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Abstract 

Vocal impairments are among the earliest symptoms in 

Parkinson’s Disease (PD). We adapted a method classically 

used in speech and speaker recognition, based on Mel-

Frequency Cepstral Coefficients (MFCC) extraction and 

Gaussian Mixture Model (GMM) to detect recently diagnosed 

and pharmacologically treated PD patients. We classified early 

PD subjects from controls with an accuracy of 83%, using 

recordings obtained with a professional microphone. More 

interestingly, we were able to classify PD from controls with an 

accuracy of 75 % based on telephone recordings. As far as we 

know, this is the first time that audio recordings from telephone 

network have been used for early PD detection. This is a 

promising result for a potential future telediagnosis of 

Parkinson's disease. 

Index Terms: Parkinson's disease, speech disorder, telephone 

recordings, telediagnosis, acoustic analysis. 

1. Introduction 

Parkinson’s disease is a neurodegenerative disease which 

affects 1% of people over 60 years, and up to 4% of those over 

80 [1]. Symptoms are mainly motor resulting from a loss of 

dopaminergic neurons in the substantia nigra (a structure 

located in the midbrain area). The standard diagnosis, based on 

motor examination, looks for the classical triad of akinesia, 

rigidity and rest tremor. Unfortunately, these motor symptoms 

appear once 50% to 60% of dopaminergic neurons are 

destroyed in the substantia nigra [2]. For this reason, PD 

detection at an earlier stage is a big challenge of medical 

research in order to better understand the early phase of the 

disease and to test treatments before the occurrence of large 

irreversible brain damages. 

Speech impairments, characterized by hypokinetic 

dysarthria, are among the first to appear. They include 

disruptions in prosody, articulation and phonation [3]–[5] . 

Many studies have sought to detect PD by using voice analysis, 

and most of them analyzed PD subjects at a medium or 

advanced stage. Some used phonatory features [6]–[8] (such as 

shimmer, jitter, harmonic to noise ratio), vowel articulatory 

features [9], [10] (such as formants, vowel space area), 

consonant articulatory features [11] (such as voice onset time) 

and prosodic features [5] (such as number of pauses and 

standard deviation of pitch and intensity). Since 2012 [12] 

short-term parameters like MFCC, which characterize spectrum 

envelope, have also been used for PD detection [13]–[17]. 

Some studies explored the possibility of PD telediagnosis 

using recordings done with smartphone or tablet applications in 

high quality (sampling rate of 44 or 48kHz) and send later to a 

remote server [18]–[21]. Audio recordings were sometimes 

combined to other modalities like tremor or gait analysis to 

detect the disease [22], [23]. Some other studies explored the 

effect on PD detection (or other voice pathologies) of voice 

transmission through telephone channel, simulating it from 

high quality recordings ([24]–[26]).  

In this study, we aimed to detect PD at an early stage from 

voice through real telephone transmissions. To the best of our 

knowledge this is the first work dedicated to automatic early PD 

detection based on the analysis of real recordings from 

telephone network. For comparison, we will also present early 

PD classification results we obtained from recordings made 

with a high-quality microphone. In a previous study [27], we 

presented results from a subset of our high-quality microphone 

database. The results of this previous study were slightly biased 

by not completely matched noise environments between PD 

and control groups. The problem was solved in the present 

study by a pretreatment step of denoising and enhanced 

analyses. The analysis methodology was adapted from a 

classical method used during several decades in speaker 

recognition, based on MFCC and GMM modeling of their 

distributions. Thus, we built GMM models for PD group and 

control group. Then we classified the test subjects comparing 

the loglikelihood of their MFCC against the PD and control 

models. We assessed the influence of the training data contents 

on the classification results for each tested speech tasks. We 

finally performed a score fusion to enhance the classification 

performance. 

The second part of our analysis consisted in comparing 

these results with the ones coming from our telephone 

recordings. To better understand the causes of the performance 

differences, we also compared them to a telephone simulation 
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performed by subsampling our professional microphone 

recordings and considering a narrower frequency bandwidth for 

the analysis.  

The rest of the paper is organized as follows: Section 2 

describes our two databases (recorded with a high-quality 

microphone and mobile or landline telephones). Section 3 

presents the method we used, including preprocessing, feature 

extraction, classification and validation. Section 4 shows the 

results obtained and gives possible interpretations, followed by 

a short discussion and conclusion in Section 5. 

2. Voice acquisitions 

2.1. Participants 

129 male French speakers participated in this study. 75 were 

recently diagnosed with PD (mean age 63.8 ± 9.3 years) and 54 

were healthy controls (mean age 60.0 ± 10.6 years). We chose 

not to mix genders because it leads to more precise results in 

speaker recognition and in voice impairments detection [28]. 

Female speakers will be analyzed in a future analysis. All the 

PD patients and 28 healthy controls belonged to the ICEBERG 

cohort (an INSERM longitudinal study that investigates 

biomarkers for early PD detection) and the others 26 controls 

were recruited additionally specifically for the speech analyses. 

The mean stages of PD patients at the Hoehn & Yahr scale [29] 

was 2.0 ± 0.1 and all controls were at stage 0. The mean values 

of their evaluation according to MDS-UPDRS III scale [30] was 

34.2 ± 7.1 for PD patients (OFF-state) and 4.6 ± 3.4 for controls. 

The average disease duration prior to recordings was 30.0 ± 

17.0 months. PD patients were pharmacologically treated and 

recorded on ON-state (less than 12 hours after their morning 

medication). All participants provided written informed 

consent and local ethical committee and regulatory agencies 

approved the study. 

2.2. Laboratory setting recordings 

Among the participants, 122 (74 PD, 48 controls) performed 

speech tasks recorded with a professional head mounted 

omnidirectional condenser microphone (Beyerdynamics Opus 

55 mk ii) placed approximately 10 cm from the mouth. This 

microphone was connected to a professional sound card 

(Scarlett 2i2, Focusrite) which provided phantom power and 

pre-amplification. Speech was sampled at 96000 Hz with 24 

bits resolution, and with a spectrum of [50Hz, 20kHz]. 

ICEBERG participants were recorded in consultation rooms at 

CIC/ICM and sleep disorder unit of Pitié-Salpêtrière hospital in 

Paris. Additional healthy controls were recorded in quiet rooms 

at their house or their office with the same recording devices.  

Speech tasks were presented in a random order to the 

participants via a graphical user interface. They were composed 

of sustained vowel /a/ (with and without glissando), fast 

syllable repetitions, also called diadochokinesia (DDK) tasks, 

free speech (talk about one's day), readings, sentence repetitions 

and slow syllable repetitions, for a total duration of 15min. 

The "simulated" telephone recordings came from the same 

database with a subsampling to 8kHz and a narrower frequency 

bandwidth (300-3700Hz) considered for the analysis. This is a 

"rough" telephone simulation, allowing the impact assessment 

of two telephone characteristics which are low frequency 

sampling and narrow frequency bandwidth. 

2.3. Telephone recordings 

Most of the participants (63 PD, 36 controls) also carried out 

true telephone recordings at home. They called once a month 

with their own phone (mobile or landline) an interactive 

voicemail (IVM, from NCH company), connected to a SIP 

server (ippi). Audio signal was compressed with G711 codec 

and transformed into PCM16 audio files by IVM. Final speech 

files were sampled at 8000Hz with 16 bits resolution, and a 

frequency bandwidth of [300-3400Hz].  

We set up the voicemail to automatically make the 

participants do 10min speech tasks when they call. Participants 

performed different numbers of recording sessions (from 1 to 

13 with an average of 5) depending on when they started and 

early stoppings. Speech tasks were the same type (but fewer) as 

those performed with the high-quality microphone. Readings 

were not performed on telephone recordings, for practical 

reasons we wanted all the instructions to be audio. Some DDK 

tasks were also removed in order to shorten telephonic 

recordings. 

3. Methods 

3.1. Pretreatments and MFCC extractions 

The professional microphone recording environments were not 

perfectly matched for PD and control groups. To avoid bias due 

to different background noises (there were more environment 

noise on average in PD group recordings) we denoised the 

audio files. For that purpose, we used spectral subtraction as 

detailed in [31] with Praat software [32], calibrated using a 5s 

silence recorded at the end of each participant recording 

session. The same pretreatment was performed for the 

telephone simulation followed by 8kHz subsampling. To 

complete the denoising, we performed cepstral mean 

subtraction [33] on all recordings. Spectral subtraction removed 

additive noise while cepstral mean subtraction removed 

stationary convolutional distortion. 

For the high-quality recordings, we took 20Hz for the lower 

cutoff and 7000Hz for the upper cutoff of the frequency range 

covered by the triangular mel bins. For the telephone simulation 

and the real telephone recordings, we took 300Hz for the lower 

cutoff and 3700Hz (close to the Nyquist frequency) for the 

upper one. 

For both databases, we then extracted 20 MFCC with their 

deltas and delta-deltas every 10ms, and performed voice 

activity detection based on the log-energy with Kaldi 

software [34]. 

3.2. Distribution modeling with Gaussian Mixture Models  

We split the databases into three groups: one group of PD 

subjects and one group of controls for training and the 

remaining PD and control participants for testing. In the 

laboratory setting database, we used 36 PD subjects and 36 

controls for the training groups and 38 PD subjects and 12 

controls for the test. For the telephone database, we selected 30 

PD patients and 30 controls for the trainings and 33 PD 

participants and 6 controls for the testing group. We then 

modeled the training MFCC distributions with 

multidimensional GMM, still using Kaldi. Number of Gaussian 

functions were chosen depending on the quantity of speech data 

used for training.  

3034



 

 

3.3. Classification and Validation 

We computed the log-likelihood for each frame of the data test 

against the two GMM models. Then we averaged the log-

likelihoods on all the frames for each subject so that the likeli-

hood was independent of the frame number. A sigmoid function 

was then applied on the difference of the two mean 

loglikelihoods, resulting in one score for each test subject.  

We then used a bootstrap aggregation approach [35], [36] 

for the final classification. We ran 40 times GMM modellings 

and classifications, each time with a different random split of 

participants between the training and testing groups (keeping 

the same number of subjects for each group as previously 

stated). We then averaged for each subject the classification 

scores of all the runs in which he was tested, resulting in one 

score between 0 and 1 per subject. The closer the score was to 

1, the more probable the subject belonged to the PD group, 

according to his voice recording. We chose the threshold 

corresponding to Equal Error Rate (EER), meaning the same 

ratio of false positives and false negatives, in order to perform 

our comparisons. 

4. Results  

4.1. Professional microphone results 

4.1.1. Comparison of speech tasks 

We first used all the tasks for training and we tested all these 

tasks separately. This represented 3.5 hours of speech data per 

training group, we then choose 500 Gaussian functions for the 

GMM.  We noticed that the tasks with the best accuracy were 

the text and dialog reading, the /pataka/ tasks and the free 

speech. The sustained vowels did not obtain good classification 

results.  When we averaged the scores obtained for each task, 

we obtained an accuracy of 76% at the EER threshold. 

We then wanted to evaluate if we could better adapt the 

content of the training data used for the GMM, to the tasks used 

for the test. Therefore, we computed task specific GMM (see 

Table 1) composed only with the same tasks we used for the 

test, changing the number of Gaussian functions according to 

the quantity of speech data. For example, to test if the sentence 

repetitions and reading tasks were relevant to discriminate PD 

subjects from controls, instead of using all the tasks to train the 

GMM we used only those tasks. An exception was made for the 

free speech task, for which we added sentence repetitions and 

reading to the specific GMM, in order to have a speech model 

less dependent on the content of the free speech tasks. Indeed, 

the content of the ICEBERG cohort free speech differed slightly 

from the external control subjects' one. We noticed that specific 

GMM improved some performances, as for the sentence 

repetition and reading tasks, which may be explained by the fact 

that these tasks were text-dependent. On the contrary, the free 

speech task, which is text-independent was not improved. We 

also noticed that for other tasks, such as /pataka/, the 

performance decreased with specific GMM (trained with only 

/pataka/). This may be due to insufficient data for the GMM 

(~11min of speech data per GMM). We also tested /pataka/ with 

GMM trained with all the DDK tasks (semi-specific) and 

obtained the same results as for global GMM (trained with all 

the tasks).  

For all the tested tasks (at least for the text-dependent ones) 

the challenge was actually to find the best balance between 

specificity and quantity for the training data. 

In order to check if spectral subtraction and cepstral mean 

subtraction correctly removed the bias due to not perfectly 

matched environment conditions, we compared ICEBERG 

controls' EER with additional controls' EER. No significant 

differences were found between both conditions, thus we can 

consider the bias to be removed. 

4.1.2. Classification fusion 

We performed a classification fusion of the two best tasks, 

averaging their classification scores. Combining /pataka/, tested 

with global GMM models, with sentence repetition and reading, 

tested with specific GMM models, resulted in 5% of 

improvement, leading to a classification accuracy of 83% (see 

Table 1). The combination of these scores may improve the 

classification because the types of combined tasks are really 

different and may reveal different kinds of PD speech 

impairments [3]. For example, combining the sentence 

repetition and the reading task with the free speech task did not 

lead to better performance. 
 

Table 1: Accuracy results of PD vs controls at the EER 

threshold, recorded with professional microphone. Impact of 

tested tasks and GMM specificity. 
 

Tested tasks Test 

Duration 

Global 

GMM1 

Specific 

GMM2 

Sentence repet + reading 90s 74% 78% 

Free speech 60s 73% 74% 

/pataka/ 20s 78% 72% 

Sustained vowels 20s 61% 61% 

all tasks 6min 76% 76% 

Fusion of the two best results3 83% 

 
1 Global GMM was trained on all the tasks 

2 Specific GMM were built with the same tasks as the one tested 
3 Fusion of sentence repetitions and reading (tested with specific GMM) with 

/pataka/ (tested with global GMM) 

4.2. Comparison between professional microphone, 

telephone simulations and real telephone recordings 

The tasks we used for the comparisons are sentence repetitions 

and readings, free speech, DDK, trained with specific GMM, 

/pataka/ trained with global GMM, and scores fusion (for the 

final result). 

The comparison between the professional microphone and 

the telephone simulation done with a subsampling and a 

narrower frequency bandwidth showed a 9% decrease on final 

classification results (see Table 2). The telephone simulation 

was interesting because we could evaluate the role of speech 

sampling and bandwidth limitation, and compare with perfectly 

matched recording conditions, which was not totally the case 

with the real telephone recordings. Indeed, in the telephone 

database, there were not as many participants as in the 

professional microphone database, even though 95% of the 

telephone database subjects also belonged to the good 

microphone database. In addition, the voice tasks were slightly 

different because the reading task was not done during 

telephone acquisitions and we had reduced the number of DDK 

tasks. Also, all the tasks were done only once per session, 

including /pataka/, whereas this task was done twice in the 

professional microphone database. On the other hand, as 

telephone acquisitions were made at home, we could ask the 

participants to do several recordings sessions. That increased 
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considerably the quantity of speech data we could use for the 

analysis.  

As for the real telephone recordings, when all the sessions 

were used for the training groups and one session used per test 

subject, they showed another 9% accuracy decay compared to 

the telephone simulation. This could be explained by the real 

telephone environment noises and amplitude distortions that are 

known to degrade MFCC-based analyses [37], [38].  The 

decrease in accuracy can also be explained by a lower quality 

of task execution. No experimenter was present during the real 

phone recordings to make the subjects start again a task when 

instructions were not respected. As for the slightly lower 

number of subjects in the actual telephone database, it may be 

compensated by the increased number of sessions used for real 

GMM telephone training. 

 

Table 2: Accuracy results of PD vs controls at the EER 

threshold. Comparison between professional microphone 

recordings, telephone simulations and real telephone 

recordings (using all sessions for GMM trainings and either 

one or all sessions per test subject). 
 

Tested  

tasks1 

Prof.  

Micro 

Phone  

Simul. 

 Phone  

1 session 

Phone 

all sessions 

Sentence repet2  78% 72% 63% 64% 

Free speech 74% 71% 61% 64% 

DDK 69% 68% 65% 75% 

/pataka/ 78% 75% 58% 68% 

Final result3 83% 74% 65% 75% 
 

1 Sentence repetitions, free speech and DDK were tested with specific GMM, and 

/pataka/ tasks were tested with global GMM 
2 For professional microphone recordings and telephone simulation, reading 

tasks are added to sentences repetitions for trainings and tests 
3 Final results are composed of fusion results for professional microphone and 

telephone simulation, and of DDK scores for real telephone recordings 

 

In order to assess the impact of test data quantity on the 

performances, we did a classification using this time all the 

telephonic sessions altogether done per each test subject, and 

we compared it to the classification performed using only one 

session per test subject. We noticed classification 

improvements, reaching an accuracy of 75% for DDK tasks 

(see Table 2). For DDK tasks, the results obtained were even 

better than the one we got with the professional microphone. 

This would mean that with ~5min of DDK telephonic speech 

data per person, compared to ~1min30 for the professional 

microphone, the increase of quantity prevailed on the reduced 

quality.  

Intriguingly, with our professional microphone recordings, 

/pataka/ tasks tested alone on global GMM seem more relevant 

than using the average of all DDK tasks for test. In the 

meantime, with our real phone recordings, it seems to be the 

opposite. This could be explained by the content of DDK tasks. 

In the high-quality microphone database, there were 11 DDK 

tasks, among them two /pataka/ tasks, whereas in our real phone 

database there were six DDK tasks, among them only one 

/pataka/ task. Therefore, we can assume that the DDK speech 

data from our professional microphone recordings were more 

suited for /pataka/ test task, than the DDK data from our real 

phone recordings.  

Fusion as done for the professional microphone recordings 

(averaging scores obtained with sentence repetition + reading 

and /pataka/ tasks) was not relevant for the real telephone 

recordings due to the absence of reading and the less suited 

DDK tasks for /pataka/ tests. For this reason, we simply kept 

the DDK scores as definitive ranking results for actual 

telephone recordings, for comparison with professional 

microphone recordings and telephone simulation. 

5. Discussion and Conclusion 

In this study, we adapted a method widely used in speaker 

recognition to the detection of early PD. We extracted MFCC 

and modeled their distributions with GMM in order to have one 

PD model and one control model. Mean loglikelihoods of 

MFCC test subjects were then computed against both models, 

and their differences provided one score per subject. EER and 

corresponding accuracy were then computed.  

We looked for the most appropriate content of training data 

for the GMM modeling depending on which tasks we used for 

the test. A balance between specificity and quantity of training 

data and a score fusion led to an accuracy of 83% with the 

professional microphone recordings. To our knowledge, this 

performance has never been obtained in previous studies with 

early PD patients who were pharmacologically treated. Indeed, 

it has been shown that PD treatments reduced some of the 

speech impairments [39], [40], making the classification more 

complicated. 

With a "rough" simulation of telephone recordings from 

professional microphone recordings, downsampling the latter 

and considering a narrower frequency bandwidth, we observed 

a 9% decrease in accuracy. This confirmed the role of frequency 

sampling and bandwidth limitation in MFCC-based analyses, 

respectively shown in [24] and [38].  

Our actual telephone recordings tested on one recording 

session per test subject resulted in an additional performance 

degradation, highlighting the impact of other environmental 

conditions such as background noise or the quality of task 

execution. Interestingly, taking all telephone recording sessions 

per test subject into account greatly improved classification 

performance. With just DDK tasks (~5min of speech data per 

person) we were able to classify PD from controls with an 

accuracy of 75 %.  Here the amount of data compensated for a 

significant portion of the quality decline inherent in actual 

telephone recordings.  

 To the best of our knowledge, it is the first time that audio 

recordings from telephone network have been used for 

detection of early PD. This is a promising result for a potential 

future telediagnosis of PD. Even if GMM-based classifiers are 

rather simple models, they were accurate enough to assess the 

impact of several factors (specificity and quantity of speech 

tasks, channel and environment effects ...). 

 In order to improve the classification performances, we 

may consider more recent and more computationally expensive 

speaker recognition techniques, such as i-vectors or X-vectors. 

We may also combine this analysis with other classification 

methods, using for example high-level features [41]. 
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