex-
valued deep neural networks to replace usual CNN weights
kernels, to fully take advantage of its optimal time-frequency
resolution and of the complex domain. The conducted exper-
iments on the TIMIT phoneme recognition task shows that
the proposed approach reaches top-of-the-line performances
while remaining interpretable.

Index Terms— SincNet, complex neural networks, Ga-
bor filters, speech recognition.

1. INTRODUCTION

The task of Automatic Speech Recognition (ASR) is far from
being solved and represents an active research field [1, 2,
3, 4]. More precisely ASR systems are either hybrid DNN-
HMM, with multiple sub-blocks trained separately [5, 6], or
End-to-End (E2E), with various Neural Networks (NN) learnt
accordingly to a joint training procedure [7, 8, 9]. Despite
numerous architectures and training investigations, the input
feature representation remains mostly unchanged with tradi-
tional handcrafted acoustic features such as Mel-filter-banks.

Nonetheless, another field of speech recognition recently
obtained promising performances while operating at the raw
waveform level [10, 11, 12, 13]. In these works, Convolu-
tional Neural Networks (CNN) have been used directly on
the raw speech signal to rapidly consume the large number of
data points (e.g. 16, 000 per second for an audio sampled at
16kHz). Unfortunately, and as demonstrated in [14, 15] tradi-
tional CNN kernel filters are not efficient at learning common
acoustic features due to the lack of constraint on neural pa-
rameters. To alleviate the latter issue, the authors proposed a
novel convolutional layer named SincNet incorporating prior
speech processing knowledge in an efficient and interpretable

operation. More precisely, SincNet filters are initialized and
constrained following specific acoustic filters to produce eas-
ily interpretable filtering of the input waveform [14]. As a
matter of fact, processing the raw waveform theoretically has
numerous advantages including a higher richness of the input
signal alongside with a lossless natural representation of the
features. Recently, other filters have been proposed for Sinc-
Net to further increase its performances [16]. In the latter,
Gaussian filters have been suggested without motivations on
their major properties in terms of time and frequency localiza-
tion [17]. Furthermore, the authors only proposed to consider
the real-part to feed the standard SincNet architecture. We
propose to extend this work to the complete complex Gabor
filters to take advantage of both the complex-valued repre-
sentation and a better time-frequency resolution due to the
Gaussian shape. Other recent works have used Gabor filters
instead of the triangular ones to operate over FBANK acoustic
features [18]. In this case, cutoff frequencies of the filters are
fixed on the Mel-scale and require fine tuning. Gabor filters
have also been used to initialize end-to-end filterbanks learn-
ing [19]. In the latter works, the filter frequency positions are
fixed. We propose to learn all these parameters jointly to the
rest of the neural network model to allow the Gabor filters to
perfectly match the considered task.

Nonetheless, complex Gabor filters produce a complex-
valued filtered signal that must be processed with a dedicated
complex-valued model to further fully exploit this input repre-
sentation. Fortunately, Complex-Valued Convolutional Neu-
ral Networks (CVCNN) have been recently introduced with
applications to image and speech processing [20, 21]. Thus,
we propose to enhance the original real-valued SincNet with
the proposed complex Gabor filters, and to process the fil-
tered signal with a CVCNN respectful of the complex alge-
bra. Contributions of the paper are summarized as:

1. The optimal time and frequency localization compro-
mise of Gabor filters is presented (Section 2).

2. SincNet [14] is extended to the complex-valued space
with a complex Gabor filter and CVCNNs. The model
is also released for reproducibility 1 (Section 3).

1https://github.com/NOEPG/pytorch-kaldi



Fig. 1: Illustration of the real (ge) and imaginary (go) parts of
the complex Gabor filter impulse response.

3. Evaluate and analyse the proposed complex gabor-
based SincNet on a phoneme recognition task with the
TIMIT dataset (Section 4).

The conducted experiments show that our approach
reaches promising performances with a natural and efficient
filtered representation of the raw waveform, while retaining
the interpretability property of the original SincNet.

2. UNCERTAINTY PRINCIPLE AND GABOR
FILTERING

This section motivates the use of Gabor filters to replace the
standard sinc approach of SincNet [14].

First, it is important to notice that time-frequency resolu-
tion is limited by the uncertainty principle. More precisely,
the product of the time and frequency spread of a filter is su-
perior to a constant. Given any function y ∈ L2(R) and its
Fourier transform ŷ, their time ey and frequency eŷ localiza-
tions are respectively:

ey =
1

||y||2

∫ +∞

−∞
t|y(t)|2dt.

eŷ =
1

||ŷ||2

∫ +∞

−∞
f |ŷ(f)|2df.

(1)

Then, their time and frequency spreads are defined by
their variance vy and vŷ:

vy =
1

||y||2

∫ +∞

−∞
(t− ey)2|y(t)|2dt.

vŷ =
1

||ŷ||2

∫ +∞

−∞
(f − eŷ)2|ŷ(f)|2df.

(2)

The uncertainty principle states that vyvŷ ≥ 1
16π2 [22].

Thus a function can not have an infinite narrow localization
both in time and frequency domain. However, this inequal-
ity becomes an equality for Gaussian shape functions such as

Fig. 2: Illustration of the frequency response of the complex
Gabor filter with f1 and f2 respectively the low and high cut-
off frequencies.

Gabor filter [22] and thus provides the best time-frequency
resolution compromise.

In particular, the complex impulse response of the Gabor
filter is defined as follows:

g(t) = wσ(t)e
i2πf0t,

= ge(t) + igo(t),

wσ(t) =
1√
2πσ

e−
t2

2σ2 ,

(3)

with σ the standard deviation of the temporal Gaussian win-
dow wσ(t), f0 the center frequency of the filter and ge(t) and
go(t) the real and imaginary part of the impulse response re-
spectively (Figure 1).

The Gabor filter has the following Gaussian frequency
response:

G(f) = e−2π
2σ2(f−f0)2 . (4)

For the sake of interpretability, it is feasible to express σ
and f0 in terms of the cutoff frequencies:

σ =
A

π(f2 − f1)
, f0 =

f1 + f2
2

, (5)

with f1 and f2 the low and high (−3dB) cutoff frequencies

respectively, and A =
√

3ln(10)
10 a constant. The Gabor fre-

quency response is depicted in Figure.2

3. CONVOLUTIONAL NEURAL NETWORKS ON
THE RAW WAVEFORM

This section details the proposed complex-valued model to di-
rectly operate of the raw speech waveform. First, SincNet is
presented (Section 3.1). Then, we introduce the complex Ga-
bor filtering alongside with the complex-valued architecture
(Section 3.2).



3.1. SincNet

Traditional parametric CNNs operate over the raw waveform
by performing multiple time-domain convolutions between
the input signal and a certain finite impulse response. There-
fore, SincNet [14] proposes to use a sinc function to obtain
the impulse response h(t) at time t of a CNN as:

h(t) = 2f2sinc(2πf2t)− 2f1sinc(2πf1t), (6)

with sinc(x)=sin(x)/x, f1 and f2 the two cutoff frequencies
and f2 ≥ f1. Such filter has a rectangular frequency response
described as:

H(f) = rect2f2(f)− rect2f1(f), (7)

with rectw(.) the rectangular function of width w centered
in 0. Finally, cutoff frequencies are the two only trainable pa-
rameters reducing drastically the number of neural parameters
compared to CNNs. Then, multiple CNN layers are stacked to
reduce the signal dimension, before being fed into a classifier.

3.2. Complex Gabor Filtering with CVCNN

We propose to replace the sinc based filter of Eq. 6 with a
complex-valued Gabor one, for a better time-frequency res-
olution. Therefore, let g(t) be the complex Gabor filter im-
pulse response with ge(t) and go(t) the corresponding real
and imaginary parts. The convolution of an input signal x(t)
with g(t) at time t is written as:

x(t) ∗ g(t) = x(t) ∗ ge(t) + i(x(t) ∗ go(t)). (8)

The obtained filtered signal is of the form z = a+ ib lying
on the complex plane, and is an approximation of analytic
signal (i.e. without negative frequencies) [23]. We propose
to fully take this complex representation into consideration
by further processing it with complex-valued neural networks
layers only.

Therefore, the extracted features are then fed into multiple
CVCNNs followed by complex layer-normalization to reduce
the signal dimension. Finally, the reduced complex features
are fed into a complex fully-connected classifier (CVDNN).
In the same manner as SincNet [2], the two cutoff frequencies
of the filters are the only parameters learnt in the first layer,
thus reducing the number of neural parameters.

4. EXPERIMENTS

The proposed approach is evaluated on the TIMIT phoneme
recognition task [24]. The latter dataset is composed of a stan-
dard 462-speaker training dataset, a 50-speakers development
dataset and a core test dataset of 192 sentences. During the
experiments, the dialect sentences of the training dataset are
removed.

4.1. Models Achitecture

Our model starts with four CVCNNs with respectively 128,
60, 60 and 60 complex filters of kernel size 129, 5, 5, 3 with
Complex Gabor filters used at the first layer only. Then, a
Complex-Valued Multilayer Perceptron (CMLP) composed
of 5 layers with 1024 complex hidden units is added. The
ReLU activation function [25] is used accross all the lay-
ers. Complex layer-normalization is done on each layer of
the CVCNN, while complex batch-normalization is applied
on the CMLP layers. Maxpooling is applied on the convolu-
tional part to further reduce the dimension of the signal. Fi-
nally the softmax function is applied to obtain the posterior
probability over the HMM states. Monophone regularization
is also used to smooth the training [26].

We propose to compare this approach with a real-valued
equivalent baseline. Thus, the input layer has the same num-
ber of filters. Then, the dimensions of the other layers are
increased to obtain a comparable number of neural parame-
ters 20M .

Both models are fed with 200ms speech signal chunks
with an overlap of 10ms. They are trained using standard
stochastic gradient descent with a batch size of 128 for 20
epochs. The learning rate is annealed with respect to a certain
threshold on the validation loss evolution, alleviating the risk
of overfitting and ensuring an optimal convergence for both
models. A dropout probability of 0.15 is also set for each
layer except the classification ones.

Models and experiments are run within the Pytorch-Kaldi
toolkit [2].

4.2. Results and Discussions

Models are evaluated by averaging the Phone Error Rate
(PER) observed on the validation and test datasets for 5 runs
with the TIMIT phoneme recognition task [24]. Results are
shown in Table 1.

First, it is worth underlying that the obtained results are
comparable to state-of-the-art performances on the TIMIT
task from the raw waveform. Then, while both real and
complex-valued Gabor models obtain similar averaged per-
formances, a best PER of 16.7% is obtained with the com-
plex alternative compared to 16.9% for the real-valued one.
In fact, both real and complex filters have the same fre-
quency response in the positive domain. But using complex
quadratic filters that produce analytic signal for which the
complex Gabor filtered signal is an approximation could help
for instantaneous frequency estimation [23] and preserves the
phase information that can be useful for other tasks such as
speaker recognition.

Then, Figure 3 illustrates the learnt cutoff frequencies. As
expected, distributions are similar along a straight line for
both models. In fact, both models roughly learn the same
couples of cutoff frequencies due to an equivalent frequency
response shape.



Table 1: Results obtained with different ASR systems on the TIMIT phoneme recognition tasks. Valid. denotes the validation
dataset, and CTC the Connectionist Temporal Classification training scheme. Results are expressed in Phoneme Error Rate (i.e.
lower is better).

Model Valid.% Avg. Test% Best Test%
Gabor-CNN-CTC [18] - 18.8 18.5

SincNet [2] - 17.2 -
GaborReal 15.2 17.2 16.9

GaborComplex 15.2 17.1 16.7
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Fig. 3: Illustration of the cutoff frequencies learnt with the
Real and the Complex Gabor CNN.

Another drawback implied by Gaussian form functions
could be the learning of large bandwidths. More precisely,
the Gaussian shape is not ideal for large bandwidth filtering
as depicted in figure 4. Indeed the frequency response tends
to be flat in comparison to a rectangular filter. It is feasible to
alleviate this issue by enabling the model to combine smaller
band filters (Figure 4). However, and as expected, filters with
larger bands are more distributed in the higher frequencies.

5. CONCLUSION

Summary. This paper introduces and releases a complex-
valued and optimal time-frequency resolution alternative to
the SincNet architecture. It is based on a complex Gabor filter
learning process for automatic speech recognition. The con-
ducted experiments show that the proposed approach is able
to produce results comparable with state-of-the-art systems
while operating on the raw waveform.
Future Work. The base of the Gabor filters in non-orthogonal
leading to redundancy in the filtered signals. It is therefore
crucial to investigate other filters to produce an orthogonal
base for better performances [22]. Furthermore, the interest
of the phase still has to be established and this model must be
evaluated on tasks relying on the phase and local information
preserved by complex Gabor filters.

Fig. 4: Illustration of a large band Gaussian filter. The top row
shows how Gaussian filters can be flattened when the band-
width is too large. The bottom row illustrates how smaller
bandwidth Gaussian filters can be combined to obtain a better
large band filter.
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