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Efficient big data analysis for ergodic diffusion
models on the basis of discrete data. ∗

L.I. Galtchouk † S.M. Pergamenshchikov‡

Abstract

We consider a big data analysis problem for diffusion processes
in the framework of nonparametric estimation for ergodic diffusion
processes based on observations at discrete time moments in the case
when diffusion coefficients are unknown. To this end we use the model
selection method developed in [21]. In this paper through the oracle
inequalities from [21] we show that the constructed model selection
procedures are asymptotically efficient in adaptive setting, i.e. in the
case when the regularity of the drift coefficient is unknown. To this
end, for the first time for such problem, we found in the explicit form
the celebrated Pinsker constant which is the sharp lower bound for
the minimax squared accuracy normalized by the optimal convergence
rate, i.e. it provides the best potentially possible estimation accuracy.
Finally, we show that the accuracy of the model selection procedure
asymptotically coincides with this lower bound, i.e. the constructed
procedure is efficient.
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1 Introduction

1.1 Problem

In this paper we deal with the process (yt)t≥0 defined by the stochastic dif-
ferential equation

dyt = S(yt) dt+ b(yt) dWt , 0 ≤ t ≤ T , (1.1)

where (Wt)t≥0 is a standard Wiener process, the initial value y0 is a fixed
constant, S(·) is unknown drift and b(·) is unknown diffusion coefficient.
The problem is to estimate the function S(x), for x ∈ [x0,x1], on the basis
of the observations

(ytj)1≤j≤N , tj = jδ , (1.2)

where the frequency δ = δT ∈ (0, 1) and the sample size N = N(T ) are some
functions of T that will be specified later. We consider the quadratic risk
defined, for any estimator Ŝ, as

Rϑ(Ŝ) = Eϑ ‖Ŝ − S‖2 and ‖f‖2 =

∫ x1

x0

|f(x)|2dx , (1.3)

where Eϑ is the expectation with respect to the distribution of the process
(1.1) for the functions ϑ = ϑ(·) = (S(·) , b(·)).

1.2 Motivations

The main motivation for the nonparametric drift in (1.1) is given in the
papers [7, 8, 21] in which Big Data problems are studied in the framework
of the high dimension linear diffusion models, i.e. the model (1.1) with

S(x) =

q∑
j=1

θjψj(x) , (1.4)

where (ψj)1≤j≤q are known linear independent functions and the dimension
is greater than the number of observations, i.e. q > N . Indeed, such
problems are important at various applications such that stochastic opti-
mal control, finance, filtration, signal processing and etc (see, for example,
[1, 26, 32, 29, 28, 2] and the references therein). Nonparametric estimation
problems for S were studied in a number of papers in the case of complete
observations, that is when a whole trajectory (yt)0≤t≤T was observed. A suf-
ficiently complete survey one can find in [30]. It should be noted that, for
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the first time, the famous Pinsker constant representing the asymptotic ef-
ficiency property for nonparametric diffusion models was found by Dalayan
and Kutoyants in [4, 5] for a special weighted integral risk using very nice
local time tool. In non asymptotic setting Galtchouk and Pergamenshchikov
in [10, 11, 12, 13] developed nonparametric sequential estimation methods
for the models (1.1) on the basis of which in [17] they calculated the Pinsker
constant for the risk (1.3). It should be noted that in all the cited papers esti-
mation problems were studied in the case of complete observations (yt)0≤t≤T .
In practice, usually for the models (1.1) the observations are accessible only at
the discrete time moments (1.2). A natural question arises about properties
of estimators based on discrete observations. The nonparametric estimation
based on discrete time observations for models of the form (1.1) was consid-
ered firstly for estimating the unknown diffusion coefficient b(·) on a fixed
interval [0, T ], when the observation frequency goes to zero, (see, for example,
[6], [24], [25], [27] and the references therein). Later, in [23] kernel estimates
of the drift and diffusion coefficients were studied for the reflected processes
(1.1) with the values in the interval [0, 1]. Minimax optimal convergence
rates are found as the sample size goes to infinity. As to the estimation in
the ergodic case, it should be noted that firstly a sequential procedure was
proposed in [25] for nonparametric estimating the drift coefficient of the pro-
cess (1.1) in the integral metric. Some upper and lower asymptotic bounds
were found for the Lp - risks. Later, in the paper [3] a non-asymptotic or-
acle inequality was obtained for a special empiric quadratic risk defined as
a function of the observations at the discrete time moments. In the asymp-
totic setting, when the observation frequency goes to zero and the length
of the observation time interval tends to infinity, the constructed estimators
reach the minimax optimal convergence rates. But, unfortunately, neither
the optimal convergence rate and nor efficiency property were established in
[3].

1.3 Key ideas

Our approach is based on the sequential analysis methods developed in the
papers [10, 12, 13] for nonparametric estimation problems. This approach
makes possible to replace the random denominator by a conditional constant
in a sequential Nadaraya-Watson estimator. Let us recall that in the case
of complete observations (that is, when a whole trajectory is observed) the
sequential estimator efficiency was proved by making use of a uniform con-
centration inequality (see [14]), besides an indicator kernel estimator. As it
turns out later in [17], the efficient kernel estimate in the above given sense
provides constructing a selection model adaptive procedure that appears ef-
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ficient in the quadratic metric. Therefore, in order to realize this program
(i.e. from efficient pointwise estimators to an efficient L2−estimator) in the
case of discrete time observations, one needs to use a suitable concentration
inequalities. Such concentration inequalities are obrained in [18] through the
uniform geometric ergodicity method for the process (1.1) developed in [19]
which provides non asymptotic uppers bounds uniformly over functions S(·)
and b(·) for the convergence rate in the ergodic theorem. Using this tool
we can show that the corresponding weight least square estimator for S in
(1.1) setting on the regularity parameters is efficient for the risk (1.3) in the
Pinsker sense [33]. Finally, using the sharp oracle inequalities obtained in [21]
we can estimate asymptotically from above the risk of the model selection
procedure with the risk efficient weight least square estimator and we obtain
the efficiency property in the adaptive sense, i.e. don’t using the regularity
of the function S.

1.4 Plan of the paper

The paper is organized as follows. In Section 2 we describe the functional
classes. In Section 3 a sequential estimator of the drift coefficient is con-
structed. In Section 4 we introduce a regression model based on the above
sequential estimator. In Section 5 we construct the model selection proce-
dure and announce the corresponding oracle inequalities. The main results
on asymptotic efficiency are formulated in Section 6. In Section 7 we study
main asymptotic properties of the basic regression model. In Section 8 we
study the efficiency property for non adaptive setting, i.e. in the case when
the regularity of S and the Pinsker variance are known. In Section 9 we give
the proofs for main results. In the Appendix we give all necessary technical
results.

2 Main Conditions

In the paper we consider the estimation problem for the drift S on the in-
terval [x0 , x1], where x0 < x1 are some arbitrary fixed points. In order to
obtain a reliable estimator of S, it is necessary to impose some conditions on
this function which are similar to the periodicity of the deterministic signal in
the white noise model. One of conditions which is sufficient for this purpose
is the assumption that the process (yt)t≥0 in (1.1) returns to any vicinity of
each point x ∈ [x0,x1] infinite times. The ergodicity provides this property,
when the coefficients of equation are known. In the case of unknown coef-
ficients, one needs to impose a uniform ergodicity property. To obtain the
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uniform ergodicity property for the process (1.1) we use the functional class
introduced in [20], i.e. for any fixed L ≥ 1, M > 0 and x∗ > |x0| + |x1| we
set

ΣL,M =

{
S ∈ C1(R) : sup

|x|≤x∗

(
|S(x)|+ |Ṡ(x)|

)
≤M ,

−L ≤ inf
|x|≥x∗

Ṡ(x) ≤ sup
|x|≥x∗

Ṡ(x) ≤ −1/L

}
. (2.1)

Here and in the sequel we denote by ḟ and f̈ the correspoding derivatives.
Moreover, for some fixed parameters 0 < bmin ≤ bmax <∞ we denote by B
the class of functions b from C2(R) such that

bmin ≤ inf
x∈R
|b(x)| ≤ sup

x∈R
max

(
|b(x)| , |ḃ(x)| , |b̈(x)|

)
≤ bmax . (2.2)

Now we set

Θ = ΣL,M × B =
{

(S, b) : S ∈ ΣL,M and b ∈ B
}
. (2.3)

It is easy to see that the functions from ΣL,M are uniformly bounded on
[x0,x1], i.e.

s∗ = sup
x0≤x≤x1

sup
S∈ΣL,M

S2(x) <∞ . (2.4)

It should be noted that, for any ϑ ∈ Θ, (see, for example, [9]) the equation
(1.1) has a unique strong solution and, moreover, there exists an invariant
density for the process (1.1) which is defined as

qϑ(x) =

(∫
R
b−2(z) eS̃(z)dz

)−1

b−2(x) eS̃(x) , (2.5)

where S̃(x) = 2
∫ x

0
b−2(v)S(v)dv (see,e.g., [22], Ch.4, 18, Th2). It is easy to

see that this density is uniformly bounded on the class (2.3) and bounded
away from zero on the interval [−x∗,x∗] :

0 < q∗ = inf
|x|≤x∗

inf
ϑ∈Θ

qϑ(x) ≤ sup
x∈R

sup
ϑ∈Θ

qϑ(x) = q∗ < +∞ (2.6)

We need the following condition for the observation frequency.
A1) The frequency δ in the observations (1.2) has the following form

δ = δT =
1

(T + 1)lT
, (2.7)
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where the function lT is such that,

lim
T→∞

lT
lnT

= +∞ . (2.8)

For example, one can take lT = (ln T )1+ι for some ι > 0.

Remark 2.1. Note that we consider the efficient estimation problem only
for the drift function S, i.e. the diffusion coefficient b is considered as a
nuisance parameter.

3 Point-wise estimators

In order to obtain a reliable estimator of the function S on the interval
[x0,x1] we need some efficient point-wise estimators of this function. To give
such estimators, we begin with the partition of the interval [x0,x1] by points
(zk)0≤k≤n defined as

zk = x0 +
k(x1 − x0)

n
, (3.1)

where n = n(T ) is an integer-valued function of T such that

lim
T→∞

n(T )√
T

= 1 . (3.2)

We can take, for example,

n = n(T ) = 2

[√
T

2

]
+ 1 , (3.3)

where [x] is the integer part of the number x. To construct an efficient esti-
mation procedure for S(zk), at any point zk, we need to use some estimators
of the invariant density qϑ(·) and the squared diffusion coefficient b2(·). To
this end, we will estimate these both functions by making use of the first N0

observations, i.e. (ytj)1≤j≤N0
. We set

N0 = [Nγ(T )] (3.4)

where 5/6 < γ < 1.
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3.1 Estimation of the invariant density

To estimate the density qϑ we will make use of the following kernel estimator

q̂(zk) =
1

2N0 h0

N0∑
j=1

χj,k(h0) , (3.5)

where h0 = h0(T ) = T
−1/2
0 , T0 = δN0,

χj,k(h0) = χ

(ytj−1
− zk
h0

)
and χ(y) = 1{|y|≤1} .

Furthermore, we define a truncated estimator

q̃(zk) =


(υT )1/2 , if q̂(zk) < (υT )1/2 ;

q̂(zk) , if (υT )1/2 ≤ q̂(zk) ≤ (υT )−1/2 ;

(υT )−1/2 , if q̂(zk) > (υT )−1/2 ,

(3.6)

where υT is a strictly positive function of T verifying the following condition.
A2) Assume, that

lim
T→∞

(
υT +

lnT

T (υT )2
+

lnT

lT (υT )5

)
= 0 . (3.7)

For example, one can take υT = ln−ι(T + 1) and lT ≥ ln1+6ι T , for some
ι > 0.

Proposition 3.1. Assume that the conditions A1)–A2) hold. Then, for any
x0 < x1 and for any a > 0

lim
T→∞

T a max
x0≤x≤x1

sup
ϑ∈Θk,r

Pϑ(|q̃T (x)− qϑ(x)| > υT ) = 0 .

This proposition is shown in [20].

3.2 Estimation of the squared diffusion coefficient

To estimate the squared diffusion coefficient b2(zk) we use the following se-
quential procedure. First we define the sample size for this procedure :

τ∗,k = inf{j ≥ 1 :

j∑
l=1

χl,k(h0) ≥ H∗} ∧N0 , (3.8)
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where H∗ = h0N0/ ln(T + 1) . Then we set

b̂k =

∑τ∗,k
j=1 χj,k(h0)(ytj − ytj−1

)2

δ H∗
1Γ∗,k

, (3.9)

where Γ∗,k = {
∑N0

j=1
χj,k(h0) ≥ H∗}.

This estimator satisfies the following property.

Proposition 3.2. For any a > 0,

lim
T→∞

sup
ϑ∈Θ

max
1≤k≤n

T γ−1/2−aEϑ|̂bk − b2(zk)| = 0 . (3.10)

The proof is given in [21].

Remark 3.1. Note that in the case of known diffusion coefficient b(·), we

can take b̂k = b2(zk) .

3.3 Point-wise estimation of the drift coefficient

Now we estimate S(zk), at every point zk, by making use of the observa-
tions (ytj)N0+1≤j≤N . To this end we use the sequential kernel estimator from

[13] with the indicator kernel function χ(y) = 1{|y|≤1} and the duration of
observations given by the stopping time

τk = inf{l ≥ N0 + 1 :
l∑

j=N0+1

χj,k(h) ≥ Hk} , (3.11)

where the bandwidth h = (x1 − x0)/2n,

χj,k(h) = χ

(ytj−1
− zk
h

)
1{1≤j≤N} + 1{j>N}

and Hk is some positive random threshold which will be specified later. It
is clear that τk < ∞ a.s., for any Hk > 0. Now, we define the correction
coefficient 0 < κk ≤ 1 as

τk−1∑
j=N0+1

χj,k(h) + κkχτk,k(h) = Hk . (3.12)

Moreover, using this coefficient we introduce the following weight sequence

κ̃j,k = 1{j<τk} + κk1{j=τk} . (3.13)
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It should be noted, that for any j ≥ 1 the random variables κ̃k,j are Gj−1−
measurable, where Gj = σ

(
ytl , 0 ≤ l ≤ j

)
. Now we define the sequential

estimator for S(zk) as

S∗
k

=
1

δHk

τk∑
j=N0+1

√
κ̃j,k χj,k(h)∆ytj 1Γk

, (3.14)

where ∆ytj = ytj − ytj−1
and

Γk = {τk ≤ N} . (3.15)

By the same way used in the paper [20] to choose the threshold Hk, we use
the truncated estimator q̃(zk) given in (3.6) and we set

Hk = h(N −N0)(2q̃(zk)− υT ) . (3.16)

It should be noted that, as established in [10], this form for Hk provides the
optimal convergence rate.

4 Regression model

In order to obtain an oracle inequality for discrete time data, we shall pass
to a regression model by the same way as in [17].

Denote
G∗ = ∩n

k=1
Γk and Yk = S∗

k
1G∗

. (4.1)

By making use of (1.1) and (3.14) we define a nonparametric regression model
on the set G∗ :

Yk = S(zk) + gk + σkξk , σk =
b(zk)√
δHk

, (4.2)

where

gk =
1

δHk

τk∑
j=N0+1

√
κ̃j,kχj,k(h)

∫ tj

tj−1

S(yu) du− S(zk)

+
1

δHk

τk∑
j=N0+1

√
κ̃j,kχj,k(h)

∫ tj

tj−1

(b(ys)− b(zk))dWs (4.3)
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and

ξk =
1√
δHk

τk∑
j=N0+1

√
κ̃j,kχj,k(h)∆Wtj

. (4.4)

Note that the coefficients (σl)1≤l≤n are random variables and using their
definitions one can obtain the following bounds

σ0,∗ ≤ min
1≤l≤n

σ2
l
≤ max

1≤l≤n
σ2
l
≤ σ1,∗ , (4.5)

where

σ0,∗ =
υTbmin
δNh

and σ1,∗ =
bmax

υT δ(N −N0)h
.

We estimate the parameter σ2
l

as follows:

σ̂l =
b̂l
δHl

, (4.6)

where b̂l is the estimator of the squared diffusion coefficient b2(zl) defined in
(3.9). In order to obtain the oracle inequality, we need to study the properties
of the last estimator. To this end we set

$∗
T

= n max
1≤l≤n

Eϑ |σ̂l − σ2
l
| . (4.7)

Proposition 4.1. Assume that the conditions A1) – A2) hold. Then, for
any a > 0,

lim
T→∞

T γ−1/2−a$∗
T

= 0 . (4.8)

This proposition is proved in [21].

5 Model selection

First we choose a basis (φj)j≥1 in L2([x0,x1]) such that, for any 1 ≤ i, j ≤ n,

(φi , φj)n =
x1 − x0

n

n∑
l=1

φi(zl)φj(zl) = 1{i=j} . (5.1)

For example, one can take the trigonometric basis defined as
φ1(x) ≡ 1/

√
x1 − x0 and, for j ≥ 2,

φj(x) =

√
2

x1 − x0

 cos(2π[j/2] l0(x)) for even j ;

sin(2π[j/2]l0(x)) for odd j ,
(5.2)
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where [a] denotes the integer part of a and l0(x) = (x− x0)/(x1 − x0). Note
that if n is odd, then this basis is orthonormal for the empirical inner product,
i.e. satisfies the property (5.1). In the sequel, we assume that the n is odd,
i.e. as in (3.3). By making use of this property we define the discrete Fourier
representation for S on the sieve (3.1), i.e.,

S(zk) =
n∑
j=1

θj,nφj(zk) , 1 ≤ k ≤ n , (5.3)

where

θj,n = (S, φj)n =
x1 − x0

n

n∑
l=1

S(zl)φj(zl) .

Moreover, using the regression model (4.2) we estimate these coefficients as

θ̂j,n = (Y, φj)n =
x1 − x0

n

n∑
l=1

Ylφj(zl) . (5.4)

By the model (4.2), we obtain on the set G∗

θ̂j,n = θj,n + ζj,n , ζj,n = gj,n +

√
x1 − x0

n
ξj,n , (5.5)

where

ξj,n =

√
x1 − x0

n

n∑
l=1

σlξlφj(zl) , gj,n =
x1 − x0

n

n∑
l=1

glφj(zl) .

We estimate the values S(zk), 1 ≤ k ≤ n, by the weighted least squares
estimators

Ŝλ(zk) =
n∑
j=1

λ(j)θ̂j,nφj(zk) , 1 ≤ k ≤ n , (5.6)

where the weight vector λ = (λ(1), . . . , λ(n))′ belongs to some finite set Λ
from [0, 1]n. In the sequel, we denote by ν the cardinal number of the set
Λ, ν = card(Λ), which is a function of T , i.e. ν = νT . Moreover, we set the
norm for Λ as

Λ∗ = max
λ∈Λ

n∑
j=1

λ(j) (5.7)

which can be a function of T , i.e. Λ∗ = Λ∗(T ). We assume that the basis
functions and the weight set Λ satisfy the following condition.
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A3) For any a > 0,

lim
T→∞

νT
T a

= 0 and lim
T→∞

Λ∗(T )

T 1/3+a
= 0 . (5.8)

To estimate the function S on the interval [x0,x1], we use the step-function
approximation, i.e.,

Ŝλ(x) =
n∑
l=1

Ŝλ(zl)1{zl−1<x≤zl} , x ∈ [x0,x1] . (5.9)

Now one needs to choose a cost function in order to define an optimal weight
λ ∈ Λ. A best candidate for the cost function should be the empirical squared
error given by the relation

Errn(λ) = ‖Ŝλ − S‖2
n
→ min .

In our case, the empirical squared error is equal to

Errn(λ) =
n∑
j=1

λ2(j)θ̂2
j,n
− 2

n∑
j=1

λ(j)θ̂j,n θj,n +
n∑
j=1

θ2
j,n
. (5.10)

Since coefficients θj,n are unknown, we need to replace the term θ̂j,n θj,n by
some estimator which we choose as

θ̃j,n = θ̂2
j,n
− x1 − x0

n
σ̂j,n and σ̂j,n =

x1 − x0

n

n∑
l=1

σ̂lφ
2
j
(zl) , (5.11)

where σ̂l is the estimator for σ2
l

defined in (4.6). Note that if the diffusion is
known, then we take in (5.11) σ̂j,n = σj,n and

σj,n =
x1 − x0

n

n∑
l=1

σ2
l
φ2
j
(zl) . (5.12)

It is clear that the inequalities (4.5) imply

σ0,∗ ≤ min
1≤l≤n

σl,n ≤ max
1≤l≤n

σl,n ≤ σ1,∗ . (5.13)

Now, for using the estimator (5.11) instead of θj,nθ̂j,n one needs to add to the
cost function a suitable penalty term that we take as

P̂n(λ) =
x1 − x0

n

n∑
j=1

λ2(j)σ̂j,n (5.14)
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if the diffusion is unknown and as

Pn(λ) =
x1 − x0

n

n∑
j=1

λ2(j)σj,n (5.15)

when the diffusion is known. Finally, we use the following cost function

Jn(λ) =
n∑
j=1

λ2(j)θ̂2
j,n
− 2

n∑
j=1

λ(j)θ̃j,n + ρ P̂n(λ) , (5.16)

where the positive coefficient 0 < ρ < 1 will be specified later.
We define the model selection procedure as

λ̂ = argmin
λ∈Λ

Jn(λ) and Ŝ∗ = Ŝλ̂ . (5.17)

Remark 5.1. It should be emphasized that if in the model (1.1) the diffusion
coefficient b(·) in known, then the model selection procedure (5.17) is defined
through minimazing the cost function Jn(λ) with the penalty term (5.15).

For the risk (1.3), we have shown the following result in [21].

Theorem 5.1. Assume that the conditions A1) – A3) hold. Then, for any

T ≥ 1, 0 < ρ ≤ 1/8 and ϑ ∈ Θ, the estimation procedure Ŝ∗ defined in (5.17)
satisfies the inequality

Rϑ(Ŝ∗) ≤
(1 + ρ)2(1 + 5ρ)

1− 6ρ
min
λ∈Λ
Rϑ(Ŝλ) +

Uϑ,T

ρ T
, (5.18)

where the remainder term Uϑ,T is such that for any a > 0,

lim
T→∞

T−a sup
ϑ∈Θ

Uϑ,T = 0 . (5.19)

In the sequel to obtain the efficient properties for this procedure we will use
the special weight coefficients introduced in [15, 16]. To this end we consider
a 2−dimensional numerical grid of the form

A = {1, . . . ,k∗} × {r1, . . . , rm∗} , (5.20)

where ri = iε and m∗ = [1/ε2]. The both parameters k∗ ≥ 1 and 0 < ε ≤ 1
are some functions of T , i.e. k∗ = k∗

T
and ε = εT , such that, for any γ > 0,

lim
T→∞

(
εT +

1

T γεT
+

1

k∗
T

+
k∗
T

lnT

)
= 0 . (5.21)
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One can take, for example,

εT =
1

ln(T + 1)
and k∗ = k +

√
ln(T + 1),

for some fixed k ≥ 1. For any α = (k, l) ∈ A, we introduce the weight
sequence λα = (λα(j))j≥1 as

λα(j) = 1{1≤j≤j0} +
(
1− (j/ωα)k

)
1{j0<j≤ωα}, (5.22)

where j0 = j0(α) = [ωα/ ln(T + 1)], ωα = ω̌k (lT )1/(2k+1) and

ω̌k = (x1 − x0)

(
(k + 1)(2k + 1)

π2kk

)1/(2k+1)

.

We set
Λ = (λα)

α∈A . (5.23)

Note that, in this case, the cardinal ν of the set Λ is the function of T , i.e.
ν = νT = k∗m∗ and the conditions (5.21) imply that, for any a > 0,

lim
T→∞

νT
T a

= 0 . (5.24)

Moreover, from the definition (5.22) we can obtain that, for any α ∈ A,

n∑
j=1

λα(j) ≤ ωα ≤ ω̌k

(
T

εT

)1/3

.

Therefore, for any a > 0,

lim
T→∞

Λ∗
T 1/3+a

= 0 . (5.25)

Hence, the condition A3) holds and we obtain the following result.

Theorem 5.2. Assume that the conditions A1) – A2) hold. Then, the model
selection procedure (5.17) with the weights (5.23) satisfies the oracle inequal-
ity (5.18) with the remainder term satisfying the property (5.19), for any
a > 0.

Remark 5.2. It should be noted that similarly to [17], we will use the in-
equality (5.18) to provide the efficiency property in the adaptive setting. This
means that without using the regularity properties of the unknown function S
we can estimate from above the risk for the model selection procedure by the
risk for the efficient estimation procedure constructed on the regularity prop-
erties of the function S. The upper bound for the risk of the model selection
procedure follows from the sharp oracle inequality.
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6 Main results

In order to study the asymptotic efficiency of estimators we use a suitable
class of drift coefficients S. To this end we define the following functional
Sobolev ball

W 0
k,r

= {f ∈ Ck
0
([x0,x1]) :

k∑
j=0

‖f (j)‖2 ≤ r} , (6.1)

where r > 0 and the integer k ≥ 1 are some parameters, Ck
0
([x0,x1]) is the

space of k times differentiable functions f : R→ R such that

f (i)(x) = 0 , for 0 ≤ i ≤ k − 1 and x /∈ [x0,x1] .

Moreover, let S0 be a fixed continuously differentiable function from ΣL,M

such that S0(x) = 0 for x0 ≤ x ≤ x1. We set

Wk,r = S0 +W 0
k,r

and Θk,r = Wk,r × B . (6.2)

Note that one can represent the functional class W 0
k,r

as an ellipse in

L2([x0,x1]) with trigonometric basis (φj)j≥0:

W 0
k,r

= {f ∈ Ck
0
([x0,x1]) :

∞∑
j=0

ajθ
2
j ≤ r} , (6.3)

where θj = (f, φj) =
∫ x1

x0
f(x)φj(x)d x and

aj =
k∑
i=0

(
2π[j/2]

x1 − x0

)2i

.

In order to formulate our asymptotic results, we define, for any ϑ ∈ Θk,r, the
following normalizing coefficient γ(ϑ)

γ(ϑ) = l∗ J
k∗
ϑ , k∗ =

2k

2k + 1
, (6.4)

where

l∗ = (2k + 1)r1−k∗

(
k

π(k + 1)(2k + 1)

)k∗
and

Jϑ =

∫ x1

x0

b2(x)

qϑ(x)
dx . (6.5)

15



It is well known that, for any S ∈ Θk,r, the optimal rate of convergence of

estimators is T−2k/(2k+1) (see, for example, [11]).
Now we denote by ΞT the set of all possible estimators of S which are

measurable with respect to the σ-field σ{yt , 0 ≤ t ≤ T}, i.e. based on the
observations (yt)0≤t≤T .

Theorem 6.1. For any integer k ≥ 1 and r > 0, the quadratic risk Rϑ(Ŝ)
admits the following asymptotic lower bound

lim inf
T→∞

T k∗ inf
Ŝ∈ΞT

sup
ϑ∈Θk,r

υ(ϑ)Rϑ(Ŝ) ≥ l∗ ,

where υ(ϑ) = J
−k∗
ϑ .

Assume now, that the penalty parameter ρ in (5.16) is a function of T ,
i.e. ρ = ρT such that, for any a > 0,

lim
T→∞

ρT = 0 and lim
T→∞

T aρT =∞ . (6.6)

We can take, for example, ρT = (6 + ln(T + 1))−1.

Theorem 6.2. Assume that the conditions A1) – A2) hold. Then, for any

integer k ≥ 2 and r > 0, the quadratic risk of the estimation procedure Ŝ∗
defined through the trigonometric basis (5.2) in (5.17) and(5.23) with the
parameter ρ of the form (6.6) satisfies the following upper bound

lim sup
T→∞

T k∗ sup
ϑ∈Θk,r

υ(ϑ)Rϑ(Ŝ∗) ≤ l∗ .

Theorems 6.1 – 6.2 imply immediately the efficiency property :

Theorem 6.3. Assume that the conditions A1) – A2) hold. Then the esti-

mation procedure Ŝ∗ defined through the trigonometric basis (5.2) in (5.17)
and (5.23) with the parameter ρ of the form (6.6) is asymptotically efficient,
i.e.

lim
T→∞

inf Ŝ∈ΞT
sup

ϑ∈Θk,r
υ(ϑ)Rϑ(Ŝ)

sup
ϑ∈Θk,r

υ(ϑ)Rϑ(Ŝ∗)
= 1 .

Remark 6.1. It should be noted that from Theorems 6.1 – 6.2 it follows that
the function (6.4) is the Pinsker constant, which is calculated for the first time
for the model (1.1). For the model (1.1) with the diffusion coefficient b(·) ≡ 1
the Pinsker constant was calculated in [17] which in this case coincides with
(6.4). Note also that the parameter l∗ is the well - known Pinsker constant for
the ”signal plus white noise” model obtained in [33]. Therefore, the Pinsker
constant for the model (1.1) is obtained by multiplying the constant from [33]
by the Pinsker variance (6.5) in the power k∗.
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7 Properties of the regression model (4.2)

First we recall the main properties of the model (4.2) from [21].
The random variables (ξk)1≤k≤n from (5.5), satisfy the following property.

Proposition 7.1. The random variables (ξk)1≤k≤n are N (0, 1) i.i.d. condi-
tionally to the σ−field GN0

.

Proposition 7.2. Assume that the conditions A1) – A2) hold. Then, for
any a > 0,

lim
T→∞

T a sup
ϑ∈Θ

Pϑ(Gc
∗) = 0 . (7.1)

These propositions are proved in [21].
Now, we study the heteroscedastic property in the model (4.2). To this

end we set

sn = (x1 − x0)
n∑
l=1

σ2
l
, (7.2)

where the variances (σl)1≤l≤n are defined in (4.2).

Proposition 7.3. Assume that the condition A1) holds. Then

lim
T→∞

sup
ϑ∈Θk,r

Eϑ

∣∣∣∣sn − Jϑ
x1 − x0

∣∣∣∣ = 0 . (7.3)

Proof. Using the definition of σl in (4.2) and taking account of the form of
h given in (3.11), we can represent the quantity sn as

sn =
n∑
l=1

nb2(zl)

δ h (N −N0)(2q̃T (zl)− υT )
(zl − zl−1)

=
1

x1 − x0

n∑
l=1

b̃ϑ(zl)(zl − zl−1) + R1(ϑ) + R2(ϑ) , (7.4)

where b̃ϑ(x) = b2(x)/qϑ(x),

R1(ϑ) =
1

x1 − x0

(
n2

δ (N −N0)
− 1

) n∑
l=1

b̃ϑ(zl) (zl − zl−1)

and

R2(ϑ) =
n∑
l=1

nb2(xl)

δ h (N −N0)

(
1

2q̃T (zl)− υT
− 1

2qϑ(zl)

)
(zl − zl−1) .
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First, note, that the function b̃ϑ(·) and its derivative are uniformly bounded,
i.e.

sup
ϑ∈Θk,r

max
x0≤z≤x1

(
b̃ϑ(z) + |̃b′

ϑ
(z)|
)
<∞ . (7.5)

Therefore,

lim
T→∞

sup
ϑ∈Θk,r

∣∣∣∣∣
n∑
l=1

b̃ϑ(zl)(zl − zl−1)− Jϑ

∣∣∣∣∣ = 0 .

As the second term (7.4), note that, in view of the condition (3.2),

lim
T→∞

n2

δ (N −N0)
= 1 .

Therefore, the property (7.5) provides that

lim
T→∞

sup
ϑ∈Θk,r

|R1(ϑ)| = 0 .

Moreover, taking into account that 2q̃T (zl)− υT > υ
1/2
T , we obtain, for suffi-

ciently large T , that for some C > 0

|R2(ϑ)| ≤ C

(
n∑
l=1

υ
−1/2
T (|q̃T (zl)− qϑ(zl)|) (zl − zl−1) +

√
υT

)
.

Note here, that for any 1 ≤ l ≤ n and for sufficiently large T ,

υ
−1/2
T Eϑ |q̃T (zl)− qϑ(zl)| ≤ 2υ−1

T
Pϑ(|q̃T (zl)− qϑ(zl)| > υT ) +

√
υT .

Therefore, due to Proposition 3.1,

lim
T→∞

sup
ϑ∈Θk,r

|R2(ϑ)| = 0 .

Hence Proposition 7.3.

8 Non adaptive estimation

We start with the non adaptive case, i.e. we assume that the parameters k,
r and the function Jϑ are known. In this case, we use the weight estimator
(5.9) from the family (5.23)

S̃ = S̃λ̃ and λ̃ = λα̃ , (8.1)
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where α̃ = (k, l̃), l̃ = l̃T = [r(ϑ)/ε] ε and r(ϑ) = r/Jϑ. We remind that
ε = εT = 1/ ln(T + 1). Firstly, we need to study the asymptotic properties

of the weights λ̃. To this end we set

Υ̃T (ϑ) =
n∑
j=1

(1− λ̃(j))2θ2
j,n

+
Jϑ

(x1 − x0)n2

n∑
j=1

λ̃2(j) . (8.2)

Proposition 8.1. For any k ≥ 2 and r > 0,

lim sup
T→∞

T k∗ sup
ϑ∈Θk,r

υ(ϑ)Υ̃T (ϑ) ≤ l∗ . (8.3)

Proof. First of all, note that

0 < inf
ϑ∈Θk,r

Jϑ ≤ sup
ϑ∈Θk,r

Jϑ <∞ . (8.4)

This implies directly that

lim
T→∞

sup
ϑ∈Θk,r

∣∣∣∣∣ l̃Tr(ϑ)
− 1

∣∣∣∣∣ = 0 , (8.5)

where r(ϑ) = r/Jϑ. Moreover, note that

T k∗υ(ϑ)Υ̃T (ϑ) ≤ T k∗ υ(ϑ) ST +
(Jϑ)1−k∗

T 1−k∗(x1 − x0)

n∑
j=1

λ̃2(j) , (8.6)

where ST =
∑n

j=1 (1− λ̃(j))2 θ2
j,n

. We decompose ST as

ST = S1,T + S2,T

with

S1,T =

[ω̃]∑
j=j0+1

(1− λ̃(j))2 θ2
j,n

and S2,T =
n∑

j=[ω̃]+1

θ2
j,n
.

Let us recall that

ω̃ = ωα̃ = ω̌k

(
T l̃T

)1/(2k+1)

.

Lemma A.2 yields

S1,T ≤ (1 + ε̃)

[ω̃]∑
j=j0

(1− λ̃(j))2 θ2
j

+ 2r(1 + ε̃−1)
ω̃

n2k
,
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and Lemma A.3 yields

S2,T ≤ (1 + ε̃)
∑
j>ω̃

θ2
j

+ (1 + ε̃−1)
r

n2 ω̃2(k−1)
.

These inequalities imply that

ST ≤ (1 + ε̃)S∗
T

+ 2r(1 + ε̃−1) ω̌T , (8.7)

where

S∗
T

=
∑
j≥1

(1− λ̃(j))2 θ2
j

=
∑
j≤ω̃

(1− λ̃(j))2 θ2
j

+
∑
j>ω̃

θ2
j

:= S∗
1,T

+ S∗
2,T

and

ω̌T =
ω̃

n2k
+

1

n2ω̃2(k−1)
.

Note, that

T k∗υ(ϑ)S∗
1,T

= T k∗υ(ϑ)

[ω̃]∑
j=j0

(1− λ̃(j))2 θ2
j

=
υ(ϑ)

ω̌2k
k

(l̃T )k∗

[ω̃]∑
j=j0

j2k θ2
j

≤ υ(ϑ)

ω̌2k
k

(l̃T )k∗
$j0

[ω̃]∑
j=j0

aj θ
2
j
,

where $n = sup
j≥n j

2k/aj. It is clear that

lim
n→∞

$n =
(x1 − x0)2k

π2k
.

Therefore, from (8.5) we obtain that

lim sup
n→∞

sup
ϑ∈Θk,r

T k∗υ(ϑ) S∗
1,T∑[ω̃]

j=j0
aj θ

2
j

≤ (x1 − x0)2k

π2k ω̌2k
k
rk∗

=

(
k

(2k + 1)(k + 1)rπ

)k∗
.

Futher note, that for any 0 < ε̃ < 1 and for sufficiently large T ,

S∗
2,T

=
∑
j>ω̃

θ2
j
≤ (x1 − x0)2k

π2k ω̃2k

∑
j>ω̃

aj θ
2
j

=
(x1 − x0)2k

π2k (T l̃T )k∗ω̌2k
k

∑
j>ω̃

aj θ
2
j

≤ (1 + ε̃)
J
k∗
ϑ (x1 − x0)2k

π2k (rT )k∗ω̌2k
k

∑
j>ω̃

aj θ
2
j
.
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This inequality implies

lim sup
n→∞

sup
ϑ∈Θk,r

T k∗υ(ϑ) S∗
2,T∑

j>ω̃
aj θ

2
j

≤ (x1 − x0)2k

π2kω̌2k
k
rk∗

=

(
k

(2k + 1)(k + 1)rπ

)k∗
.

So, taking into account in (8.7) that for k ≥ 2

lim
T→∞

sup
S∈Wk,r

T k∗ω̌T = 0 ,

we obtain that

lim sup
T→∞

sup
ϑ∈Θk,r

T k∗ υ(ϑ) ST ≤ r1−k∗

(
k

(2k + 1)(k + 1)π

)k∗
. (8.8)

Moreover, we can check directly that

lim sup
T→∞

sup
ϑ∈Θk,r

J
1−k∗
ϑ

T 1−k∗(x1 − x0)

n∑
j=1

λ̃2(j) ≤ u∗
k
, (8.9)

where

u∗
k

=
ω̌kr

1−k∗2k2

(x1 − x0)(2k + 1)(k + 1)
= 2kr1−k∗

(
k

(2k + 1)(k + 1)π

)k∗
.

Using now (8.8) and (8.9) in (8.6) we obtain the limit equality (8.3) and,
hence Proposition 8.1.
Now, through Proposition 8.1 we can obtain the following upper bound.

Theorem 8.2. For any k ≥ 2 and r > 0, the estimator S̃ from (8.1) satisfies
the inequality

lim sup
T→∞

T k∗ sup
ϑ∈Θk,r

υ(ϑ) Eϑ‖S̃ − S‖2
n ≤ l∗ . (8.10)

Note that Lemma A.1 implies the following upper bound.

Theorem 8.3. The quadratic risk for the estimating procedure S̃ from (8.1)
has the following asymptotic upper bound

lim sup
T→∞

T k∗ sup
ϑ∈Θk,r

υ(ϑ)R(S̃, S) ≤ l∗ . (8.11)

Remark 8.1. It should be noted that the inequality (8.11) together with Theo-

rem 6.1 mean that the estimator S̃ defined by (8.1) is efficient. Unfortunately,
we can’t calculate this estimator, since it depends on unknown parameters k,
r and Jϑ. But, this estimator belongs to the family (Ŝλ)λ∈Λ with the weight
vectors defined in (5.23). Therefore, through the oracle inequality we can es-
timate the risk of the model selection procedure with the risk of the estimator
(5.23) and, therefore, using the property (8.11) we can provide the efficiency
property for the procedure (5.17).
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9 Proofs

9.1 Proof of Theorem 6.1

First, we introduce the following auxiliary class

Θ0
k,r

=
{
ϑ = (S, b0) : S ∈ Wk,r , b0 ≡ 1

}
.

It is clear that Θ0
k,r
⊂ Θk,r and

sup
ϑ∈Θk,r

υ(ϑ)R(S̃, S) ≥ sup
ϑ∈Θ0

k,r

υ(ϑ)R(S̃, S) .

Using here Theorem 5.2 from [17] we obtain Theorem 6.1.

9.2 Proof of Theorem 8.2

First note that, in view of Proposition 7.2, to prove this theorem it suffices
to show that

lim sup
T→∞

T k∗ sup
ϑ∈Θk,r

υ(ϑ) EϑχG∗
‖S̃ − S‖2

n ≤ l∗ . (9.1)

Indeed, note that due to (5.3)-(5.6) on the set G∗ we obtain that

‖S̃ − S‖2
n =

n∑
j=1

(
λ̃2(j)(θj,n + ζj,n)2 − 2λ̃(j)(θj,n + ζj,n)θj,n + θ2

j,n

)
=

n∑
j=1

(
(λ̃(j)− 1)2θ2

j,n
+ 2λ̃(j)(λ̃(j)− 1)ζj,nθj,n + λ̃2(j)ζ2

j,n

)
, (9.2)

where θj,n = (S , φj)n and λ̃ is defined in (8.1). Taking into account that

ζj,n = gj,n +

√
x1 − x0

n
ξj,n ,

using the inequality
2xy ≤ ε x2 + ε−1y2 ,

we have from (9.2) on the set G∗

‖S̃ − S‖2
n ≤ (1 + ε)

(
n∑
j=1

(1− λ̃(j))2θ2
j,n

+B1

)
+

(
1 +

2

ε

)
B2

+ 2

√
x1 − x0

n

n∑
j=1

λ̃(j)(λ̃(j)− 1)θj,nξj,n , (9.3)

22



where

B1 =
x1 − x0

n

n∑
j=1

λ̃2(j)ξ2
j,n

and B2 =
n∑
j=1

λ̃2(j)g2
j,n
. (9.4)

Moreover, taking into account the property E ξj,n = 0, one gets

Eϑ‖S̃ − S‖2
n χG∗

≤ (1 + ε)

(
n∑
j=1

(1− λ̃(j))2θ2
j,n

+ EϑB1

)

+

(
1 +

2

ε

)
EϑB2 χG∗

− 2EϑB3χGc
∗
, (9.5)

where

B3 =

√
x1 − x0

n

n∑
j=1

λ̃(j)(λ̃(j)− 1)ξj,nθj,n .

Note that

(x1 − x0)Eϑ

(
ξ2
j,n
|GN0

)
=

sn
n

+
x1 − x0

n

n∑
l=1

σ2
l φj(zl) (9.6)

where sn is defined in (7.2) and φ
j
(zl) = (x1 − x0)φ2

j
(zl)− 1. Setting now

sn = sn −
Jϑ

x1 − x0

,

we represent the terme EϑB1 as

EϑB1 =
1

n2
Eϑ

n∑
j=1

λ̃2(j)

(
sn + (x1 − x0)

n∑
l=1

σ2
l φj(xl)

)

=
Jϑ

(x1 − x0)n2

n∑
j=1

λ̃2(j) +B11 + B12 , (9.7)

where

B11 =
1

n2

n∑
j=1

λ̃2(j) Eϑsn , B12 =
x1 − x0

n2
Eϑ

n∑
j=1

λ̃2(j)
n∑
l=1

σ2
l φj(xl) .

Now from (9.5) and (9.7) we obtain that

Eϑ‖S̃ − S‖2
n χG∗

≤ (1 + ε)
(

Υ̃T +B11 +B12

)
+

(
1 +

2

ε

)
EϑB2 χG∗

− 2EϑB3χGc
∗
. (9.8)
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The property (8.9) and Proposition 7.3 yield for the terme B11

lim sup
T→∞

T k∗ sup
ϑ∈Θk,r

|B11| = 0 .

As to the term B12, due to Lemma A.4, one has

|B12| ≤
x1 − x0

n2
Eϑ

n∑
l=1

σ2
l

∣∣∣∣∣
n∑
j=1

λ̃2(j)φj(xl)

∣∣∣∣∣
≤ 2k+1 x1 − x0

n2
Eϑ

n∑
l=1

σ2
l =, 2k+1Eϑ

sn
n2
. (9.9)

Therefore, in view of Proposition 7.3, we obtain that

lim sup
T→∞

T k∗ sup
ϑ∈Θk,r

|B12| = 0 .

Moreover, by the definition,

B2 =
n∑
j=1

λ̃2(j)g2
j,n

and gj,n = (g, φj)n .

Therefore,

B2 ≤
n∑
j=1

g2
j,n

= ‖g‖2
n

and

Eϑ 1G∗
B2 ≤ Eϑ 1G∗

‖g‖2
n

=
x1 − x0

n

n∑
k=1

Eϑ 1G∗
g2
k
.

It is easy to verify (see [21]) that

sup
ϑ∈Θ

max
1≤ k≤n

Eϑ 1G∗
g2
k
≤ M2h2 + o(1/T ) .

These bounds yield that

lim
T→∞

T
2k

2k+1 sup
ϑ∈Θk,r

Eϑ 1G∗
B2 = 0 . (9.10)

To estimate the last term in (9.5) note that through Lemma A.5 we can
estimate the square of the expectation of this term as

EϑB
2
3
≤ σ1,∗

x1 − x0

n

n∑
j=1

θ2
j,n

=
σ1,∗(x1 − x0)

n
‖S‖2

n
.
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Therefore,

Eϑ 1Gc
∗
|B3| ≤

√
σ1,∗(x1 − x0)

n
‖S‖n Pϑ

(
Gc
∗

)
and taking into account Proposition 7.2, we obtain that

lim
T→∞

T
2k

2k+1 sup
ϑ∈Θk,r

Eϑ 1Gc
∗
|B3| = 0 .

Therefore, using Proposition 8.1 in (9.8) we obtain Theorem 8.2.

9.3 Proof of Theorem 6.2

Taking into account that for sufficiently large T the estimator (8.1) belongs

to the family (Ŝλ)λ∈Λ indexed by the set (5.23), we obtain that

lim sup
T→∞

T k∗Eϑ‖Ŝ∗ − S‖2 ≤ lim sup
T→∞

T k∗Eϑ‖Ŝλ̃ − S‖
2 .

So, Theorem 8.2 implies immediately Theorem 6.2.

Acknowledgments. The work of the last author was partially supported
by the Russian Federal Professor program, project no. 1.472.2016/1.4 (the
Ministry of Science and Higher Education of the Russian Federation).

A Appendix

A.1 Properties of the trigonometric basis.

Lemma A.1. Let f be an absolutely continuous [x0,x1] → R function with
‖ḟ‖ <∞ and g be [x0,x1]→ R a step-wise function of the form

g(z) =
n∑
j=1

cj χ(zj−1,zj ]
(z),

where cj are some constants and the sequence (zj)0≤j≤n is given in (3.1).
Then, for any ε̃ > 0, the function ∆ = f−g satisfies the following inequalities

‖∆‖2 ≤ (1 + ε̃)‖∆‖2
n

+

(
1 +

1

ε̃

)
‖ḟ‖2

n2
(x1 − x0)2 ,

and

‖∆‖2
n
≤ (1 + ε̃)‖∆‖2 +

(
1 +

1

ε̃

)
‖ḟ‖2

n2
(x1 − x0)2 .
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The proof is given in Lemma A.2 from [31].

Lemma A.2. For any 1 ≤ j ≤ n, the trigonometric Fourier coefficients
(θj,n)1≤j≤n of the functions S from the class Wk,r satisfy, for any ε̃ > 0, the
following inequality

θ2
j,n
≤ (1 + ε̃) θ2

j
+ (1 + ε̃−1)

řk
n2k

, (A.1)

where

řk =
2r(π2 + 1)(x1 − x0)2k

π2k
.

Proof. First we represent the function S as the Fourier series in L2([x0,x1])
:

S(x) =
n∑
l=1

θl φl(x) + ∆n(x) ,

where
∆n(x) =

∑
l>n

θl φl(x) . (A.2)

Making now the Fourier decomposition of S on the grid (zk)1≤ k≤n with an
odd n, one gets the Fourier coefficients :

θj,n = (S, φj)n = θj + (∆n, φj)n

and, for any 0 < ε̃ < 1,

θ2
j,n
≤ (1 + ε̃)θ2

j
+ (1 + ε̃−1)‖∆n‖2

n
.

By applying Lemma A.1 with f = ∆n , g = 0, we obtain that

‖∆n‖2
n
≤ 2‖∆n‖2 + 2

‖∆̇n‖2(x1 − x0)2

n2
= 2

∑
l>n

θ2
l

+ 2
‖∆̇n‖2(x1 − x0)2

n2

≤ 2ra−1
n+1

+ 2
‖∆̇n‖2(x1 − x0)2

n2
.

Taking account of (6.3) and that 2[l/2] ≥ l − 1 for l ≥ 2, we have

‖∆n‖2
n
≤ 2r(x1 − x0)2k

π2kn2k
+ 2
‖∆̇n‖2(x1 − x0)2

n2
.
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Note here, that for any n ≥ 1,

‖∆̇n‖2 =
(2π)2

(x1 − x0)2

∑
l>n

θ2
l

[l/2]2 =
(x1 − x0)2(k−1)

π2(k−1)

∑
l>n

alθ
2
l

(2[l/2])2(k−1)

≤ (x1 − x0)2(k−1)

π2(k−1)

∑
l>n

alθ
2
l

(l − 1)2(k−1)
≤ r(x1 − x0)2(k−1)

π2(k−1)n2(k−1)
. (A.3)

Hence Lemma A.2

Lemma A.3. For any n ≥ 2, 1 ≤ m < n and r > 0, the coefficients
(θj,n)1≤j≤n of functions S from the class Wk,r satisfy, for any ε̃ > 0, the
following inequality

n∑
j=m+1

θ2
j,n
≤ (1 + ε̃)

∑
j≥m+1

θ2
j

+ (1 + ε̃−1)
ř1

n2m2(k−1)
, (A.4)

where

ř1 =
r(x1 − x0)2k

π2(k−1)
.

Proof. First we note that

n∑
j=m+1

θ2
j,n

= min
x1,...,xm

‖S −
m∑
j=1

xjφj‖2
n
≤ ‖∆m‖2

n
,

where the function ∆m(·) is defined in (A.2). By applying Lemma A.1 with
f = ∆m, g = 0, and taking account of the inequality (A.3), we obtain the
bound (A.4). Hence Lemma A.3

Lemma A.4. For any k ≥ 1,

sup
n≥ 2

n−k sup
x∈[x0,x1]

∣∣∣∣∣
n∑
l=2

lkφ
l
(x)

∣∣∣∣∣ ≤ 2k , (A.5)

where φ
l
(x) = (x1 − x0)φ2

l
(x)− 1.

Proof of this result is given in Lemma A.2 from [15].
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A.2 Technical lemma

Lemma A.5. Let (uj)1≤j≤n be nonrandom sequence. Then

Eϑ

 n∑
j=1

ujξj,n

2

≤ σ1,∗

n∑
j=1

u2
j
.

Proof. First we denote Dn =
∑n

j=1
ujξj,n. Now, using the definition of ξj,n

in (5.5) we obtain that

Dn =

√
x1 − x0

n

n∑
l=1

σlξl,n

n∑
j=1

ujφj(zl) .

This implies

EϑD
2(u) =

x1 − x0

n
Eϑ

n∑
l=1

σ2
l
(
n∑
j=1

ujφj(zl))
2

≤ σ1,∗

n∑
j=1

u2(j) = σ1,∗‖u‖2 .

Hence Lemma 3.1.
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