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 we show that the constructed model selection procedures are asymptotically efficient in adaptive setting, i.e. in the case when the regularity of the drift coefficient is unknown. To this end, for the first time for such problem, we found in the explicit form the celebrated Pinsker constant which is the sharp lower bound for the minimax squared accuracy normalized by the optimal convergence rate, i.e. it provides the best potentially possible estimation accuracy. Finally, we show that the accuracy of the model selection procedure asymptotically coincides with this lower bound, i.e. the constructed procedure is efficient.

1 Introduction

Problem

In this paper we deal with the process (y t ) t≥0 defined by the stochastic differential equation

dy t = S(y t ) dt + b(y t ) dW t , 0 ≤ t ≤ T , (1.1) 
where (W t ) t≥0 is a standard Wiener process, the initial value y 0 is a fixed constant, S(•) is unknown drift and b(•) is unknown diffusion coefficient.

The problem is to estimate the function S(x), for x ∈ [x 0 , x 1 ], on the basis of the observations (y t j ) 1≤j≤N , t j = jδ ,

where the frequency δ = δ T ∈ (0, 1) and the sample size N = N (T ) are some functions of T that will be specified later. We consider the quadratic risk defined, for any estimator S, as

R ϑ ( S) = E ϑ S -S 2 and f 2 = x 1 x 0 |f (x)| 2 dx , (1.3) 
where E ϑ is the expectation with respect to the distribution of the process (1.1) for the functions ϑ = ϑ(•) = (S(•) , b(•)).

Motivations

The main motivation for the nonparametric drift in (1.1) is given in the papers [START_REF] Fujimori | The Danzing selector for a linear model of diffusion processes[END_REF][START_REF] De Gregorio | Adaptive LASSO-type estimation for multivariate diffusion processes[END_REF][START_REF] Galtchouk | Non asymptotic sharp oracle inequalities for high dimensional ergodic diffusion models[END_REF] in which Big Data problems are studied in the framework of the high dimension linear diffusion models, i.e. the model (1.1) with

S(x) = q j=1 θ j ψ j (x) , (1.4) 
where (ψ j ) 1≤j≤q are known linear independent functions and the dimension is greater than the number of observations, i.e. q > N . Indeed, such problems are important at various applications such that stochastic optimal control, finance, filtration, signal processing and etc (see, for example, [START_REF] Arato | Linear stochastic systems with constant coefficients. A statistical approach[END_REF][START_REF] Ibragimov | Statistical Estimation: Asymptotic Theory[END_REF][START_REF] Lamberton | Introduction to stochastic calculus applied to finance[END_REF][START_REF] Karatzas | Methods of Mathematical Finance[END_REF][START_REF] Kabanov | Two Scale Stochastic Systems: Asymptotic Analysis and Control[END_REF][START_REF] Bayisa | Adaptive algorithm for sparse signal recovery[END_REF] and the references therein). Nonparametric estimation problems for S were studied in a number of papers in the case of complete observations, that is when a whole trajectory (y t ) 0≤t≤T was observed. A sufficiently complete survey one can find in [START_REF] Kutoyants | Statistical Inferences for Ergodic Diffusion Processes[END_REF]. It should be noted that, for the first time, the famous Pinsker constant representing the asymptotic efficiency property for nonparametric diffusion models was found by Dalayan and Kutoyants in [START_REF] Dalalyan | Sharp Adaptive Estimation of the Drift Function for Ergodic Diffusion[END_REF][START_REF] Dalalyan | Asymptotically Efficient Trend Coefficient Estimation for Ergodic Diffusion[END_REF] for a special weighted integral risk using very nice local time tool. In non asymptotic setting Galtchouk and Pergamenshchikov in [START_REF] Galtchouk | Sequential nonparametric adaptive estimation of the drift coefficient in diffusion processes[END_REF][START_REF] Galtchouk | Nonparametric sequential estimation of the drift in diffusion via model selection[END_REF][START_REF] Galtchouk | Nonparametric sequential minimax estimation of the drift coefficient in diffusion processes[END_REF][START_REF] Galtchouk | Asymptotically efficient sequential kernel estimates of the drift coefficient in ergodic diffusion processes[END_REF] developed nonparametric sequential estimation methods for the models (1.1) on the basis of which in [START_REF] Galtchouk | Adaptive sequential estimation for ergodic diffusion processes in quadratic metric[END_REF] they calculated the Pinsker constant for the risk (1.3). It should be noted that in all the cited papers estimation problems were studied in the case of complete observations (y t ) 0≤t≤T .

In practice, usually for the models (1.1) the observations are accessible only at the discrete time moments (1.2). A natural question arises about properties of estimators based on discrete observations. The nonparametric estimation based on discrete time observations for models of the form (1.1) was considered firstly for estimating the unknown diffusion coefficient b(•) on a fixed interval [0, T ], when the observation frequency goes to zero, (see, for example, [START_REF] Florens-Zmirou | On estimating the diffusion coefficient from discret observations[END_REF], [START_REF] Genon-Catalot | Nonparametric estimation of the diffusion coefficient by wavelets methods[END_REF], [START_REF] Hoffmann | Adaptive estimation in diffusion processes[END_REF], [START_REF] Jacod | Non-parametric kernel estimation of the coefficient of a diffusion[END_REF] and the references therein). Later, in [START_REF] Gobet | Nonparametric estimation of scalar diffusions based on low frequency data[END_REF] kernel estimates of the drift and diffusion coefficients were studied for the reflected processes (1.1) with the values in the interval [0, 1]. Minimax optimal convergence rates are found as the sample size goes to infinity. As to the estimation in the ergodic case, it should be noted that firstly a sequential procedure was proposed in [START_REF] Hoffmann | Adaptive estimation in diffusion processes[END_REF] for nonparametric estimating the drift coefficient of the process (1.1) in the integral metric. Some upper and lower asymptotic bounds were found for the L p -risks. Later, in the paper [START_REF] Comte | Nonparametric estimation for a discretely observed integrated diffusion model[END_REF] a non-asymptotic oracle inequality was obtained for a special empiric quadratic risk defined as a function of the observations at the discrete time moments. In the asymptotic setting, when the observation frequency goes to zero and the length of the observation time interval tends to infinity, the constructed estimators reach the minimax optimal convergence rates. But, unfortunately, neither the optimal convergence rate and nor efficiency property were established in [START_REF] Comte | Nonparametric estimation for a discretely observed integrated diffusion model[END_REF].

Key ideas

Our approach is based on the sequential analysis methods developed in the papers [START_REF] Galtchouk | Sequential nonparametric adaptive estimation of the drift coefficient in diffusion processes[END_REF][START_REF] Galtchouk | Nonparametric sequential minimax estimation of the drift coefficient in diffusion processes[END_REF][START_REF] Galtchouk | Asymptotically efficient sequential kernel estimates of the drift coefficient in ergodic diffusion processes[END_REF] for nonparametric estimation problems. This approach makes possible to replace the random denominator by a conditional constant in a sequential Nadaraya-Watson estimator. Let us recall that in the case of complete observations (that is, when a whole trajectory is observed) the sequential estimator efficiency was proved by making use of a uniform concentration inequality (see [START_REF] Galtchouk | Uniform concentration inequality for ergodic diffusion processes[END_REF]), besides an indicator kernel estimator. As it turns out later in [START_REF] Galtchouk | Adaptive sequential estimation for ergodic diffusion processes in quadratic metric[END_REF], the efficient kernel estimate in the above given sense provides constructing a selection model adaptive procedure that appears ef-ficient in the quadratic metric. Therefore, in order to realize this program (i.e. from efficient pointwise estimators to an efficient L 2 -estimator) in the case of discrete time observations, one needs to use a suitable concentration inequalities. Such concentration inequalities are obrained in [START_REF] Galtchouk | Uniform concentration inequality for ergodic diffusion processes observed at discrete times[END_REF] through the uniform geometric ergodicity method for the process (1.1) developed in [START_REF] Galtchouk | Geometric ergodicity for classes of homogeneous Markov chains[END_REF] which provides non asymptotic uppers bounds uniformly over functions S(•) and b(•) for the convergence rate in the ergodic theorem. Using this tool we can show that the corresponding weight least square estimator for S in (1.1) setting on the regularity parameters is efficient for the risk (1.3) in the Pinsker sense [START_REF] Pinsker | Optimal filtration of square integrable signals in gaussian noise[END_REF]. Finally, using the sharp oracle inequalities obtained in [START_REF] Galtchouk | Non asymptotic sharp oracle inequalities for high dimensional ergodic diffusion models[END_REF] we can estimate asymptotically from above the risk of the model selection procedure with the risk efficient weight least square estimator and we obtain the efficiency property in the adaptive sense, i.e. don't using the regularity of the function S.

Plan of the paper

The paper is organized as follows. In Section 2 we describe the functional classes. In Section 3 a sequential estimator of the drift coefficient is constructed. In Section 4 we introduce a regression model based on the above sequential estimator. In Section 5 we construct the model selection procedure and announce the corresponding oracle inequalities. The main results on asymptotic efficiency are formulated in Section 6. In Section 7 we study main asymptotic properties of the basic regression model. In Section 8 we study the efficiency property for non adaptive setting, i.e. in the case when the regularity of S and the Pinsker variance are known. In Section 9 we give the proofs for main results. In the Appendix we give all necessary technical results.

Main Conditions

In the paper we consider the estimation problem for the drift S on the interval [x 0 , x 1 ], where x 0 < x 1 are some arbitrary fixed points. In order to obtain a reliable estimator of S, it is necessary to impose some conditions on this function which are similar to the periodicity of the deterministic signal in the white noise model. One of conditions which is sufficient for this purpose is the assumption that the process (y t ) t≥0 in (1.1) returns to any vicinity of each point x ∈ [x 0 , x 1 ] infinite times. The ergodicity provides this property, when the coefficients of equation are known. In the case of unknown coefficients, one needs to impose a uniform ergodicity property. To obtain the uniform ergodicity property for the process (1.1) we use the functional class introduced in [START_REF] Galtchouk | Efficient pointwise estimation based on discrete data in ergodic nonparametric diffusions[END_REF], i.e. for any fixed L ≥ 1, M > 0 and

x * > |x 0 | + |x 1 | we set Σ L,M = S ∈ C 1 (R) : sup |x|≤x * |S(x)| + | Ṡ(x)| ≤ M , -L ≤ inf |x|≥x * Ṡ(x) ≤ sup |x|≥x * Ṡ(x) ≤ -1/L . (2.1)
Here and in the sequel we denote by ḟ and f the correspoding derivatives. Moreover, for some fixed parameters 0

< b min ≤ b max < ∞ we denote by B the class of functions b from C 2 (R) such that b min ≤ inf x∈R |b(x)| ≤ sup x∈R max |b(x)| , | ḃ(x)| , | b(x)| ≤ b max . (2.2)
Now we set

Θ = Σ L,M × B = (S, b) : S ∈ Σ L,M and b ∈ B . (2.3) 
It is easy to see that the functions from Σ L,M are uniformly bounded on [x 0 , x 1 ], i.e. s * = sup

x 0 ≤x≤x 1 sup S∈Σ L,M S 2 (x) < ∞ . (2.4)
It should be noted that, for any ϑ ∈ Θ, (see, for example, [START_REF] Galtchouk | Existence and uniqueness of a solution for stochastic equations with respect to semimartingales[END_REF]) the equation (1.1) has a unique strong solution and, moreover, there exists an invariant density for the process (1.1) which is defined as

q ϑ (x) = R b -2 (z) e S(z) dz -1 b -2 (x) e S(x) , (2.5) 
where S(x) = 2

x 0 b -2 (v)S(v)dv (see,e.g., [START_REF] Gihman | Stochastic differential equations[END_REF], Ch.4, 18, Th2). It is easy to see that this density is uniformly bounded on the class (2.3) and bounded away from zero on the interval [-x * , x * ] :

0 < q * = inf |x|≤x * inf ϑ∈Θ q ϑ (x) ≤ sup x∈R sup ϑ∈Θ q ϑ (x) = q * < +∞ (2.6)
We need the following condition for the observation frequency.

A 1 ) The frequency δ in the observations (1.2) has the following form

δ = δ T = 1 (T + 1)l T , (2.7) 
where the function l T is such that,

lim T →∞ l T ln T = +∞ . (2.8)
For example, one can take l T = (ln T ) 1+ι for some ι > 0.

Remark 2.1. Note that we consider the efficient estimation problem only for the drift function S, i.e. the diffusion coefficient b is considered as a nuisance parameter.

Point-wise estimators

In order to obtain a reliable estimator of the function S on the interval [x 0 , x 1 ] we need some efficient point-wise estimators of this function. To give such estimators, we begin with the partition of the interval [x 0 , x 1 ] by points (z k ) 0≤k≤n defined as

z k = x 0 + k(x 1 -x 0 ) n , (3.1) 
where n = n(T ) is an integer-valued function of T such that lim

T →∞ n(T ) √ T = 1 . (3.2)
We can take, for example,

n = n(T ) = 2 √ T 2 + 1 , (3.3) 
where [x] is the integer part of the number x. To construct an efficient estimation procedure for S(z k ), at any point z k , we need to use some estimators of the invariant density q ϑ (•) and the squared diffusion coefficient b 2 (•). To this end, we will estimate these both functions by making use of the first N 0 observations, i.e. (y t j ) 1≤j≤N 0 . We set

N 0 = [N γ (T )] (3.4)
where 5/6 < γ < 1.

Estimation of the invariant density

To estimate the density q ϑ we will make use of the following kernel estimator

q(z k ) = 1 2 N 0 h 0 N 0 j=1 χ j,k (h 0 ) , (3.5) 
where

h 0 = h 0 (T ) = T -1/2 0 , T 0 = δN 0 , χ j,k (h 0 ) = χ y t j-1 -z k h 0 and χ(y) = 1 {|y|≤1} .
Furthermore, we define a truncated estimator

q(z k ) =          (υ T ) 1/2 , if q(z k ) < (υ T ) 1/2 ; q(z k ) , if (υ T ) 1/2 ≤ q(z k ) ≤ (υ T ) -1/2 ; (υ T ) -1/2 , if q(z k ) > (υ T ) -1/2 , (3.6) 
where υ T is a strictly positive function of T verifying the following condition.

A 2 ) Assume, that lim

T →∞ υ T + ln T T (υ T ) 2 + ln T l T (υ T ) 5 = 0 . (3.7)
For example, one can take υ T = ln -ι (T + 1) and l T ≥ ln 1+6ι T , for some ι > 0.

Proposition 3.1. Assume that the conditions A 1 )-A 2 ) hold. Then, for any x 0 < x 1 and for any a > 0 lim

T →∞ T a max x 0 ≤x≤x 1 sup ϑ∈Θ k,r P ϑ (| q T (x) -q ϑ (x)| > υ T ) = 0 .
This proposition is shown in [START_REF] Galtchouk | Efficient pointwise estimation based on discrete data in ergodic nonparametric diffusions[END_REF].

Estimation of the squared diffusion coefficient

To estimate the squared diffusion coefficient b 2 (z k ) we use the following sequential procedure. First we define the sample size for this procedure :

τ * ,k = inf{j ≥ 1 : j l=1 χ l,k (h 0 ) ≥ H * } ∧ N 0 , (3.8) 
where H * = h 0 N 0 / ln(T + 1) . Then we set

b k = τ * ,k j=1 χ j,k (h 0 )(y t j -y t j-1 ) 2 δ H * 1 Γ * ,k , (3.9) 
where Γ * ,k = { N 0 j=1 χ j,k (h 0 ) ≥ H * }. This estimator satisfies the following property. Proposition 3.2. For any a > 0, lim

T →∞ sup ϑ∈Θ max 1≤k≤n T γ-1/2-a E ϑ | b k -b 2 (z k )| = 0 . (3.10)
The proof is given in [START_REF] Galtchouk | Non asymptotic sharp oracle inequalities for high dimensional ergodic diffusion models[END_REF].

Remark 3.1. Note that in the case of known diffusion coefficient b(•), we can take b k = b 2 (z k ) .

Point-wise estimation of the drift coefficient

Now we estimate S(z k ), at every point z k , by making use of the observations (y t j ) N 0 +1≤j≤N . To this end we use the sequential kernel estimator from [START_REF] Galtchouk | Asymptotically efficient sequential kernel estimates of the drift coefficient in ergodic diffusion processes[END_REF] with the indicator kernel function χ(y) = 1 {|y|≤1} and the duration of observations given by the stopping time

τ k = inf{l ≥ N 0 + 1 : l j=N 0 +1 χ j,k (h) ≥ H k } , (3.11) 
where the bandwidth h = (x 1 -x 0 )/2n,

χ j,k (h) = χ y t j-1 -z k h 1 {1≤j≤N } + 1 {j>N }
and H k is some positive random threshold which will be specified later. It is clear that τ k < ∞ a.s., for any H k > 0. Now, we define the correction coefficient 0 < κ k ≤ 1 as

τ k -1 j=N 0 +1 χ j,k (h) + κ k χ τ k ,k (h) = H k . (3.12)
Moreover, using this coefficient we introduce the following weight sequence

κ j,k = 1 {j<τ k } + κ k 1 {j=τ k } . (3.13)
It should be noted, that for any j ≥ 1 the random variables κ k,j are G j-1measurable, where G j = σ y t l , 0 ≤ l ≤ j . Now we define the sequential estimator for S(z k ) as

S * k = 1 δH k τ k j=N 0 +1 κ j,k χ j,k (h)∆y t j 1 Γ k , (3.14) 
where ∆y t j = y t j -y t j-1 and

Γ k = {τ k ≤ N } . (3.15)
By the same way used in the paper [START_REF] Galtchouk | Efficient pointwise estimation based on discrete data in ergodic nonparametric diffusions[END_REF] to choose the threshold H k , we use the truncated estimator q(z k ) given in (3.6) and we set

H k = h(N -N 0 )(2 q(z k ) -υ T ) . (3.16)
It should be noted that, as established in [START_REF] Galtchouk | Sequential nonparametric adaptive estimation of the drift coefficient in diffusion processes[END_REF], this form for H k provides the optimal convergence rate.

Regression model

In order to obtain an oracle inequality for discrete time data, we shall pass to a regression model by the same way as in [START_REF] Galtchouk | Adaptive sequential estimation for ergodic diffusion processes in quadratic metric[END_REF].

Denote G * = ∩ n k=1 Γ k and Y k = S * k 1 G * . (4.1)
By making use of (1.1) and (3.14) we define a nonparametric regression model on the set G * :

Y k = S(z k ) + g k + σ k ξ k , σ k = b(z k ) δH k , (4.2) 
where

g k = 1 δH k τ k j=N 0 +1 κ j,k χ j,k (h) t j t j-1 S(y u ) du -S(z k ) + 1 δH k τ k j=N 0 +1 κ j,k χ j,k (h) t j t j-1 (b(y s ) -b(z k ))dW s (4.3)
and

ξ k = 1 δH k τ k j=N 0 +1 κ j,k χ j,k (h)∆W t j . (4.4)
Note that the coefficients (σ l ) 1≤l≤n are random variables and using their definitions one can obtain the following bounds

σ 0, * ≤ min 1≤l≤n σ 2 l ≤ max 1≤l≤n σ 2 l ≤ σ 1, * , (4.5) 
where

σ 0, * = υ T b min δN h and σ 1, * = b max υ T δ(N -N 0 )h .
We estimate the parameter σ 2 l as follows:

σ l = b l δH l , (4.6) 
where b l is the estimator of the squared diffusion coefficient b 2 (z l ) defined in (3.9). In order to obtain the oracle inequality, we need to study the properties of the last estimator. To this end we set *

T = n max 1≤l≤n E ϑ | σ l -σ 2 l | . (4.7)
Proposition 4.1. Assume that the conditions A 1 ) -A 2 ) hold. Then, for any a > 0, lim

T →∞ T γ-1/2-a * T = 0 . (4.8)
This proposition is proved in [START_REF] Galtchouk | Non asymptotic sharp oracle inequalities for high dimensional ergodic diffusion models[END_REF].

Model selection

First we choose a basis (φ j ) j≥1 in L 2 ([x 0 , x 1 ]) such that, for any 1 ≤ i, j ≤ n,

(φ i , φ j ) n = x 1 -x 0 n n l=1 φ i (z l )φ j (z l ) = 1 {i=j} . (5.1)
For example, one can take the trigonometric basis defined as φ 1 (x) ≡ 1/ √ x 1 -x 0 and, for j ≥ 2,

φ j (x) = 2 x 1 -x 0    cos(2π[j/2] l 0 (x)) for even j ; sin(2π[j/2]l 0 (x)) for odd j , (5.2)
where [a] denotes the integer part of a and l 0 (x) = (x -x 0 )/(x 1 -x 0 ). Note that if n is odd, then this basis is orthonormal for the empirical inner product, i.e. satisfies the property (5.1). In the sequel, we assume that the n is odd, i.e. as in (3.3). By making use of this property we define the discrete Fourier representation for S on the sieve (3.1), i.e.,

S(z

k ) = n j=1 θ j,n φ j (z k ) , 1 ≤ k ≤ n , (5.3) 
where

θ j,n = (S, φ j ) n = x 1 -x 0 n n l=1 S(z l )φ j (z l ) .
Moreover, using the regression model (4.2) we estimate these coefficients as

θ j,n = (Y, φ j ) n = x 1 -x 0 n n l=1 Y l φ j (z l ) . (5.4) 
By the model (4.2), we obtain on the set G *

θ j,n = θ j,n + ζ j,n , ζ j,n = g j,n + x 1 -x 0 n ξ j,n , (5.5) 
where

ξ j,n = x 1 -x 0 n n l=1 σ l ξ l φ j (z l ) , g j,n = x 1 -x 0 n n l=1 g l φ j (z l ) .
We estimate the values S(z k ), 1 ≤ k ≤ n, by the weighted least squares estimators

S λ (z k ) = n j=1 λ(j) θ j,n φ j (z k ) , 1 ≤ k ≤ n , (5.6) 
where the weight vector λ = (λ(1), . . . , λ(n)) belongs to some finite set Λ from [0, 1] n . In the sequel, we denote by ν the cardinal number of the set Λ, ν = card(Λ), which is a function of T , i.e. ν = ν T . Moreover, we set the norm for Λ as

Λ * = max λ∈Λ n j=1 λ(j) (5.7)
which can be a function of T , i.e. Λ * = Λ * (T ). We assume that the basis functions and the weight set Λ satisfy the following condition.

A 3 ) For any a > 0, lim

T →∞ ν T T a = 0 and lim T →∞ Λ * (T ) T 1/3+a = 0 . (5.8)
To estimate the function S on the interval [x 0 , x 1 ], we use the step-function approximation, i.e.,

S λ (x) = n l=1 S λ (z l )1 {z l-1 <x≤z l } , x ∈ [x 0 , x 1 ] . (5.9) 
Now one needs to choose a cost function in order to define an optimal weight λ ∈ Λ. A best candidate for the cost function should be the empirical squared error given by the relation

Err n (λ) = S λ -S 2 n → min . In our case, the empirical squared error is equal to

Err n (λ) = n j=1 λ 2 (j) θ 2 j,n -2 n j=1 λ(j) θ j,n θ j,n + n j=1 θ 2 j,n . (5.10) 
Since coefficients θ j,n are unknown, we need to replace the term θ j,n θ j,n by some estimator which we choose as

θ j,n = θ 2 j,n - x 1 -x 0 n σ j,n and σ j,n = x 1 -x 0 n n l=1 σ l φ 2 j (z l ) , (5.11) 
where σ l is the estimator for σ 2 l defined in (4.6). Note that if the diffusion is known, then we take in (5.11) σ j,n = σ j,n and

σ j,n = x 1 -x 0 n n l=1 σ 2 l φ 2 j (z l ) .
(5.12)

It is clear that the inequalities (4.5) imply

σ 0, * ≤ min 1≤l≤n σ l,n ≤ max 1≤l≤n σ l,n ≤ σ 1, * . (5.13) 
Now, for using the estimator (5.11) instead of θ j,n θ j,n one needs to add to the cost function a suitable penalty term that we take as

P n (λ) = x 1 -x 0 n n j=1 λ 2 (j) σ j,n (5.14) 
if the diffusion is unknown and as

P n (λ) = x 1 -x 0 n n j=1 λ 2 (j) σ j,n (5.15) 
when the diffusion is known. Finally, we use the following cost function

J n (λ) = n j=1 λ 2 (j) θ 2 j,n -2 n j=1 λ(j) θ j,n + ρ P n (λ) , (5.16) 
where the positive coefficient 0 < ρ < 1 will be specified later.

We define the model selection procedure as λ = argmin λ∈Λ J n (λ) and S * = S λ .

(5.17 For the risk (1.3), we have shown the following result in [START_REF] Galtchouk | Non asymptotic sharp oracle inequalities for high dimensional ergodic diffusion models[END_REF].

Theorem 5.1. Assume that the conditions A 1 ) -A 3 ) hold. Then, for any T ≥ 1, 0 < ρ ≤ 1/8 and ϑ ∈ Θ, the estimation procedure S * defined in (5.17) satisfies the inequality

R ϑ ( S * ) ≤ (1 + ρ) 2 (1 + 5ρ) 1 -6ρ min λ∈Λ R ϑ ( S λ ) + U ϑ,T ρ T , (5.18) 
where the remainder term U ϑ,T is such that for any a > 0, lim

T →∞ T -a sup ϑ∈Θ U ϑ,T = 0 . (5.19)
In the sequel to obtain the efficient properties for this procedure we will use the special weight coefficients introduced in [START_REF] Galtchouk | Sharp non-asymptotic oracle inequalities for nonparametric heteroscedastic regression models[END_REF][START_REF] Galtchouk | Adaptive asymptotically efficient estimation in heteroscedastic nonparametric regression[END_REF]. To this end we consider a 2-dimensional numerical grid of the form

A = {1, . . . , k * } × {r 1 , . . . , r m * } , (5.20) 
where r i = iε and m * = [1/ε 2 ]. The both parameters k * ≥ 1 and 0 < ε ≤ 1 are some functions of T , i.e. k * = k * T and ε = ε T , such that, for any γ > 0, lim

T →∞ ε T + 1 T γ ε T + 1 k * T + k * T ln T = 0 . (5.21)
One can take, for example,

ε T = 1 ln(T + 1)
and k * = k + ln(T + 1), for some fixed k ≥ 1. For any α = (k, l) ∈ A, we introduce the weight sequence λ α = (λ α (j)) j≥1 as

λ α (j) = 1 {1≤j≤j 0 } + 1 -(j/ω α ) k 1 {j 0 <j≤ωα} , (5.22) 
where j 0 = j 0 (α) = [ω α / ln(T + 1)], ω α = ωk (lT ) 1/(2k+1) and ωk = (x 1 -x 0 ) (k + 1)(2k + 1)

π 2k k 1/(2k+1)
.

We set Λ = (λ α ) α∈A .

(5.23)

Note that, in this case, the cardinal ν of the set Λ is the function of T , i.e. ν = ν T = k * m * and the conditions (5.21) imply that, for any a > 0, lim

T →∞ ν T T a = 0 . (5.24) 
Moreover, from the definition (5.22) we can obtain that, for any α ∈ A,

n j=1 λ α (j) ≤ ω α ≤ ωk T ε T 1/3 .
Therefore, for any a > 0, lim T →∞ Λ * T 1/3+a = 0 .

(5.25)

Hence, the condition A 3 ) holds and we obtain the following result.

Theorem 5.2. Assume that the conditions A 1 ) -A 2 ) hold. Then, the model selection procedure (5.17) with the weights (5.23) satisfies the oracle inequality (5.18) with the remainder term satisfying the property (5.19), for any a > 0.

Remark 5.2. It should be noted that similarly to [START_REF] Galtchouk | Adaptive sequential estimation for ergodic diffusion processes in quadratic metric[END_REF], we will use the inequality (5.18) to provide the efficiency property in the adaptive setting. This means that without using the regularity properties of the unknown function S we can estimate from above the risk for the model selection procedure by the risk for the efficient estimation procedure constructed on the regularity properties of the function S. The upper bound for the risk of the model selection procedure follows from the sharp oracle inequality.

Main results

In order to study the asymptotic efficiency of estimators we use a suitable class of drift coefficients S. To this end we define the following functional Sobolev ball

W 0 k,r = {f ∈ C k 0 ([x 0 , x 1 ]) : k j=0 f (j) 2 ≤ r} , (6.1) 
where r > 0 and the integer k ≥ 1 are some parameters, C k 0 ([x 0 , x 1 ]) is the space of k times differentiable functions f : R → R such that

f (i) (x) = 0 , for 0 ≤ i ≤ k -1 and x / ∈ [x 0 , x 1 ] .
Moreover, let S 0 be a fixed continuously differentiable function from Σ L,M such that S 0 (x) = 0 for x 0 ≤ x ≤ x 1 . We set

W k,r = S 0 + W 0 k,r and Θ k,r = W k,r × B . (6.2) 
Note that one can represent the functional class W 0 k,r as an ellipse in L 2 ([x 0 , x 1 ]) with trigonometric basis (φ j ) j≥0 :

W 0 k,r = {f ∈ C k 0 ([x 0 , x 1 ]) : ∞ j=0 a j θ 2 j ≤ r} , (6.3) 
where θ j = (f, φ j ) =

x 1 x 0 f (x)φ j (x)d x and

a j = k i=0 2π[j/2] x 1 -x 0 2i .
In order to formulate our asymptotic results, we define, for any ϑ ∈ Θ k,r , the following normalizing coefficient γ(ϑ)

γ(ϑ) = l * J k * ϑ , k * = 2k 2k + 1 , (6.4) 
where

l * = (2k + 1)r 1-k * k π(k + 1)(2k + 1) k * and J ϑ = x 1 x 0 b 2 (x) q ϑ (x) d x . (6.5)
It is well known that, for any S ∈ Θ k,r , the optimal rate of convergence of estimators is T -2k/(2k+1) (see, for example, [START_REF] Galtchouk | Nonparametric sequential estimation of the drift in diffusion via model selection[END_REF]). Now we denote by Ξ T the set of all possible estimators of S which are measurable with respect to the σ-field σ{y t , 0 ≤ t ≤ T }, i.e. based on the observations (y t ) 0≤t≤T . Theorem 6.1. For any integer k ≥ 1 and r > 0, the quadratic risk R ϑ ( S) admits the following asymptotic lower bound lim inf

T →∞ T k * inf S∈Ξ T sup ϑ∈Θ k,r υ(ϑ)R ϑ ( S) ≥ l * , where υ(ϑ) = J -k * ϑ .
Assume now, that the penalty parameter ρ in (5.16) is a function of T , i.e. ρ = ρ T such that, for any a > 0, lim T →∞ ρ T = 0 and lim

T →∞ T a ρ T = ∞ . (6.6)
We can take, for example, ρ T = (6 + ln(T + 1)) -1 .

Theorem 6.2. Assume that the conditions A 1 ) -A 2 ) hold. Then, for any integer k ≥ 2 and r > 0, the quadratic risk of the estimation procedure S * defined through the trigonometric basis (5.2) in (5.17) and (5.23) with the parameter ρ of the form (6.6) satisfies the following upper bound lim sup

T →∞ T k * sup ϑ∈Θ k,r υ(ϑ)R ϑ ( S * ) ≤ l * .
Theorems 6.1 -6.2 imply immediately the efficiency property : Theorem 6.3. Assume that the conditions A 1 ) -A 2 ) hold. Then the estimation procedure S * defined through the trigonometric basis (5.2) in (5.17) and (5.23) with the parameter ρ of the form (6.6) is asymptotically efficient, i.e.

lim T →∞ inf S∈Ξ T sup ϑ∈Θ k,r υ(ϑ)R ϑ ( S) sup ϑ∈Θ k,r υ(ϑ)R ϑ ( S * ) = 1 .
Remark 6.1. It should be noted that from Theorems 6.1 -6.2 it follows that the function (6.4) is the Pinsker constant, which is calculated for the first time for the model (1.1). For the model (1.1) with the diffusion coefficient b(•) ≡ 1 the Pinsker constant was calculated in [START_REF] Galtchouk | Adaptive sequential estimation for ergodic diffusion processes in quadratic metric[END_REF] which in this case coincides with (6.4). Note also that the parameter l * is the well -known Pinsker constant for the "signal plus white noise" model obtained in [START_REF] Pinsker | Optimal filtration of square integrable signals in gaussian noise[END_REF]. Therefore, the Pinsker constant for the model (1.1) is obtained by multiplying the constant from [START_REF] Pinsker | Optimal filtration of square integrable signals in gaussian noise[END_REF] by the Pinsker variance (6.5) in the power k * .

7 Properties of the regression model (4.2)

First we recall the main properties of the model (4.2) from [START_REF] Galtchouk | Non asymptotic sharp oracle inequalities for high dimensional ergodic diffusion models[END_REF].

The random variables (ξ k ) 1≤k≤n from (5.5), satisfy the following property.

Proposition 7.1. The random variables (ξ k ) 1≤k≤n are N (0, 1) i.i.d. conditionally to the σ-field G N 0 .

Proposition 7.2. Assume that the conditions A 1 ) -A 2 ) hold. Then, for any a > 0, lim

T →∞ T a sup ϑ∈Θ P ϑ (G c * ) = 0 . (7.1) 
These propositions are proved in [START_REF] Galtchouk | Non asymptotic sharp oracle inequalities for high dimensional ergodic diffusion models[END_REF]. Now, we study the heteroscedastic property in the model (4.2). To this end we set

s n = (x 1 -x 0 ) n l=1 σ 2 l , (7.2) 
where the variances (σ l ) 1≤l≤n are defined in (4.2).

Proposition 7.3. Assume that the condition A 1 ) holds. Then

lim T →∞ sup ϑ∈Θ k,r E ϑ s n - J ϑ x 1 -x 0 = 0 . (7.3) 
Proof. Using the definition of σ l in (4.2) and taking account of the form of h given in (3.11), we can represent the quantity s n as

s n = n l=1 nb 2 (z l ) δ h (N -N 0 )(2 q T (z l ) -υ T ) (z l -z l-1 ) = 1 x 1 -x 0 n l=1 b ϑ (z l )(z l -z l-1 ) + R 1 (ϑ) + R 2 (ϑ) , (7.4) 
where

b ϑ (x) = b 2 (x)/q ϑ (x), R 1 (ϑ) = 1 x 1 -x 0 n 2 δ (N -N 0 ) -1 n l=1 b ϑ (z l ) (z l -z l-1 )
and

R 2 (ϑ) = n l=1 nb 2 (x l ) δ h (N -N 0 ) 1 2 q T (z l ) -υ T - 1 2q ϑ (z l ) (z l -z l-1 ) .
First, note, that the function b ϑ (•) and its derivative are uniformly bounded, i.e. sup

ϑ∈Θ k,r max x 0 ≤z≤x 1 b ϑ (z) + | b ϑ (z)| < ∞ . (7.5) 
Therefore, lim

T →∞ sup ϑ∈Θ k,r n l=1 b ϑ (z l )(z l -z l-1 ) -J ϑ = 0 .
As the second term (7.4), note that, in view of the condition (3.2), lim

T →∞ n 2 δ (N -N 0 ) = 1 .
Therefore, the property (7.5) provides that lim

T →∞ sup ϑ∈Θ k,r |R 1 (ϑ)| = 0 .
Moreover, taking into account that 2 q T (z l ) -υ T > υ

1/2
T , we obtain, for sufficiently large T , that for some C > 0

|R 2 (ϑ)| ≤ C n l=1 υ -1/2 T (| q T (z l ) -q ϑ (z l )|) (z l -z l-1 ) + √ υ T .
Note here, that for any 1 ≤ l ≤ n and for sufficiently large T ,

υ -1/2 T E ϑ | q T (z l ) -q ϑ (z l )| ≤ 2υ -1 T P ϑ (| q T (z l ) -q ϑ (z l )| > υ T ) + √ υ T .
Therefore, due to Proposition 3.1, lim

T →∞ sup ϑ∈Θ k,r |R 2 (ϑ)| = 0 .
Hence Proposition 7.3.

Non adaptive estimation

We start with the non adaptive case, i.e. we assume that the parameters k, r and the function J ϑ are known. In this case, we use the weight estimator (5.9) from the family (5.23)

S = S λ and λ = λ α , (8.1) 
where α = (k, l), l = l T = [r(ϑ)/ε] ε and r(ϑ) = r/J ϑ . We remind that ε = ε T = 1/ ln(T + 1). Firstly, we need to study the asymptotic properties of the weights λ. To this end we set

Υ T (ϑ) = n j=1 (1 -λ(j)) 2 θ 2 j,n + J ϑ (x 1 -x 0 )n 2 n j=1 λ 2 (j) . (8.2) 
Proposition 8.1. For any k ≥ 2 and r > 0, lim sup

T →∞ T k * sup ϑ∈Θ k,r υ(ϑ) Υ T (ϑ) ≤ l * . (8.3) 
Proof. First of all, note that 0 < inf

ϑ∈Θ k,r J ϑ ≤ sup ϑ∈Θ k,r J ϑ < ∞ . (8.4) 
This implies directly that lim

T →∞ sup ϑ∈Θ k,r l T r(ϑ) -1 = 0 , (8.5) 
where r(ϑ) = r/J ϑ . Moreover, note that

T k * υ(ϑ) Υ T (ϑ) ≤ T k * υ(ϑ) S T + (J ϑ ) 1-k * T 1-k * (x 1 -x 0 ) n j=1 λ 2 (j) , (8.6) 
where S T = n j=1 (1 -λ(j)) 2 θ 2 j,n . We decompose S T as

S T = S 1,T + S 2,T with S 1,T = [ ω] j=j 0 +1 (1 -λ(j)) 2 θ 2 j,n and S 2,T = n j=[ ω]+1 θ 2 j,n .
Let us recall that ω = ω α = ωk T l T

1/(2k+1)

.

Lemma A.2 yields

S 1,T ≤ (1 + ε) [ ω] j=j 0 (1 -λ(j)) 2 θ 2 j + 2r(1 + ε -1 ) ω n 2k ,
and Lemma A.3 yields

S 2,T ≤ (1 + ε) j> ω θ 2 j + (1 + ε -1 ) r n 2 ω 2(k-1) .
These inequalities imply that

S T ≤ (1 + ε)S * T + 2r(1 + ε -1 ) ωT , (8.7) 
where

S * T = j≥1 (1 -λ(j)) 2 θ 2 j = j≤ ω (1 -λ(j)) 2 θ 2 j + j> ω θ 2 j := S * 1,T + S * 2,T and ωT = ω n 2k + 1 n 2 ω 2(k-1) . Note, that T k * υ(ϑ)S * 1,T = T k * υ(ϑ) [ ω] j=j 0 (1 -λ(j)) 2 θ 2 j = υ(ϑ) ω2k k ( l T ) k * [ ω] j=j 0 j 2k θ 2 j ≤ υ(ϑ) ω2k k ( l T ) k * j 0 [ ω] j=j 0 a j θ 2 j ,
where n = sup j≥n j 2k /a j . It is clear that

lim n→∞ n = (x 1 -x 0 ) 2k π 2k .
Therefore, from (8.5) we obtain that lim sup

n→∞ sup ϑ∈Θ k,r T k * υ(ϑ) S * 1,T [ ω] j=j 0 a j θ 2 j ≤ (x 1 -x 0 ) 2k π 2k ω2k k r k * = k (2k + 1)(k + 1)rπ k * .
Futher note, that for any 0 < ε < 1 and for sufficiently large T ,

S * 2,T = j> ω θ 2 j ≤ (x 1 -x 0 ) 2k π 2k ω 2k j> ω a j θ 2 j = (x 1 -x 0 ) 2k π 2k (T l T ) k * ω2k k j> ω a j θ 2 j ≤ (1 + ε) J k * ϑ (x 1 -x 0 ) 2k π 2k (rT ) k * ω2k k j> ω a j θ 2 j .
This inequality implies lim sup

n→∞ sup ϑ∈Θ k,r T k * υ(ϑ) S * 2,T j> ω a j θ 2 j ≤ (x 1 -x 0 ) 2k π 2k ω2k k r k * = k (2k + 1)(k + 1)rπ k * .
So, taking into account in (8.7) that for k ≥ 2 lim

T →∞ sup S∈W k,r T k * ωT = 0 , we obtain that lim sup T →∞ sup ϑ∈Θ k,r T k * υ(ϑ) S T ≤ r 1-k * k (2k + 1)(k + 1)π k * . ( 8.8) 
Moreover, we can check directly that lim sup

T →∞ sup ϑ∈Θ k,r J 1-k * ϑ T 1-k * (x 1 -x 0 ) n j=1 λ 2 (j) ≤ u * k , (8.9) 
where

u * k = ωk r 1-k * 2k 2 (x 1 -x 0 )(2k + 1)(k + 1) = 2kr 1-k * k (2k + 1)(k + 1)π k * .
Using now (8.8) and (8.9) in (8.6) we obtain the limit equality (8.3) (5.23). Therefore, through the oracle inequality we can estimate the risk of the model selection procedure with the risk of the estimator (5.23) and, therefore, using the property (8.11) we can provide the efficiency property for the procedure (5.17).

Proofs

9.1 Proof of Theorem 6.1

First, we introduce the following auxiliary class

Θ 0 k,r = ϑ = (S, b 0 ) : S ∈ W k,r , b 0 ≡ 1 . It is clear that Θ 0 k,r ⊂ Θ k,r and sup ϑ∈Θ k,r υ(ϑ) R( S, S) ≥ sup ϑ∈Θ 0 k,r υ(ϑ) R( S, S) .
Using here Theorem 5.2 from [START_REF] Galtchouk | Adaptive sequential estimation for ergodic diffusion processes in quadratic metric[END_REF] we obtain Theorem 6.1.

Proof of Theorem 8.2

First note that, in view of Proposition 7.2, to prove this theorem it suffices to show that lim sup

T →∞ T k * sup ϑ∈Θ k,r υ(ϑ) E ϑ χ G * S -S 2 n ≤ l * . (9.1) 
Indeed, note that due to (5.3)-(5.6) on the set G * we obtain that

S -S 2 = n j=1 λ 2 (j)(θ j,n + ζ j,n ) 2 -2 λ(j)(θ j,n + ζ j,n )θ j,n + θ 2 j,n = n j=1 ( λ(j) -1) 2 θ 2 j,n + 2 λ(j)( λ(j) -1)ζ j,n θ j,n + λ 2 (j)ζ 2 j,n , (9.2) 
where θ j,n = (S , φ j ) n and λ is defined in (8.1). Taking into account that

ζ j,n = g j,n + x 1 -x 0 n ξ j,n , using the inequality 2xy ≤ x 2 + -1 y 2 , we have from (9.2) on the set G * S -S 2 n ≤ (1 + ) n j=1 (1 -λ(j)) 2 θ 2 j,n + B 1 + 1 + 2 B 2 + 2 x 1 -x 0 n n j=1 λ(j)( λ(j) -1)θ j,n ξ j,n , (9.3) 
where

B 1 = x 1 -x 0 n n j=1 λ 2 (j)ξ 2 j,n and B 2 = n j=1 λ 2 (j)g 2 j,n . (9.4) 
Moreover, taking into account the property E ξ j,n = 0, one gets

E ϑ S -S 2 n χ G * ≤ (1 + ) n j=1 (1 -λ(j)) 2 θ 2 j,n + E ϑ B 1 + 1 + 2 E ϑ B 2 χ G * -2E ϑ B 3 χ G c * , (9.5) 
where

B 3 = x 1 -x 0 n n j=1 λ(j)( λ(j) -1)ξ j,n θ j,n . Note that (x 1 -x 0 )E ϑ ξ 2 j,n |G N 0 = s n n + x 1 -x 0 n n l=1 σ 2 l φ j (z l ) (9.6) 
where s n is defined in (7.2) and φ j (z l ) = (x 1 -x 0 )φ 2 j (z l ) -1. Setting now

s n = s n - J ϑ x 1 -x 0 ,
we represent the terme E ϑ B 1 as

E ϑ B 1 = 1 n 2 E ϑ n j=1 λ 2 (j) s n + (x 1 -x 0 ) n l=1 σ 2 l φ j (x l ) = J ϑ (x 1 -x 0 )n 2 n j=1 λ 2 (j) + B 11 + B 12 , (9.7) 
where

B 11 = 1 n 2 n j=1 λ 2 (j) E ϑ s n , B 12 = x 1 -x 0 n 2 E ϑ n j=1 λ 2 (j) n l=1 σ 2 l φ j (x l ) .
Now from (9.5) and (9.7) we obtain that

E ϑ S -S 2 n χ G * ≤ (1 + ) Υ T + B 11 + B 12 + 1 + 2 E ϑ B 2 χ G * -2E ϑ B 3 χ G c * . ( 9.8) 
The property (8.9) and Proposition 7.3 yield for the terme B 11 lim sup

T →∞ T k * sup ϑ∈Θ k,r | B 11 | = 0 .
As to the term B 12 , due to Lemma A.4, one has

|B 12 | ≤ x 1 -x 0 n 2 E ϑ n l=1 σ 2 l n j=1 λ 2 (j)φ j (x l ) ≤ 2 k+1 x 1 -x 0 n 2 E ϑ n l=1 σ 2 l =, 2 k+1 E ϑ s n n 2 . (9.9)
Therefore, in view of Proposition 7.3, we obtain that lim sup

T →∞ T k * sup ϑ∈Θ k,r |B 12 | = 0 .
Moreover, by the definition,

B 2 = n j=1 λ 2 (j)g 2 j,n
and g j,n = (g, φ j ) n .

Therefore,

B 2 ≤ n j=1 g 2 j,n = g 2 n and E ϑ 1 G * B 2 ≤ E ϑ 1 G * g 2 n = x 1 -x 0 n n k=1 E ϑ 1 G * g 2 k .
It is easy to verify (see [START_REF] Galtchouk | Non asymptotic sharp oracle inequalities for high dimensional ergodic diffusion models[END_REF]) that

sup ϑ∈Θ max 1≤ k≤ n E ϑ 1 G * g 2 k ≤ M 2 h 2 + o(1/T ) .
These bounds yield that lim

T →∞ T 2k 2k+1 sup ϑ∈Θ k,r E ϑ 1 G * B 2 = 0 . (9.10)
To estimate the last term in (9.5) note that through Lemma A.5 we can estimate the square of the expectation of this term as

E ϑ B 2 3 ≤ σ 1, * x 1 -x 0 n n j=1 θ 2 j,n = σ 1, * (x 1 -x 0 ) n S 2 n .
Therefore, 9.3 Proof of Theorem 6.2

E ϑ 1 G c *
Taking into account that for sufficiently large T the estimator (8.1) belongs to the family ( S λ ) λ∈Λ indexed by the set (5.23), we obtain that lim sup

T →∞ T k * E ϑ S * -S 2 ≤ lim sup T →∞ T k * E ϑ S λ -S 2 .
So, Theorem 8.2 implies immediately Theorem 6.2.
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A Appendix

A.1 Properties of the trigonometric basis. where c j are some constants and the sequence (z j ) 0≤j≤n is given in (3.1).

Then, for any ε > 0, the function ∆ = f -g satisfies the following inequalities

∆ 2 ≤ (1 + ε) ∆ 2 n + 1 + 1 ε ḟ 2 n 2 (x 1 -x 0 ) 2 ,
and

∆ 2 n ≤ (1 + ε) ∆ 2 + 1 + 1 ε ḟ 2 n 2 (x 1 -x 0 ) 2 .
The proof is given in Lemma A.2 from [START_REF] Konev | Robust model selection for a semimartingale continuous time regression from discrete data[END_REF].

Lemma A.2. For any 1 ≤ j ≤ n, the trigonometric Fourier coefficients (θ j,n ) 1≤j≤n of the functions S from the class W k,r satisfy, for any ε > 0, the following inequality By applying Lemma A.1 with f = ∆ n , g = 0, we obtain that

∆ n 2 n ≤ 2 ∆ n 2 + 2 ∆n 2 (x 1 -x 0 ) 2 n 2 = 2 l>n θ 2 l + 2 ∆n 2 (x 1 -x 0 ) 2 n 2 ≤ 2ra -1 n+1 + 2 ∆n 2 (x 1 -x 0 ) 2 n 2 .
Taking account of (6.3) and that 2[l/2] ≥ l -1 for l ≥ 2, we have

∆ n 2 n ≤ 2r(x 1 -x 0 ) 2k π 2k n 2k + 2 ∆n 2 (x 1 -x 0 ) 2 n 2 .

A.2 Technical lemma

Lemma A.5. Let (u j ) 1≤j≤n be nonrandom sequence. Then Proof. First we denote D n = n j=1 u j ξ j,n . Now, using the definition of ξ j,n in (5.5) we obtain that

D n = x 1 -x 0 n n l=1
σ l ξ l,n n j=1 u j φ j (z l ) .

This implies

E ϑ D 2 (u) = x 1 -x 0 n E ϑ n l=1 σ 2 l ( n j=1 u j φ j (z l )) 2 ≤ σ 1, * n j=1 u 2 (j) = σ 1, * u 2 .
Hence Lemma 3.1.

) Remark 5 . 1 .

 51 It should be emphasized that if in the model (1.1) the diffusion coefficient b(•) in known, then the model selection procedure (5.17) is defined through minimazing the cost function J n (λ) with the penalty term (5.15).

|B 3 | ≤ σ 1 ,E ϑ 1

 11 * (x 1 -x 0 ) n S n P ϑ G c * and taking into account Proposition 7.2, we obtain that lim G c * |B 3 | = 0 . Therefore, using Proposition 8.1 in (9.8) we obtain Theorem 8.2.

Lemma A. 1 .

 1 Let f be an absolutely continuous [x 0 , x 1 ] → R function with ḟ < ∞ and g be [x 0 , x 1 ] → R a step-wise function of the formg(z) = n j=1 c j χ (z j-1 ,z j ] (z),

θ 2 j

 2 ,n ≤ (1 + ε) θ 2 j + (1 + ε -1 ) řk n 2k , (A.1)whereřk = 2r(π 2 + 1)(x 1 -x 0 ) 2k π 2k .Proof. First we represent the function S as the Fourier series in L 2 ([x 0 , x 1 ]) :S(x) = n l=1 θ l φ l (x) + ∆ n (x) , where ∆ n (x) = l>n θ l φ l (x) . (A.2)Making now the Fourier decomposition of S on the grid (z k ) 1≤ k≤ n with an odd n, one gets the Fourier coefficients :θ j,n = (S, φ j ) n = θ j + (∆ n , φ j ) nand, for any 0 < ε < 1,θ 2 j,n ≤ (1 + ε)θ 2 j + (1 + ε -1 ) ∆ n 2 n .

  and, hence Proposition 8.1. Now, through Proposition 8.1 we can obtain the following upper bound. It should be noted that the inequality (8.11) together with Theorem 6.1 mean that the estimator S defined by (8.1) is efficient. Unfortunately, we can't calculate this estimator, since it depends on unknown parameters k, r and J ϑ . But, this estimator belongs to the family ( S λ ) λ∈Λ with the weight vectors defined in

	Theorem 8.2. For any k ≥ 2 and r > 0, the estimator S from (8.1) satisfies
	the inequality			
	lim sup T →∞	ϑ∈Θ k,r T k * sup	υ(ϑ) E ϑ S -S 2 n ≤ l * .	(8.10)
	Note that Lemma A.1 implies the following upper bound.
	Theorem 8.3. The quadratic risk for the estimating procedure S from (8.1)
	has the following asymptotic upper bound
	lim sup T →∞	ϑ∈Θ k,r T k * sup	υ(ϑ)R( S, S) ≤ l * .	(8.11)
	Remark 8.1.			

Note here, that for any n ≥ 1,

Lemma A.3. For any n ≥ 2, 1 ≤ m < n and r > 0, the coefficients (θ j,n ) 1≤j≤n of functions S from the class W k,r satisfy, for any ε > 0, the following inequality

where

.

Proof. First we note that n j=m+1 θ 2 j,n = min

where the function ∆ m (•) is defined in (A.2). By applying Lemma A.1 with f = ∆ m , g = 0, and taking account of the inequality (A.3), we obtain the bound (A.4). Hence Lemma A.3

where φ l (x) = (x 1 -x 0 )φ 2 l (x) -1. Proof of this result is given in Lemma A.2 from [START_REF] Galtchouk | Sharp non-asymptotic oracle inequalities for nonparametric heteroscedastic regression models[END_REF].