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Abstract

We qualitatively compare the solutions of a multilane model with those produced by
the classical Lighthill-Whitham-Richards equation with suitable coupling conditions at
simple road junctions. The numerical simulations are based on the Godunov and upwind
schemes. Several tests illustrate the models’ behaviour in different realistic situations.
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1 Introduction

Starting form the well-known Lighthill-Whitham-Richards (LWR) model [17, 18], a variety
of macroscopic traffic flow models based on hyperbolic balance laws have been proposed to
capture traffic behaviour in different situations. In this paper, we focus on the description
of traffic dynamics on road networks. More precisely, we investigate the role of coupling
conditions at road junctions. To this aim, we compare the behaviour of the multilane junction
model introduced in [13], and the classical LWR model at junctions [10, Chapter 5].

The multilane junction model [13] allows to handle in detail various realistic cases of road
junctions, with the major exception of the diverging ones, which requires some additional
information on drivers’ routing preferences upstream. To avoid cumbersome notation, we
recap here the main features of the multilane model in the case of a junction consisting of 2
incoming roads and 1 outgoing road, the number of lanes in each road to be specified later.
Let M` = M`1 +M`2 be the number of lanes on the half line x < 0, M`j being the number of
lanes on the j-th incoming road, j = 1, 2. Similarly, let Mr be the number of lanes on x > 0,
corresponding to the outgoing road. Each lane has maximal possible density normalized to 1,
but each road may have different maximal speed. The detailed model is described in Section 3
below. Clearly, the case of a 1-to-1 junction is included, but not the 1-to-2 junction. This
specific situation will be addressed separately in Section 5.
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In order to draw a comparison with the LWR model on networks, we sum the vehicle
densities on the various lanes, and we compare the total density profile with the solution
given by the LWR model with corresponding maximal density. Notice that, in this way, we
are led to consider the LWR model at a 2-to-1 junction with maximal density M`j on the
j-th incoming road and Mr on the outgoing road. This choice is driven by the fundamental
principle of conservation of the number of vehicles across the junction. The same approach
is used on diverging junctions.

The numerical tests described in Sections 4 and 5 point out similarities and differences
between the multilane model and its LWR counterpart. Interestingly, in the case of a 1-to-1
junction, the multilane description captures a different behaviour than those commonly de-
scribed by the classical LWR approach. Merging junctions display pretty the same dynamics
with both approaches, while diverging junctions show a more complex behaviour, acting as
FIFO (first-in-first-out) when one outgoing road is fully congested, and as non-FIFO oth-
erwise. Further assessment on the validity of the models necessitate the comparison with
suitable real data.

2 LWR on n-to-m junctions

We recall the LWR model on n to m junctions, that is on junctions with n incoming roads
and m outgoing roads. More details can be found in [8, 10].

A road network is modelled by a finite collection of edges and vertices, representing respec-
tively unidirectional roads and junctions. On each edge I, and thus on each road, traffic flow
is described through the Lighthill-Whitham-Richards (LWR) model: the density of vehicles
ρ(t, x) satisfies  ∂tρ+ ∂xfI(ρ) = 0,

ρ(0, x) = ρo(x),
(2.1)

where fI is assumed to be strictly concave and of class C2, such that f(0) = f(RI) = 0, RI

being the maximal possible density on road I. In particular, we may choose

fI(u) = VI u

(
1− u

RI

)
, (2.2)

where VI is the maximal speed on road I. Note that, with this particular choice of flux, fI
attains its unique maximum at ϑI = RI/2. At network junctions, the conservation of the
number of vehicles has to be ensured and, moreover, the usual choice is to maximise the
flux through the junction. We introduce therefore the demand and supply functions (see for
instance [12]) and express the flux at the junction through an ad hoc minimisation between
the two:

DI(u) =

{
fI(u) if u ≤ ϑI ,
fI (ϑI) if u ≥ ϑI ,

and SI(u) =

{
fI (ϑI) if u ≤ ϑI ,
fI(u) if u ≥ ϑI .

(2.3)

The demand and supply functions introduced above are displayed in Figure 1.
Notice that, as in [12], the flux function fI , as well as the corresponding demand and supply
functions, may depend also on time, if traffic regulations are applied.

2



u

DI(u)

RI
2

RI

fI(u)

u

SI(u)

RI
2

RI

fI(u)

Figure 1: The demand (left) and supply (right) function for fI as in (2.2). In both pictures,
the dashed line represents fI(u).

At each junction, the model includes also of the preferences of the drivers, which are
prescribed and known a priori. These preferences describe the distribution of traffic from
incoming to outgoing roads and are expressed as elements of a matrix A, called traffic dis-
tribution matrix : for a vertex J with n incoming edges I1, . . . , In and m outgoing edges
In+1, . . . , In+m, the matrix A is given as follows

A = (aj,i) ∈ Rm×n with 0 ≤ aj,i ≤ 1 for every i ∈ {1, . . . , n} and j ∈ {n+ 1, . . . , n+m}

and
n+m∑
j=n+1

aj,i = 1 for every i ∈ {1, . . . , n} .

In other words, each element aj,i of the matrix A gives the percentage of traffic from road Ii
going into road Ij at the junction.

In view of the examples considered in this paper, we focus on the cases of one-to-one
junctions (modeling speed limit or lane number changes), two-to-one (merging) junctions and
one-to-two (diverging) junctions, see Figure 2. In the case of merging junctions, where the

One-to-one Two-to-one One-to-two

Figure 2: The types of junction considered in this work for the LWR model.

number of incoming roads is greater than the number of outgoing roads, it is necessary to
introduce a priority parameter for each incoming road to single out a unique solution. In
particular, for two-to-one junctions, the two incoming roads are characterised by the priority
parameters P and (1− P ), with P ∈ ]0, 1[.

2.1 1-to-1 junction

Consider a one-to-one junction and call I1, I2 respectively the incoming and outgoing road.
Denote by ρi the density of vehicles in road Ii, i = 1, 2. Observe that the LWR model (2.1)
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on this particular junction is equivalent to a Cauchy problem for a conservation law with
discontinuous flux (see, for instance, [14, Chapter 8] for a brief introduction to the topic): ∂tρ+ ∂xf(x, ρ) = 0,

ρ(0, x) = ρo(x),
(2.4)

with

v(x, u) = H(x) vr(u) + (1−H(x)) v`(u), (2.5)

f`(u) = u v`(u) fr(u) = u vr(u), (2.6)

f(x, u) = u v(x, u) = H(x) fr(u) + (1−H(x)) f`(u), (2.7)

H being the Heaviside function. The functions v` and vr are strictly decreasing, positive and
such that vd(Rd) = 0 for d = `, r. One admissible choice is

vd(u) = Vd

(
1− u

Rd

)
, (2.8)

for a suitable positive constant Vd, leading to the flux function (2.2).
Concerning the initial datum ρo, it satisfies the following constraints:

ρo(x) ∈ [0, R`] for x ∈ ]−∞, 0[, ρo(x) ∈ [0, Rr] for x ∈ ]0,+∞[.

Hyperbolic conservation laws with discontinuous flux such as (2.4) arise in the modelling
of several phenomena, such as, for instance, two phase flow in heterogeneous media and
traffic flow with rough road conditions. Among the rich literature on the subject, we refer
the interested reader to [2, 3, 6, 16, 21] and the references therein.
The main issue when dealing with conservation laws with discontinuous flux function is the
lack of a unique solution, since the classical theory by Kružkov does not apply. Clearly,
Kružkov entropy conditions are valid away from the point(s) of discontinuity of the flux,
but they are not enough to provide the uniqueness of solution. With the aim of proving
the well-posedness of the problem, various notions of solutions have been introduced in the
literature, based of different admissibility conditions. We recall for example the minimal
variation criterion introduced by Gimse and Risebro [11] and the Γ-condition described by
Diehl [5]. We refer to [3] for a more complete overview.

In the present study, we will focus on the solutions given by the supply-demand flux
maximizing criterion classically used in traffic flow modeling (satisfying the entropy criterion
of [1]) and by the vanishing viscosity limit [6].

2.2 2-to-1 junction

In the case of merging junctions, a priority parameter has to be assigned to each incoming
road, see [10, Section 5.2.2]. Therefore, in the specific situation of a two-to-one junction, the
two incoming roads have priority P and 1− P respectively, with P ∈ ]0, 1[. The idea is that,
in general, not all vehicles can pass at the junction: denoting by γ the amount of vehicles
that can enter the outgoing road in the supply-limited case, P γ vehicles comes from the first
incoming road, and (1− P ) γ cars from the second incoming road.
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Clearly, since there is only one outgoing road, the traffic distribution matrix A reduces to
the two-dimensional vector (1, 1).

The initial datum satisfies the following constraints:

ρo,`1(x) ∈ [0, R`1 ] for x ∈ ]−∞, 0[,
ρo,r(x) ∈ [0, Rr] for x ∈ ]0,+∞[.

ρo,`2(x) ∈ [0, R`2 ] for x ∈ ]−∞, 0[,

Following [12], denoting by ρ`i and γ̂`i the density and the flux on the incoming roads
(i = 1, 2) and by ρr, γ̂r the density and the flux on the outgoing one, for P ∈ ]0, 1[ the fluxes
at the junctions are defined as

γ̂`1(ρ`1 , ρ`2 , ρr) := min
{
D`1(ρ`1),max

{
P Sr(ρr), Sr(ρr)−D`2(ρ`2)

}}
,

γ̂`2(ρ`1 , ρ`2 , ρr) := min
{
D`2(ρ`2),max

{
(1− P )Sr(ρr), Sr(ρr)−D`1(ρ`1)

}}
, (2.9)

γ̂r(ρ`1 , ρ`2 , ρr) := γ̂`1(ρ`1 , ρ`2 , ρr) + γ̂`2(ρ`1 , ρ`2 , ρr).

2.3 1-to-2 junction

The one-to-two junction is a particular diverging junction, see [10, Section 5.2.1] for more
details. (Since there is only one incoming road, there is no need to prescribe a right of way.)
In this case, the traffic distribution matrix A is given by:

A =

 α

1− α

 , with α ∈ ]0, 1[.

In [10] a FIFO (first-in-first-out) rule is applied at the junction. In terms of the demand and
supply functions (2.3), the FIFO rule amounts to the following: denoting by ρ` the density
on the incoming road, by ρr1 and ρr2 the densities on the outgoing roads, by γ`, γr1 and γr2
the fluxes on the incoming and outgoing roads respectively, we have

γ`(ρ`, ρr1 , ρr2) := min

{
D`(ρ`),

Sr1(ρr1)

α
,
Sr2(ρr2)

1− α

}
,

γr1(ρ`, ρr1 , ρr2) := αγ`(ρ`, ρr1 , ρr2), (2.10)

γr2(ρ`, ρr1 , ρr2) := (1− α) γ`(ρ`, ρr1 , ρr2).

As a consequence, if one of the outgoing roads is fully congested (i.e. min{Sr1(ρr1), Sr2(ρr2)} =
0), the vehicles are stuck at the junction (γ` = γr1 = γr2 = 0), even if some of them could
proceed in the other outgoing road. In order to overcome this problem, non-FIFO models
have been developed, see for instance [12]. Non-FIFO model allows some flow through the
junction even if one of the outgoing road is fully congested. Using the same notation as before,
the non-FIFO rule reads as follows, in terms of the demand and supply functions (2.3):

γr1(ρ`, ρr1 , ρr2) := min
{
αD`(ρ`), Sr1(ρr1)

}
,

γr2(ρ`, ρr1 , ρr2) := min
{

(1− α)D`(ρ`), Sr2(ρr2)
}
, (2.11)

γ`(ρ`, ρr1 , ρr2) := γr1(ρ`, ρr1 , ρr2) + γr2(ρ`, ρr1 , ρr2).
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In the case of a diverging junction, the initial datum satisfies the following constraints:

ρo,r1(x) ∈ [0, Rr1 ] for x ∈ ]0,+∞[,
ρo,`(x) ∈ [0, R`] for x ∈ ]−∞, 0[,

ρo,r2(x) ∈ [0, Rr2 ] for x ∈ ]0,+∞[.

3 A multilane model for n-to-1 junctions (n = 1, 2)

We recall the main features of the multilane junction model introduced in [13], based on the
multilane traffic flow model proposed in [15]. The model provides a description of traffic on
road networks with several lanes, allowing for lane changes and overtaking, as well as change in
the speed laws and in the number of lanes along the road. In particular,M` ⊂ N+ represents
the set of indexes of the active lanes on ] −∞, 0[, with cardinality M` = |M`| ≥ 1; on the
other hand, Mr ⊂ N+ is the set of indexes of the active lanes on ]0,+∞[, with cardinality
Mr = |Mr| ≥ 1. We let M ≥ max {M`,Mr}, its choice depending on the specific situation
considered, and we assume, for technical needs, that there are M−M` and M−Mr additional
phantom lanes on ]−∞, 0[ and ]0,+∞[ respectively. We add moreover a condition (see (3.8)
below), which prevents vehicles from passing from the active to the fictive lanes.

The model reads then as follows: for x ∈ R and t > 0, the vehicle density on lane j,
ρj = ρj(t, x), solves the Cauchy problem ∂tρj + ∂xfj(x, ρj) = Gj−1(x, ρj−1, ρj)−Gj(x, ρj , ρj+1), j = . . . ,M,

ρj(0, x) = ρo,j(x), j = . . . ,M,
(3.1)

with, for j = 1, . . . ,M ,

vj(x, u) = H(x) vr,j(u) + (1−H(x)) v`,j(u), (3.2)

f`,j(u) = u v`,j(u), fr,j(u) = u vr,j(u), (3.3)

fj(x, u) = u vj(x, u) = H(x) fr,j(u) + (1−H(x)) f`,j(u), (3.4)

H being the Heaviside function. The velocities vd,j , for d = `, r and j = 1, . . . ,M , are strictly
decreasing positive functions such that vd,j(1) = 0. We assume that each map fd,j(u) =

u vd,j(u) admits a unique global maximum attained at u = ϑjd.
We set ρo,j : R→ [0, 1] for j = 1, . . . ,M and

ρo,j(x) = 0 for x ∈ ]−∞, 0[ and j /∈M`, (3.5)

ρo,j(x) = 1 for x ∈ ]0,+∞[ and j /∈Mr. (3.6)

The source terms, which account for the flow rates across lanes, are defined as in [15]:

Gd,j(ρj , ρj+1) = K
[(
vd,j+1(ρj+1)− vd,j(ρj)

)+
ρj −

(
vd,j+1(ρj+1)− vd,j(ρj)

)−
ρj+1

]
= K

(
vd,j+1(ρj+1)− vd,j(ρj)

)
·

 ρj if vd,j+1(ρj+1) ≥ vd,j(ρj),

ρj+1 if vd,j+1(ρj+1) < vd,j(ρj),

(3.7)
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for d = `, r and j = 1, . . . ,M − 1, where (a)+ = max {a, 0} and a− = −min{a, 0} and K is a
dimensional constant (1/m), which can be assumed equal to 1 after rescaling space and time.
To account for separate lanes, such as different roads or fictive lanes, we set

Gd,jd(u,w) = 0 for some jd ∈ {1, . . . ,M − 1} , d = `, r. (3.8)

The functions appearing in the source term of (3.1) are then defined as follows

Gj(x, u, w) = H(x)Gr,j(u,w) + (1−H(x))G`,j(u,w) for j = 1, . . . ,M − 1, (3.9)

G0(x, u, w) = GM (x, u, w) = 0. (3.10)

For the sake of brevity, we introduce the notation ρ = (ρ1, . . . , ρM ), so that the initial data
associated to problem (3.1)–(3.5)–(3.6) read ρ(0, x) = ρo(x).

For simplicity, and with slight abuse of notation, we consider ρ = ρ(t, x) for t > 0, x ∈ R.
However, as shown in [13], by (3.5), (3.6) and (3.8), there holds ρj(t, x) = 0 for all t > 0,
x ∈ ]−∞, 0[ and j /∈M`, respectively ρj(t, x) = 1 for all t > 0, x ∈ ]0,+∞[ and j /∈Mr.

In order to compare the multilane model to the LWR model at junctions, we make the
following choices. In all the numerical experiments, for the multilane model we choose

vI,j(u) = VI (1− u) for j = 1, . . . ,M,

with VI > 0. Therefore, the maximal speed is the same for all lanes before, respectively after,
x = 0. This corresponds to the following velocity for the LWR model:

vI(u) = VI

(
1− u

MI

)
,

where MI is the cardinality of the active lanes.
Through our numerical integrations, we show that the outcome may be different when

not considering the number of lanes involved.

4 Comparison study

We compare now numerically the solution given by the multilane n-to-1 model with the
corresponding LWR solutions. We first describe the numerical schemes used to compute
approximate solutions of the considered models. Then we report on some numerical tests,
which illustrates the behaviour of solutions in different cases.

4.1 Numerical schemes

We provide in this section the details on the numerical schemes used throughout the paper.
We introduce a uniform mesh in space, of width ∆x, and a time step ∆t, subject to a

suitable CFL condition. For k ∈ Z set

xk =

(
k +

1

2

)
∆x, xk−1/2 = k∆x,
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where xk is the centre of the cell and xk±1/2 its interfaces. Notice that nonnegative integers
denote the cells on the positive part of the x-axis. Set λ = ∆t/∆x. For the multilane model,
we approximate the initial data as follows: for j = 1, . . . ,M

ρ0j,k =
1

∆x

∫ xk+1/2

xk−1/2

ρo,j(x) dx , (4.1)

recalling that (3.5) and (3.6) hold. The approximated initial data for the LWR model is given
consequently as the sum of the initial data on various lanes, depending on the configuration
under consideration:

• 1-to-1 junction (Section 4.2): the initial data for the LWR model is merely given
by the sum, thus

ρ0k =

M∑̀
j=1

ρ0j,k for k ≤ −1; ρ0k =

Mr∑
j=1

ρ0j,k for k ≥ 0.

• 2-to-1 junction (Section 4.3): for the merging junction, there are two incoming and
one outgoing roads:

for k ≤ −1 : ρ0`i,k =

M`i∑
j=1

ρ0j,k for i = 1, 2;

for k ≥ 0 : ρ0r,k =

Mr∑
j=1

ρ0j,k.

• 1-to-2 junction (Section 5): for the diverging junction, there are one incoming and
two outgoing roads:

for k ≤ −1 : ρ0`,k =

M∑̀
j=1

ρ0j,k;

for k ≥ 0 : ρ0ri,k =

Mri∑
j=1

ρ0j,k for i = 1, 2.

The solution to the multilane model (3.1)–(3.5)–(3.6)–(3.8) is obtained through a Godunov
type scheme, with fractional step to take into account the source terms, see [13, Algorithm 2.1]:

ρ
n+1/2
j,k = ρnj,k − λ

[
Fj(xk+1/2, ρ

n
j,k, ρ

n
j,k+1)− Fj(xk−1/2, ρ

n
j,k−1, ρ

n
j,k)
]
,

ρn+1
j,k = ρ

n+1/2
j,k + ∆tGj−1(xk, ρ

n+1/2
j−1,k , ρ

n+1/2
j,k )−∆tGj(xk, ρ

n+1/2
j,k , ρ

n+1/2
j+1,k ),

where

Fj(x, u, w) =

{
min

{
Dj(x, u), Sj(x,w)

}
if x 6= 0,

min
{
D`,j(u), Sr,j(w)

}
if x = 0,

(4.2)
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with

Dj(x, u) = H(x)Dj,r(u) + (1−H(x))Dj,`(u),

Sj(x, u) = H(x)Sj,r(u) + (1−H(x))Sj,`(u),

Dj,d and Sj,d, d = `, r, defined as in (2.3).
The LWR model is numerically integrated through a Godunov type scheme, which provides

the solution to the Cauchy problem (2.1) that maximises the flux through the junction:

• 1-to-1 junction (Section 4.2):

ρn+1
k = ρnk − λ

[
F (xk+1/2, ρ

n
k , ρ

n
k+1)− F (xk−1/2, ρ

n
k−1, ρ

n
k)
]
, (4.3)

with F defined as in (4.2), omitting index j.
In Section 4.2, we apply also a different strategy for the numerical integration of the
LWR model: we make use of an upwind scheme, which provides the solution to the
Cauchy problem (2.1) coming from the vanishing viscosity approach. The numeri-
cal scheme reads as in (4.3), where the numerical flux is now chosen as F (x, u, w) =
u v(x,w).

• 2-to-1 junction (Section 4.3): we follow [12] so that, exploiting the notation intro-
duced in (2.9), setting γ̂ni = γ̂i(ρ

n
`1,−1, ρ

n
`2,−1, ρ

n
r,0) for i = `1, `2, r, we have

for k < −1, ` = `1, `2 : ρn+1
`,k = ρn`,k − λ

[
F`(ρ

n
`,k, ρ

n
`,k+1)− F`(ρ

n
`,k−1, ρ

n
`,k)
]
,

for k > 1 : ρn+1
r,k = ρnr,k − λ

[
Fr(ρ

n
r,k, ρ

n
r,k+1)− Fr(ρ

n
r,k−1, ρ

n
r,k)
]
,

for k = −1, ` = `1, `2 : ρn+1
`,−1 = ρn`,−1 − λ

[
γ̂n` − F`(ρ

n
`,−2, ρ

n
`,−1)

]
,

for k = 0 : ρn+1
r,0 = ρnr,0 − λ

[
Fr(ρ

n
r,0, ρ

n
r,1)− γ̂nr

]
.

• 1-to-2 junction (Section 5): as already recalled in Section 2.3, we use two different
schemes, satisfying different rules at the junction.

FIFO rule: we follow [10], and exploit the notation already introduced in (2.10), with
γni = γi(ρ

n
`,−1, ρ

n
r1,0

, ρnr2,0) for i = `, r1, r2.

Non-FIFO rule: we follow [12] and exploit the notation already introduced in (2.11),
with γni = γi(ρ

n
`,−1, ρ

n
r1,0

, ρnr2,0) for i = `, r1, r2.

For both rules, the scheme amounts to the following:

for k < −1 : ρn+1
`,k = ρn`,k − λ

[
F`(ρ

n
`,k, ρ

n
`,k+1)− F`(ρ

n
`,k−1, ρ

n
`,k)
]
,

for k > 1, r = r1, r2 : ρn+1
r,k = ρnr,k − λ

[
Fr(ρ

n
r,k, ρ

n
r,k+1)− Fr(ρ

n
r,k−1, ρ

n
r,k)
]
,

for k = −1 : ρn+1
`,−1 = ρn`,−1 − λ

[
γn` − F`(ρ

n
`,−2, ρ

n
`,−1)

]
,

for k = 0, r = r1, r2 : ρn+1
r,0 = ρnr,0 − λ

[
Fr(ρ

n
r,0, ρ

n
r,1)− γnr

]
,

with the above choices of γni , i = `, r1, r2.
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4.2 1-to-1 junction: from 2 to 3 lanes

We consider the case of a junction with one incoming road with 2 lanes and one outgoing
road with 3 lanes. For the multilane model, this corresponds to problem (3.1)–(3.5)–(3.8)
with M` = {1, 2}, Mr = {1, 2, 3} and S`,2(u,w) = 0. For the LWR model, this is a 1-to-1
junction with maximal density on ]−∞, 0[ equal to M` = 2, while on ]0,+∞[ it is Mr = 3.

lane 1

x = 0

lane 2

lane 3

Case 1. We choose V` = 1.5, Vr = 1. The initial datum for the multilane model is

ρo,1(x) = 0.6, ρo,2(x) = 0.4, ρo,3(x) = 0.5 ∗ χ
[0,+∞[

(x), (4.4)

while the initial datum for the LWR model is given by the sum of the above functions, thus

ρo(x) = 1 ∗ χ
]−∞,0[

(x) + 1.5 ∗ χ
[0,+∞[

(x),

corresponding to the critical densities of the flux functions f` and fr respectively, see Figure 3,
i.e. the points where the flux functions attain their unique global maximum.

u

f(u)

1 2 3

f`(u) fr(u)

ǔ

f`(ǔ) = fr(ǔ)

f`(M`/2) = fr(Mr/2)

U

f`(U)

Supply-demand

Vanishing viscosity

multilane

Figure 3: Flux functions f` and fr related to the LWR model, for M` = 2, Mr = 3, V` = 1.5
and Vr = 1. The point ǔ is such that f`(ǔ) = fr(ǔ). The value U corresponds to the left
trace at x = 0 of the sum of the solutions of the multilane model on the two incoming lanes,
and f`(U) is the corresponding value of the flux.

Figure 4, left, displays the solutions of the considered models at time t = 1: in particular,
it allows to compare the multilane model, namely the sum of the densities on the various lanes,
to the LWR model. For the latter, there are many admissible solutions: indeed, depending
on the physics of the problem, the solution may be different, see [3] and references therein
for a thorough discussion on the choice of the “right” solution and on the physical models
behind. In particular, the solutions obtained through the Godunov type scheme and through
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the upwind scheme are different. The former, obtained via the Godunov type scheme and
thus through an ad hoc minimisation between the demand and supply function, is the solution
that maximises the flux at x = 0, i.e. at the point of discontinuity of the flux: the solution
connects f`(Ml/2) and fr(Mr/2), see also Figure 3. On the other hand, the intermediate
value attained around x = 0 by the solution coming from the upwind scheme corresponds
to the point ǔ in Figure 3: this point is such that f`(ǔ) = fr(ǔ). When higher order effects
are taken into account for choosing the “right” solution, the choice of the vanishing viscosity
approximation leads to this particular solution.

Figure 4: The dashed blue line corresponds to the multilane model (3.1)–(3.5)–(3.8): on the
left, it is the sum of its solutions, on the right it is the average. The dash-dotted orange line
corresponds to the solution to the LWR model (2.1) obtained via the Godunov type scheme;
the dotted green line is the solution to the LWR model (2.1) obtained through the upwind
scheme. Here: V` = 1.5, Vr = 1, initial datum (4.4).

Concerning the solution of the multilane model, the low value of the sum of the densities
right downstream x = 0 is due to the fact that, before x = 0, the third lane does not exist.
Thus, even though vehicles pass from the second to the third lane, the solution in the third
lane is given by a shock with positive speed. On the other hand, the queue right upstream
x = 0 is caused by the congestion of lanes 1 and 2, since after x = 0 the maximal speed
decreases. Moreover, notice that the solution of the multilane model maximises the flux on
each lane at the junction, see also Figure 5, right.

We make a second comparison between the LWR and the multilane model, namely we
take the latter in the form of the average of the densities on the various lanes. In this way,
the maximal density for the LWR model equals 1 everywhere. The initial datum is therefore
given by the average of (4.4):

ρo(x) = 0.5,

which corresponds to the critical density of the flux function on both incoming and outgoing
lanes. Figure 4, right, displays the solutions at time t = 1. We notice how the solutions
resemble each other on the incoming lane: the queue upstream x = 0 is well captured by all
models. On the other hand, also in this case the behaviour of the multilane model on the
outgoing lane strongly differs from the LWR model, for which in this case the supply-demand
and the vanishing viscosity solutions coincide.
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Recall that, by [13, Lemma 2.3], the multilane model (3.1)–(3.5)–(3.8) preserves the total
number of vehicles over time. This property is clearly valid when considering the multilane
model in the form of the sum of densities on the various lanes. However, this second type of
comparison considering the average of the densities on the various lanes implies that the total
number of vehicles is not conserved anymore through the junction: indeed, the total mass is
divided by the number of lanes, which is equal to 2 upstream x = 0 and 3 downstream.

u

f(u)

1

f`(u)

fr(u)

0.5 u

f(u)

1

f`(u)

fr(u)

Figure 5: Left: Flux functions f` and fr related to the LWR model when comparing it
to the multilane model in the form of the average of the densities on the various lanes:
V` = 1.5 and Vr = 1, in both cases the maximal density is 1. The orange line represents
the solution to the Riemann problem with initial datum ρo(x) = 0.5. Right: flux functions
related to the multilane model for the incoming (f`) and the outgoing (fr) lanes. The magenta
line represents the solution on lane 1, with initial datum ρo,1 = 0.6; the dotted blue line
corresponds to the solution on lane 2, with initial datum ρo,2 = 0.4.

Case 2. We choose now V` = 1 and Vr = 1.5 and the same initial data of Case 1. The flux
functions for the LWR model are displayed in Figure 6. In this case, the solution obtained
with the Godunov type scheme is identical to that obtained through the upwind method, see
Figure 7. Notice that the stationary shock at x = 0 is slightly smoothed out when using the
upwind scheme, due to numerical viscosity. The small slope right before x = 0 in the sum of
the solutions to the multilane model is caused by the higher flux of vehicles in lane 2 through
x = 0, since right after x = 0 the speed is higher and vehicles can pass also in lane 3.
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u

f(u)

1 2 3

f`(u)

fr(u)

ũ

f`(M`/2) = fr(ũ)

Figure 6: Flux functions f` and fr related to the LWR model, for M` = 2, Mr = 3, V` = 1
and Vr = 1.5. The point ũ is such that fr(ũ) = f`(1).

Figure 7: The dashed blue line is the sum of the solutions to the multilane model (3.1)–(3.5)–
(3.8); the dash-dotted orange line corresponds to the solution to the LWR model (2.1) obtained
via the Godunov type scheme; the dotted green line is the solution to the LWR model (2.1)
obtained through the upwind scheme. Here: V` = 1, Vr = 1.5, initial datum (4.4).

4.3 2-to-1 junction: from 2+2 to 2 lanes

We consider the case of a junction consisting of two incoming roads with 2 lanes each and
one outgoing road with 2 lanes, that is problem (3.1)–(3.6)–(3.8), with M` = {1, 2, 3, 4},
Mr = {2, 3} and initial data

ρo,1(x) = 0.6χ
]−∞,0]

(x) + 1χ
]0,+∞[

(x), ρo,2(x) = 0.4,

ρo,3(x) = 0.6χ
]−∞,0]

(x) + 0.8χ
]0,+∞[

(x), ρo,4(x) = 0.4χ
]−∞,0]

(x) + 1χ
]0,+∞[

(x),
(4.5)
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with the additional assumption that there is no flow of vehicles between the second and the
third lane on ] −∞, 0[, i.e. S`,2(u,w) = 0 (we also impose Sr,1(u,w) = Sr,3(u,w) = 0). The
situation under consideration looks as follows:

lane 2

lane 3

lane 1

lane 4

x = 0

Concerning the LWR model, we denote by `1 and `2 the two incoming roads, and by r the
outgoing one. Then, the initial data for problem (2.1) corresponding to (4.5) read as follows:

ρo,`1(x) = 1, ρo,`2(x) = 1, ρo,r(x) = 1.2, (4.6)

since road `1 is given by lanes 1 and 2 for x ∈ ]−∞, 0[, road `2 is given by lanes 3 and 4 for
x ∈ ]−∞, 0[ and road r is given by lanes 2 and 3 for x ∈ ]0,+∞[. Moreover, we prescribe the
priority P = 1− P = 1/2 on each incoming road. Observe that the maximal density on each
road is equal to 2.

Figure 8 displays the solution on each road at time t = 1: in each picture we can see
both the LWR model and the multilane model, in the form of the sum of the densities on the
involved lanes. Notice the asymmetric behaviour of the multilane model: this is due to the
asymmetry of the initial data (4.5) with respect to the lanes that are left after the junction.
Indeed, the initial datum in lane 2 has a lower value than in lane 1, while the opposite is true
for lane 3 with respect to lane 4. In the former case, this implies that more vehicles have to
pass form lane 1 to lane 2 in order to go through the junction, causing the formation of a
longer queue, which become visible when summing the two densities, see Figure 8. Figure 9
provides a detail of the multilane model at the same time t = 1, allowing a better insight on
the queue formation.
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Figure 8: In each picture, the dashed blue line is the sum of the solutions to the multilane
model (3.1)–(3.5)–(3.8): from left to right, lanes 1 and 2; lanes 3 and 4; lanes 2 and 3. The
dash-dotted orange line corresponds to the solution to the LWR model (2.1), obtained through
a Godunov type scheme, with priorities

(
1/2, 1/2

)
: from left to right, incoming roads a, b,

outgoing road c. The initial data are given in (4.5) and (4.6) respectively. In each lane we
set V = 1.5.

Figure 9: Solution to the multilane model (3.1)–(3.5)–(3.8) at time t = 1, with initial
data (4.5) and V = 1.5 on each lane.

5 A multilane model for a diverge

In this section, we aim to compare the LWR model on a one-to-two (diverging) junction with
a multilane model different from the one considered in Section 3. Indeed, we need to account
for the drivers’ routing preferences upstream, a feature that is not included in the multilane
model (3.1)–(3.7).

15



The specific multilane junction looks as follows: there are one incoming road with two
lanes and two outgoing roads, with one lane each.

lane 2

x = 0

lane 1

The core idea is to consider a multi-population model [4, 9], where each population is identified
by its desired final destination. In the particular case under consideration, we have two
populations, which coexist upstream x = 0. We assume that, in each lane of the incoming
road, a fraction α of the drivers belong to the first population, i.e. wants to go in lane 1
downstream x = 0, while the rest is directed towards lane 2. Overtaking is possible only
upstream x = 0, and, differently from the multilane model considered in Section 3, only
vehicles in lane 1 (respectively lane 2) targeting lane 2 (respectively lane 1) change lane. The
rate of vehicles changing lane depends on the total density in the target lane: the more the
target lane is crowded, the less vehicles are allowed to move into that lane. Moreover, the
desire to go in the target lane increases as drivers approach the junction (x = 0). Since we
focus on the dynamics at the junction, we do not consider the classical overtaking dynamics,
which can occur before x = 0. This could be added in the source term with minor changes in
the overall approach.

Our multilane multi-population model is the following: given the initial data ρo,1 and ρo,2
on R, the initial data on x < 0 read

ρ1o,1(x) = αρo,1(x)χ
]−∞,0]

(x), ρ2o,1(x) = (1− α) ρo,1(x)χ
]−∞,0]

(x),

ρ1o,2(x) = αρo,2(x)χ
]−∞,0]

(x), ρ2o,2(x) = (1− α) ρo,2(x)χ
]−∞,0]

(x),
(5.1)

where ρio,j , for i, j ∈ {1, 2}, denotes the amount of drivers in lane j targeting lane i. Setting

ρ1 = ρ11 + ρ21 and ρ2 = ρ12 + ρ22, the densities ρij , i, j = 1, 2, satisfy the following system:

∂tρ
1
1 + ∂x

(
ρ11 v1(ρ1)

)
= K ρ12

max {1− ρ1, 0}
|x|

χ
]−∞,0[

(x)

∂tρ
2
1 + ∂x

(
ρ21 v1(ρ1)

)
= −K ρ21

max {1− ρ2, 0}
|x|

χ
]−∞,0[

(x)

∂tρ
1
2 + ∂x

(
ρ12 v2(ρ2)

)
= −K ρ12

max {1− ρ1, 0}
|x|

χ
]−∞,0[

(x)

∂tρ
2
2 + ∂x

(
ρ22 v2(ρ2)

)
= K ρ21

max {1− ρ2, 0}
|x|

χ
]−∞,0[

(x),

(5.2)

where K is a dimensional constant (m/s), which can be assumed equal to 1 after rescaling
space and time. In the source terms, the factor |x|−1 represents the increase of the urgency
to change lane as the junction approaches.

We observe that a close model which describes traffic on a multilane highway under the
hypotheses that traffic is neither perfectly FIFO nor perfectly non-FIFO has been introduced
in [20]. Here, we compare the multilane multi-population model (5.2) to the LWR model for a
diverging junction, both in the case of a FIFO rule and of a non-FIFO rule at the junction, see
Section 2.3. The incoming roads are paired together, and denoted by the subscript `, while
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the two distinct outgoing roads are denoted by subscripts r1 and r2 respectively. The initial
data for problem (2.1) is related to the initial data ρo,1, ρo,2 for the multilane multi-population
model as follows:

ρo,`(x) =
(
ρo,1(x) + ρo,2(x)

)
χ
]−∞,0]

(x),

ρo,r1(x) = ρo,1(x)χ
]0,+∞[

(x), (5.3)

ρo,r2(x) = ρo,2(x)χ
]0,+∞[

(x).

5.1 Numerical scheme

We detail here the numerical scheme exploited for the integration of the multilane multi-
population model (5.2). The scheme is inspired by that presented in [7, 19], and the source
terms are treated through fractional step.

The space and time mesh are defined as in Section 4.1. The initial data on each lane, ρo,1
and ρo,2, are approximated by ρ01,k and ρ02,k, for k ∈ Z, as in (4.1), then distinguished on the
negative part of the x-axis according to their target lane: for k ≤ −1

ρ1,01,k = αρ01,k, ρ2,01,k = (1− α)ρ01,k,

ρ1,02,k = αρ02,k, ρ2,02,k = (1− α)ρ02,k.

The solution to the multilane multi-population model (5.2) is obtained through a Godunov
type scheme, with fractional step to account for the source terms. In particular, set ρnj,k =

ρ1,nj,k + ρ2,nj,k and introduce the quantity γnj = min
{
D̂j(ρ

j,n
j,−1, ρ

i,n
j,−1), Sj(ρ

n
j,0)
}

, for j = 1, 2,

i = 3 − j, with Sj as in (2.3) and D̂j defined as let ϑj(w) the point of maximum of the
function u 7→ uvj(u+ w), then

D̂j(u,w) =

{
u vj(u+ w) if u < ϑj(w),

ϑj(w) vj
(
ϑj(w) + w

)
if u ≥ ϑj(w).

Then, for i, j = 1, 2, we set

if k < −1 : ρ
i,n+1/2
j,k = ρi,nj,k − λ

ρi,nj,k
ρnj,k

F (ρnj,k, ρ
n
j,k+1)−

ρi,nj,k−1
ρnj,k−1

F (ρnj,k−1, ρ
n
j,k)

 ,
if k = −1 : ρ

i,n+1/2
j,−1 = ρi,nj,−1 − λ

γnj − ρi,nj,−2
ρnj,−2

F (ρnj,−2, ρ
n
j,−1)

 ,
if k = 0 : ρn+1

j,0 = ρnj,0 − λ
[
F (ρnj,0, ρ

n
j,1)− γnj

]
,

if k > 0 : ρn+1
j,k = ρnj,k − λ

[
F (ρnj,k, ρ

n
j,k+1)− F (ρnj,k−1, ρ

n
j,k)
]
,

with F (u,w) = min
{
D̂j(u), Sj(w)

}
. Concerning the contribution of the source terms, define

G(x, u, w) = w
max {1− u, 0}

|x|
χ
]−∞,0[

(x)
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so that

ρ1,n+1
1,k = ρ

1,n+1/2
1,k + ∆tG(xk, ρ

n+1/2
1,k , ρ

1,n+1/2
2,k ),

ρ2,n+1
1,k = ρ

2,n+1/2
1,k −∆tG(xk, ρ

n+1/2
2,k , ρ

2,n+1/2
1,k ),

ρ1,n+1
2,k = ρ

1,n+1/2
2,k −∆tG(xk, ρ

n+1/2
1,k , ρ

1,n+1/2
2,k ),

ρ2,n+1
2,k = ρ

2,n+1/2
2,k + ∆tG(xk, ρ

n+1/2
2,k , ρ

2,n+1/2
1,k ).

5.2 Example 1: fully congested outgoing road

The first example we take into account considers a fully congested outgoing road. We choose
α = 0.4, the maximal speed on the incoming road is V` = 1.5 and on both outgoing roads it
is Vr = 2. The initial data for the multilane multi-population model (5.2) are

ρo,1(x) = 0.6χ
]−∞,0]

(x) + 0.4χ
]0,+∞[

(x),

ρo,2(x) = 0.7χ
]−∞,0]

(x) + 1χ
]0,+∞[

(x),
(5.4)

and through (5.3) we recover the initial data for the corresponding LWR model (2.1).
Figure 10 displays the solution on each road at time t = 0.5: in each picture we see the

LWR model with both FIFO and non-FIFO rule and the multilane multi-population model,
in the form of the sum of the densities for x < 0. Lane 2 is initially fully congested: no
vehicles can enter, and the solution on that lane is clearly the same with all the three models.
In this situation, the solution of the multilane multi-population model looks very close to that
of the LWR model with FIFO rule. Indeed, non-FIFO rule allows vehicles targeting lane 1 to
overcome the junction: they are not queuing waiting for their turn to pass the junction.

Figure 10: In each picture, the dashed blue line corresponds to the solutions to the multilane
multi-population model (5.2), and in particular to their sum on x < 0. The dotted orange
line corresponds to the solution of the LWR model (2.1) with non-FIFO rule, while the dash-
dotted green line is the solution to the LWR model (2.1) with FIFO rule. The initial data
is (5.4), while V` = 1.5, Vr = 2 and α = 0.4.
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5.3 Example 2

In this second example, none of the outgoing lane is fully congested. We keep the same
parameters as before, thus α = 0.4, V` = 1.5, Vr = 2. The initial data for the multilane
multi-population model (5.2) are

ρo,1(x) = 0.6χ
]−∞,0]

(x) + 0.4χ
]0,+∞[

(x),

ρo,2(x) = 0.7χ
]−∞,0]

(x) + 0.8χ
]0,+∞[

(x),
(5.5)

which differ from (5.4) only in the density on the second road downstream x = 0. Through (5.3)
we recover the initial data for the LWR model (2.1).

Figure 11 displays the solution on each road at time t = 0.5: in each picture we see
the LWR model with both FIFO and non-FIFO rule and the multilane multi-population
model, in the form of the sum of the densities for x < 0. Even though lane 2 is not fully
congested downstream x = 0, all the three models produce the same solution there. However,
on the outgoing road corresponding to lane 1 the solution to the multilane multi-population
model (5.2) is very close to the solution to the LWR model (2.1) with non-FIFO rule. In the
incoming roads, the similarity is reduced, but nevertheless the solution to the LWR model
with FIFO rule looks much different than the others, since it reaches a greater value upstream
x = 0.

Figure 11: In each picture, the dashed blue line corresponds to the solutions to the multilane
multi-population model (5.2), and in particular to their sum on x < 0. The dotted orange
line corresponds to the solution of the LWR model (2.1) with non-FIFO rule, while the dash-
dotted green line is the solution to the LWR model (2.1) with FIFO rule. The initial data
is (5.5), while V` = 1.5, Vr = 2 and α = 0.4.
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[12] P. Goatin, S. Göttlich, and O. Kolb. Speed limit and ramp meter control for traffic flow networks.
Eng. Optim., 48(7):1121–1144, 2016.

[13] P. Goatin and E. Rossi. A multilane macroscopic traffic flow model for simple networks. SIAM
J. Appl. Math., 79(5):1967–1989, 2019.

[14] H. Holden and N. H. Risebro. Front tracking for hyperbolic conservation laws, volume 152 of
Applied Mathematical Sciences. Springer, Heidelberg, second edition, 2015.

[15] H. Holden and N. H. Risebro. Models for dense multilane vehicular traffic. SIAM J. Math. Anal.,
51(5):3694–3713, 2019.

[16] K. H. Karlsen, N. H. Risebro, and J. D. Towers. L1 stability for entropy solutions of nonlinear
degenerate parabolic convection-diffusion equations with discontinuous coefficients. Skr. K. Nor.
Vidensk. Selsk., 3:1–49, 2003.

[17] M. J. Lighthill and G. B. Whitham. On kinematic waves. II. A theory of traffic flow on long
crowded roads. Proc. Roy. Soc. London. Ser. A., 229:317–345, 1955.

[18] P. I. Richards. Shock waves on the highway. Operations Res., 4:42–51, 1956.

[19] S. Samaranayake, W. Krichene, J. Reilly, M. L. D. Monache, P. Goatin, and A. Bayen. Discrete-
time system optimal dynamic traffic assignment (SO-DTA) with partial control for physical queu-
ing networks. Transportation Science, 52(4):982–1001, 2018.

[20] B. Schnetzler, X. Louis, and J.-P. Lebacque. A multilane junction model. TRANSPORTMET-
RICA, 8(4):243–260, 2012.

[21] J. D. Towers. Convergence of a difference scheme for conservation laws with a discontinuous flux.
SIAM J. Numer. Anal., 38(2):681–698, 2000.

20


	Introduction
	LWR on n-to-m junctions
	1-to-1 junction
	2-to-1 junction
	1-to-2 junction

	A multilane model for n-to-1 junctions (n=1,2)
	Comparison study
	Numerical schemes
	1-to-1 junction: from 2 to 3 lanes
	2-to-1 junction: from 2+2 to 2 lanes

	A multilane model for a diverge
	Numerical scheme
	Example 1: fully congested outgoing road
	Example 2


