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CNRS, Université Paris-Saclay, France

Email: {laetitia.jeancolas, badr-eddine.benkelfat, dijana.petrovska}@telecom-sudparis.eu
† PERFORM Centre, Electrical & Computer Engineering Department

Concordia University, Montreal, QC, Canada
‡ Laboratoire d’Imagerie Biomédicale INSERM U1146 - CNRS UMR 7371-UPMC UM CR2

Pierre & Marie Curie University, Paris, France. Email: habib.benali@lib.upmc.fr
§ Sorbonne University, UPMC Univ Paris 06 UMR S 1127; INSERM U 1127 and CIC 1422; CNRS UMR 7225;

Brain and Spine Institute ICM and Centre de Neuroimagerie de Recherche (CENIR);
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Abstract—Vocal impairments are one of the earliest disrupted

modalities in Parkinson’s disease (PD). Most of the studies

whose aim was to detect Parkinson’s disease through acoustic

analysis use global parameters. In the meantime, in speaker

and speech recognition, analyses are carried out by short-term

parameters, and more precisely by Mel-Frequency Cepstral

Coefficients (MFCC), combined with Gaussian Mixture Models

(GMM). This paper presents an adaptation of the classical

methodology used in speaker recognition to the detection of early

stages of Parkinson’s disease. Automatic analyses were performed

during 4 tasks: sustained vowels, fast syllable repetitions, free

speech and reading. Men and women were considered separately

in order to improve the classification performance. Leave one

subject out cross validation exhibits accuracies ranging from 60%

to 91% depending on the speech task and on the gender. Best

performances are reached during the reading task (91% for men).

This accuracy, obtained with a simple and fast methodology, is

in line with the best classification results in early PD detection

found in literature, obtained with more complex methods.

Keywords—Parkinson’s disease; automatic detection; mfcc;

speech signal processing; classification

I. INTRODUCTION

Parkinson’s disease (PD) is a neurodegenerative disease
whose prevalence increases with age. It affects 1% of people
older than 60 years, and up to 4% of those over 80 [1]. It
is the second most common neurodegenerative disease after
Alzheimer’s disease. Symptoms are mainly motor symptoms
which result from a loss of dopaminergic neurons in the
substantia nigra (a structure located in the midbrain area),
and disrupted connections between substantia nigra and basal
ganglia. The standard diagnosis relies on motor tests that are
positive when they reveal two out of three of the following
symptoms: akinesia (difficulty to start a movement), rigidity
and rest tremor. Unfortunately, those motor symptoms appear
once 70% of dopaminergic neurons are destroyed. For this

reason, the detection of Parkinson’s disease at an earlier stage,
is one of the main goals of PD research.

One method that has the potential to detect early changes
in PD patients is the acoustic analysis of voice. Indeed,
people with Parkinson’s disease have vocal impairments char-
acterized by hypokinetic dysarthria. This includes perturba-
tion in prosody, articulation and phonation. Their voice is
more monotonous (with a diminution of intensity and pitch
modulations). Speech flow is altered and patients make more
dysfluencies. Consonant articulation is imprecise, particularly
for the occlusive consonants (/p/, /t/, /k/, /b/, /d/, /g/). Vowel ar-
ticulation is also impaired: differences between vowels tend to
decrease, which results in a reduction of the vowel surface area.
As for phonation, pitch and intensity are unsteady (particularly
during sustained vowel tasks), and timbre is hoarse. More
details about those vocal impairments can be found in [2].

One of the main interests of voice analysis in PD is
that vocal impairments are present from the beginning of the
disease and even several years before a clinical diagnostic can
be made [3]–[5]. Moreover automatic detection of PD based
on voice acoustic analysis reaches an accuracy of 95% [6]. As
for specific detection of the early and middle stages of PD, the
best accuracies are around 90% [5]–[7]. Most common speech
tasks for vocal analyses in PD detection are the following:
- Sustained vowels: vowel /a/ is the most common. This task
reveals phonatory impairments.
- Diadochokinesia (DDK) task: fast syllables repetition, usually
syllable with occlusive consonant (like /pa/-/ta/-/ka/). This task
reveals the consonant articulation impairments.
- Reading and free speech: to analyze consonant and vowel
articulation as well as prosody.

Initial studies performed long term signal analyses. They
extracted global features such as number of pauses, number
of dysfluent words, Standard Deviation (SD) of pitch and of
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intensity. They also averaged low-level perturbations, such as
shimmer, jitter, voice onset time, signal to noise ratio, formants
or vowel space area, in order to have one parameter per subject
and per task. Once the features were extracted, they performed
significance and redundancy tests to select a reduced set of
features. Selected features were then fed as inputs to classifiers
(Support Vector Machine (SVM) was the most commonly
used). Finally, most of the time, in order to have a reliable
estimation of the accuracy, they validated their classifier with
cross validation. Leave One Subject Out (LOSO) and 10-fold
cross validation were the two cross validation techniques the
most used in this context.

Most of those long term acoustic parameters require an ac-
curate estimation of the fundamental frequency, which is a hard
task, above all for pathological voices. On the other hand, other
parameters are widely used in speaker and speech recognition:
Mel-Frequency Cepstral Coefficients (MFCC), associated with
Gaussian Mixtures Models (GMM). MFCC are short-term pa-
rameters: they are calculated on short time windows (between
20ms to 40ms). They characterize the spectral envelope on a
Mel scale (reflecting the natural auditory perception). These
features have the advantage not to rely on pitch estimation.
For a decade, MFCC have been used for the detection of
different voice impairments, like dysphonia [8]–[10]. They
were introduced for PD disease detection a few years later,
the first time by Tsanas in 2012 [11], and later by several
other studies [12]–[18]. These authors extracted some statistics
from the MFCC (mean, and in some cases: SD, kurtosis and
skewness), sometimes in addition with other classical features,
and fed them to their classifier. They calculated statistics from
the whole utterance when the task was acoustically steady
(like sustained vowels) [11], [15]–[18], or on portions of
the tasks that shared some common acoustical characteristics,
like voiced and unvoiced frames within a word [12]. The
accuracies achieved with the sustained vowel tasks ranged
from 80% to 90%. Tsanas [11] and Jafari [17] obtained 99%
and 97.5% accuracies, but their validation process was not
speaker-independent (the utterances used in the training groups
were different than the ones used for the test but could belong
to the same subject). This can lead to optimistic and biased
accuracies. Authors from [12], who performed segmentation
before extracting MFCCs and other parameters (on voiced and
unvoiced frames), reported accuracies for PD detection (not
especially early PD) between 84% to 99%.

In order to get information on frames that are acoustically
very different (for example if we take all the frames from a
reading task) we have to model more precisely the MFCC
distribution. One possible way chosen in some studies [19],
[20] is to use Vector Quantization (VQ). In [20], one codebook
was computed per subject. The best accuracy obtained after
a LOSO cross validation (on a SVM) was 82%. In [19] a
calculation of VQ distortion between test subjects and training
subjects enabled a classification for different codebook sizes.
The best performance (93%) was obtained for a codebook size
of 16. Another method to model more precisely the MFCC
distribution is to use multi-dimensional Gaussian Mixture
Models (GMM) as an approximation of the multi-dimensional
probability density function of MFCC. For speech features it
has been showed that a finite number of Gaussians is sufficient
to form a smooth approximation of the probability density
function [21]. Bocklet et al. [22] in 2013 used this method to

model the MFCC distribution during different types of speech
tasks (sustained vowels, free speech, reading, DDK). They
created one multi-dimensional GMM (with 128 Gaussians) per
subject and per task with Universal Background GMM mod-
eling, and kept the means of the 128 Gaussians. These multi-
dimensional features vectors (one per task and per speaker)
were then used as inputs for the SVM classifier. The best
accuracy they obtained was 81%, reached during a reading
task. This method was also tested by [6] for three different
languages during reading tasks (for which they obtained an
accuracy around 80%) and during DDK task (with accuracies
from 70% to 87% depending on the language).

In speaker recognition, usually men and women are treated
with separate classifiers. Moreover it has already been shown
that differentiation by gender increased performance in detec-
tion of some voice impairments, like laryngeal pathologies [23]
when MFCC are used. We decided to follow this direction
and see how we can exploit the GMM modeling in order to
distinguish early stages of PD from healthy controls. Unlike the
previous studies which used GMM as a step in their features
extraction [6], [22], we employed them as a component of
our classifier. We created one GMM per class and merely
calculated the likelihood of the test subjects’ MFCC against the
two GMM models (one for PD class and one for control class).
No SVM or other further classifier was then used. We wanted
to see if we could have a good classification performance for
early stages of PD detection with this simple, automatic and
fast method.

II. VOICE ACQUISITION

A. Participants

PD patients and healthy controls were recruited at the
Pitié-Salpêtrière Hospital in the context of a longitudinal
study (ICEBERG). Additional healthy control subjects were
recruited via an offer of the RISC (French information relay in
cognitive science). The inclusion criteria for PD patients were:
a diagnosis of idiopathic Parkinson’s disease, according to
the UK Parkinson’s Disease Society Brain Bank (UKPDSBB)
clinical diagnostic criteria [24]; less than 4 years of disease
duration at inclusion; dopamine transporter deficiency detected
with a DATScan; absence of atypical Parkinsonian syndrome
(like multiple system atrophy, Lewy body dementia, progres-
sive supranuclear palsy); no Parkinsonian syndrome due to
neuroleptic or MPTP neurotoxin. The inclusion criteria for
control subjects were: having a normal neurologic examination
and being age-matched with the patients’ groups (between 40
and 70 years old). All subjects (PD and controls) had a medical
examination, motor and cognitive tests, biological sampling
and medical imaging (DATScan, MRI and fMRI).

For our study we recorded 74 French subjects among these
participants. 40 were recently diagnosed with PD (21 males
and 19 females). 34 were healthy control subjects (14 males
and 20 females). The mean age was 61.7 ± 7.0 (SD) years
for male PD, 62.4 ± 9.2 years for female PD, 54.9 ± 9.7
years for male controls and 54.8 ± 8.1 years for female
controls. PD subjects were pharmacologically treated and the
voice recordings occurred at different moments of the day:
patients could be on the effect on their treatment (ON-state)
or not (OFF-state). The study was sponsored by INSERM,
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and conducted according to Good Clinical Practice guidelines.
All participants provided written informed consent and the
research received approval from a local ethical committee and
regulatory agencies.

B. Voice Recordings

The participants were recorded once in a consultation
room at the hospital Pitié-Salpêtrière in Paris. Their voice
was recorded with a professional head mounted omnidirec-
tional condenser microphone (Beyerdynamics Opus 55 mk ii)
placed approximately 10 cm from the mouth. This microphone
was connected to a professional sound card (Scarlett 2i2,
Focusrite). Speech was sampled at 96000 Hz with 24 bits
resolution, with a spectrum of [50Hz, 20kHz]. There was a
preamplification in the external sound card connected to the
head mounted microphone.

C. Speech Tasks

The speech tasks were presented to the patients via a user
interface on a computer programmed with Matlab. They had
18 short tasks to carry out. Each task lasted between 2s and
1min, leading to recordings of around 4min per subject. The
tasks appeared in a random order. Some tasks started with an
audio example. The speech tasks are presented in Table I. More
details about our choice of tasks can be found in [25].

III. METHODS: ACOUSTIC ANALYSIS AND
CLASSIFICATION

A. Mel-frequency Cepstral Coefficients Extraction

MFCC are acoustic features introduced for the first time
in 1980 by Davis and Mermelstein [26], for automatic speech
recognition. Since then, they have been widely used in speech
and speaker recognition, and more recently in the assessment
of vocal pathologies. They characterize the spectrum envelop
which directly depends on the shape of the vocal tract. We

extracted MFCC with the Matlab Voicebox toolbox [27], as
follows:
- Framing: Speech data are windowed into short frames. We
chose 20ms frames, with an overlapping of 50% between two
consecutive frames, and we applied Hamming windowing to
avoid discontinuities between consecutive frames. This means
a 10ms time shift between two consecutive frames.
- Fast Fourier Transform (FFT): FFT, which is a fast way
to compute Discrete Fourier Transform, is then calculated for
each frame, resulting in one periodogram estimate of the power
spectrum per frame.
- Mel-spaced filterbank: In order to get rid of useless informa-
tion and get closer to the auditory perception, which perceives
better the frequency variations in the low part of the spectrum,
we applied Mel-spaced filter banks. The energy of the power
spectrum is summed up inside portions of periodogram spec-
trum, filtered with overlapping triangular filters. These filters
are sized and spaced along the mel-scale defined by:

Mel(f) = 1127 ∗ ln(1 + f/700) (1)

with f the frequency.

We used 34 filters for our implementation, so 34 filterbank
energies characterize our power spectrum per frame.
- Logarithm of filterbank energies: As the human auditory
perception of the intensity follows a logarithmic rule, the
logarithm of the filterbank energies was taken.
- Discrete Cosine Transform (DCT): DCT is applied on the log
filterbank energies so that the main information concerning the
envelop of the log filterbank energies lies in the first coeffi-
cients of the cepstrum computed with DCT. These coefficients
are called MFCC, and we kept the first 12 of them.

To summarize, the first 12 MFCC are calculated from 20ms
frames with 10ms time shifts.

B. Classification

The goal of our study is to be able to distinguish early
PD patients from controls, knowing the gender of an unknown
subject. We had speech data from early PD patients (males
and females) and healthy controls (males and females) that
we could use to build a statistical multidimensional GMM
model per task for each of the 4 groups. Knowing the gender
of a new subject we wanted to see with which accuracy we
could predict if she/he belonged to the PD or control side.
During the training phase, we built 12-dimensional GMM
models (one per group and per task) which fit the MFFC
distributions, as illustrated in Fig. 1. Means, SD and weights
of the Gaussians (characterizing the GMM) were estimated via
an Expectation-Maximization algorithm. We could choose the
number of Gaussian functions used to fit the distribution of
the MFCC. This number depended on the quantity of speech
data we had per group (which depended on the number of
subjects per group and the length of the task). Preliminary tests
showed that 20 Gaussians seemed relevant for approximately
20 subjects per group for a 1min task (i.e. 20min of speech
data).

To classify one test subject, we computed the log-likelihood
of its MFCC values during one task against the PD and the
control models (that corresponded to the same task and to
his or her gender). The model against which the test subject

3



Fig. 1. Training phase: GMM model building for each group (male Parkinson,
female Parkinson, male control and female control) and for each task. EM
algo: Expectation-Maximization algorithm

had the highest log-likelihood would determine his/her class.
More precisely, we computed one log-likelihood per frame of
the data test, against the 2 models. Then we averaged the log-
likelihoods on all the frames (Fig. 2.). This method guaranteed
the likelihood to be independent of the frame number.

Fig. 2. Test phase: each test subject’s data are tested against a PD model
and a HC model for each task. PD: Parkinson’s Disease, HC: Healthy control

C. Validation

As the number of subjects was not large enough, we could
not split subjects into two groups: one for the training and test
and one for the validation. Therefore, to still have a correct
estimation of the real accuracy of our classifier, we used a
leave one subject out (LOSO) cross validation. We used all the
subjects, except one, for the training of our models and we used
the remaining subject for the test. We repeated the procedure
so that each subject was tested once. Then we computed the
accuracy of the cross validation classification (Acc cv) defined
as the rate of well classified subjects.

The real accuracy (the one we would obtain on an infinite
number of new test subjects) can be approximated by the
cross validation accuracy we just computed. We estimated the
density probability of the real accuracy by a Gaussian function
with a mean equal to the cross validation accuracy, and a
standard deviation defined by:

SD =
√
Acc cv ∗ (1−Acc cv)/n (2)

with n being the number of subjects tested during the cross
validation.

Actually this provides a good estimation of the real accu-
racy when there are enough tests (> 30) and when the tests
are iid (independent and identically distributed) which is not
completely the case in a cross validation (the tests are not
completely independent). But for stable inducers we can use
those formulas for LOSO cross validation [28]. In order to have
an estimation of the true positives and the true negatives we
also computed the sensitivity (rate of PD correctly classified)
and the specificity (rate of controls correctly classified) of our

classifier. The estimations of the real sensitivity and specificity
follow the same rule as for the accuracy.

D. Statistical tests

In order to compare the performances obtained with the
LOSO we conducted several statistical tests. As our number
of subjects tested in each classification test was higher than 30
we used Welch’s t-test to compare the accuracies of different
populations (e.g. men vs women). We used a paired t-test to
compare the accuracies for different tasks carried out by a
same population. The p-value was computed each time and
gave us information about the significance of the differences.
We fixed the risk at 5%. That means we considered differences
as significant when p-values were smaller than 0.05.

IV. RESULTS

We performed the acoustic analyses and the LOSO cross
validation on the 4 following tasks: a sustained phonation
vowel task, a DDK task, a reading task and a free speech task.
As mentioned previously, we tested men and women sepa-
rately, because of the influence of the gender on the MFCC,
and together (for the comparison). To avoid a gender bias, we
removed (at random) 2 male PD and 6 female controls for
the mixed-gender classification, so that the PD mixed-gender
model and the control mixed-gender model had the same
amount of males and females each. We tested our classifier
with various numbers of Gaussians for our models and we had
confirmation that 20 Gaussians was the best number for our
tasks. The results from the LOSO cross validation calculated
with 20 Gaussians for our models are presented in Table II.

Our classifier, based on a MFCC distribution modeling
with GMM of healthy subjects and early PD patients, showed
the best scores for the reading task (Acc=91.4% for men
and 79.5% for women). The differences were significant
when compared with the sustained vowel task for both men
(p=0.0004) and women (p=0.03), and when compared with the
free speech tasks for men (p=0.03).

As the sustained phonation task was shorter than the
reading task we tested if its low classification performance
could be explained by the short duration. Indeed, in general,
the more speech data we have, the better we can train the GMM
model and the higher is the performance of the classification.
To check the influence of the duration of the task on the
performance, we performed a classification on a 4s excerpt
of the reading task (we just kept the 2 short sentences). After
performing LOSO cross validation we obtained an accuracy
of 88.6% for males and 74.4% for females. These scores are
a little lower than the scores for the entire reading task, even
though the difference is not significant (p=0.57 for men and
p=0.42 for women). This slight difference is coherent with
the positive role of the duration in the performance of the
classifier. This shorter reading task still yields better results
than the other tasks, and far better results than the sustained
vowel task, confirming the relevance of a reading task for our
classifier. Therefore we can conclude that the short duration
of the sustained vowel task was not the main cause of its low
score.

The comparison of the scores between males and females
when they are confronted with same-sex groups indicates
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globally higher scores for men. Nevertheless the differences
are not significant (e.g. p=0.14 for the reading task). Scores
for males alone are also better than those obtained with mixed-
gender groups (Acc=75.8% during the reading task). This
difference is significant (p=0.03). Thus it seems better for
men to be classified separately, but it is not so obvious for
women. In order to tackle this issue, we calculated the accuracy
when classifying females between a mixed-gender PD group
and a mixed-gender control group. The accuracy was 78.8%
(± 7.1%), which is in the same range as the one obtained
with female alone groups (no significant difference: p=0.95
for the reading task). By contrast, the difference between the
accuracies obtained for men classified with male models, and
for men classified with mixed models, was significant (p=0.04
for the reading task). Therefore, treating separately men and
women did not change the classification accuracy for women
but significantly improved the men’s one.

V. DISCUSSION

We adapted a method widely used in speaker recognition to
early PD detection. This method consists in modeling MFCC
distribution with GMM. First, a GMM was created for each
group (PD and control). Then, the test subjects’ MFCC were
compared to these two models by means of log-likelihood
functions, thus determining the classification between these
two groups. GMM were here used as a classification compo-
nent and not as a feature extraction step. This method doesn’t
appear to have been used in the past for PD detection. It
showed results in line with the best performances found in
the literature: around 90% for the detection of early stages of
PD in men [6]. In this study [6] the performance obtained with
just MFCC (but with another method) reaches 85% for early
PD detection.

According to our study, the method we used seems to be
specifically relevant for the reading task (Acc=91% for men),
and especially for the reading of short questions or exclamation
sentences (Acc=88% for only 4 sec of speech data per men).
The fact that the reading task yielded a better performance than
the free speech task with an equal duration may be explained
by the fact that in the reading task, the variability depends only

on the speakers’ voice and on the effect of PD on their voice,
whereas in the free speech task the variability depends also on
the linguistic content (the sentences and words chosen). The
sustained vowel task seemed particularly inappropriate for our
analysis method (Acc=60% for men, that is just a little better
than random would do).

Our study revealed that splitting males and females in-
creased the classification performance. Actually it increased
particularly male classification performances. The lower per-
formance obtained for women as compared to men, may be
explained by the fact that, in the cepstral domain analysis,
female voices seem to have wider distributions and thus are
more difficult to classify [23]. The same effect can be seen
for the detection of other voice disorders, such as laryngeal
disorders [23].

We may have obtained even better performances if the
PD subjects were off medication because the PD medications
improve vocal perturbations [29].

In the future we will record more subjects (PD and con-
trols) and add some new vocal tasks. We will add delta MFCC,
because studies showed delta MFCC could carry additional
information for the assessment of parkinsonian voices’ pertur-
bations [30]. Finally we will combine the classification method
presented in this paper, based on GMM and short term MFCC
features, with more classical methods using global features
that are discriminant in the detection of early stages of PD (cf
annex 2 of [25]).

VI. CONCLUSION

An automatic and simple methodology, based on the one
classically used for speaker recognition, was presented to
detect early stages of Parkinson’s disease. We performed an
automatic analysis of the recordings of early PD patients and
healthy controls for 4 types of tasks: sustained vowel, DDK,
free speech and reading. The analysis methodology consisted
in extracting 12 MFCC every 10ms for each task, and fitting
their distribution with 2 multi-dimensional GMM: one for the
PD model and one for the control model. The log-likelihood of
test subjects’ MFCC values against those two models allowed
a 2-class classification between PD group and control group.
The results obtained with a LOSO cross validation seem to
indicate that the reading task is particularly appropriate for
this methodology. The accuracy obtained for this task (91%
for men) is in line with the best performance that we can find
in the literature concerning early PD detection. Combining this
analysis method with other more classical ones used in PD
detection may improve classification performance for women
and for the other vocal tasks.
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“Automatic detection of Parkinson’s disease in running speech spoken
in three different languages,” The Journal of the Acoustical Society
of America, vol. 139, no. 1, pp. 481–500, 2016. [Online]. Available:
http://asa.scitation.org/doi/abs/10.1121/1.4939739
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