
HAL Id: hal-02474476
https://hal.science/hal-02474476

Submitted on 11 Feb 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Make Life Easier for Embedded Software Engineers
Facing Complex Hardware Architectures
Romain Leconte, Eric Jenn, Guy Bois, Hubert Guérard

To cite this version:
Romain Leconte, Eric Jenn, Guy Bois, Hubert Guérard. Make Life Easier for Embedded Software
Engineers Facing Complex Hardware Architectures. 10th European Congress on Embedded Real Time
Software and Systems (ERTS 2020), Jan 2020, Toulouse, France. �hal-02474476�

https://hal.science/hal-02474476
https://hal.archives-ouvertes.fr


Make Life Easier for Embedded Software Engineers
Facing Complex Hardware Architectures

Romain Leconte∗†, Eric Jenn∗‡, Guy Bois†, Hubert Guérard†
∗IRT Saint-Exupéry, 3 Rue Tarfaya, CS 34436, 31400 Toulouse, France

{romain.leconte, eric.jenn}@irt-saintexupery.com
†Space Codesign Systems Inc, 450 rue St-Pierre, Suite 1010 H2Y 2M9 Montreal, Quebec, Canada

{romain.leconte, hubert.guerard, guy.bois}@spacecodesign.com
‡Thales AVS, 105 Avenue du Général Eisenhower F31036 Toulouse, France

eric.jenn@fr.thalesgroup.com

Abstract—The increasingly parallel execution platforms - mix-
ing multi-cores, GPUs, and programmable logic (namely, FPGA)
- require new development techniques and technologies to be used
efficiently. Software developers are hampered by the complexity
of modern SoCs and MPSoCs. In particular, the complexity of the
hardware design flow makes the exploitation of FPGAs difficult
and expensive, especially in cases where the design space to
be explored is large. Therefore, this paper proposes a design
flow that offers joint support of both hardware and software
flows making life easier for embedded software engineers. It
is based on a HW/SW codesign approach where a sequential
C code annotated with OpenMP offloading directives is pro-
gressively transformed into an FPGA implementation. OpenMP
has been selected because it is a widely adopted solution in the
high-performance computing domain, but also because work is
currently going on to extend its scope to embedded real-time
systems. This paper identifies the important properties required
in such a flow, demonstrates how they are supported by our
workflow, and, finally, presents results of our approach on an
image processing function deployed on both Zynq and Cyclone
platforms.

Index Terms—OpenMP, FPGA, Design Space Exploration,
Embedded systems

I. INTRODUCTION AND CONTRIBUTIONS

Optimizing the use of complex modern Multi-Processor
System on Chip (MPSoC) require significant efforts for the
software and hardware developers. They have to cope with
an ever increasing number of homogeneous or heterogeneous
cores, the presence of SIMD units, AI accelerators, GPGPUS,
and now, FPGA.

On the software side, to fully exploit the high level of
parallelism offered by the platform, software engineers have
now to expose as much as possible the parallelism of their
applications, at coarse (e.g., process or thread), and fine grain
(e.g., loop). When the level of hardware parallelism is high,
this activity definitely needs to be supported by appropri-
ate abstractions and modeling or programming languages.
OpenMP [1] is one possible solution.

OpenMP is one of the most popular technologies to support
the large scale parallelization of applications. OpenMP is an

API specification maintained by the OpenMP workgroup1. It
proposes a set of source-level annotations to expose the paral-
lelism of applications at multiple levels: loops, tasks, data, etc.,
and manage communications between the parallel components
on the basis of the shared memory communication paradigm.
Since version 4.0 [1], OpenMP also supports heterogeneous
architectures. Using the target directive, parts of the code
can be offloaded from the main CPU (or host) to one or several
accelerators implemented using general purpose processors,
GPGPUs, or FPGAs. Using these offloading annotations, the
code running on the host can move data from its memory to
the devices (or target) memory, execute logic on the target
device and move data back to the host memory.

On the hardware side, software developers are hampered
by the complexity of modern SoCs and MPSoCs. Although
FPGAs are now competitive with respect to state-of-the-art
processors – thanks to the latest technology breakthroughs,
including low latency communication links between FPGAs
and CPUs, and the relatively low power consumption of todays
FPGAs – moving part of the code from software to hardware
(FPGA) still requires a significant effort.

So, in order to deploy a complex application on those
execution platforms, developers require an integrated design
flow offering joint support of both hardware and software.

Towards that goal, our proposal has 3 main characteristics:

• It starts with a unique and ”high-level” formalism to
expose parallelism. This formalism allows parallelization
and deployment decisions to be taken gradually during
the design process, and with as few changes to the source
code as possible.

• It provides the means to translate an OpenMP code
into an hybrid CPU-FPGA virtual platform that can be
validated, HW/SW partitioned and evaluated by software
developers.

• It comes with an semi-automatic synthesis and bitstream
generation process targeting Xilinx’ or Intel’s FPGAs.

1See www.openmp.org.

www.openmp.org


Fig. 1. From OpenMP to SoC FPGA workflow (TOAST stands for Tool for OpenMP Annotations to System design Translation)

Note that even if the last point may require some manual
interventions of hardware engineers, for instance to select ap-
propriate constructs or add appropriate annotations to facilitate
or guide the High-Level Synthesis process, we estimate that
over 75% of effort can be achieved by software engineers.

II. OVERVIEW OF THE PROPOSED WORKFLOW

A. Overview

The complete workflow is depicted in Figure 1. The input
is an OpenMP annotated code in which the developer has
identified and annotated the code regions to be parallelized and
offloaded. Before entering the process leading to the FPGA
implementation (i.e., entering TOAST), the annotated code can
be first compiled and functionally tested on devices easier to
setup, such as a GPU (e.g., NVidia) or on an acceleration
board (e.g., a Xeon Phi accelerator). This is achieved using an
OpenMP-aware compiler (e.g., gcc or Clang) supporting the
target.

During the first phase of the workflow, the source code
is transformed into two components: the host code aimed at
being executed on the host, and the target code aimed at
being deployed on the accelerator (another general purpose
processor or an FPGA-implemented hardware accelerator).
Both components interact using services provided by a generic
control and communication API. This first phase, implemented
by the TOAST tool, is detailed in Section III.

During the second phase, the host code and the target
code enter the design exploration process in which candidate
solutions – including deployment and target technologies – are
successively designed, evaluated, and refined. These evaluation
steps are performed on a SystemC virtual platform during
the early phases, and on the actual hardware implementation
during the late phases. The parts of the application deployed
on the CPU (the host) are compiled using a standard toolchain
(gcc, Clang, etc.); the parts that are deployed to the FPGA go
through High Level Synthesis (HLS). In our case, this phase is
implemented by a System Design Environment (SDE) called
SpaceStudio from Space Codesign Systems [2] and by FPGA
vendors specific toolchains (e.g., Vivado from Xilinx [3], and
Quartus Prime from Intel [4]).

B. System Design Environment and FPGA vendors specific
toolchains

A System Design Environment facilitates the development
and deployment of applications that target heterogeneous
systems (CPU and FPGA). Xilinx proposes a SDE called
SDSoC2, but unfortunately it only targets the Xilinx Zync plat-
form. We based our toolchain on Space Codesign’s SDE called
SpaceStudio [2], which presents the advantage to be platform-
independent and allows the system architect to deploy on either
Xilinx or Intel platforms.

Figure 2 summarizes the HW/SW codesign flow of SpaceS-
tudio. A system architect creates a set of architectures rep-
resenting different mappings of the application’s components
onto a specified platform and specifies the type of communi-
cation used between those components.

SpaceStudio supports virtual platform simulation for perfor-
mance prediction and algorithm validation. It integrates moni-

2See https://www.xilinx.com/sdsoc.html.

Fig. 2. SpaceStudio workflow

2

https://www.xilinx.com/sdsoc.html


Fig. 3. TOAST Architecture

toring and analysis capabilities for non-intrusive performance
profiling of both hardware and software. Examples of collected
metrics are bus performance (latency and throughput), queue
and memory usage, processor load, task scheduling, context
switching, as well as timing data. Using the collected infor-
mation, the system designer can determine which architectures
allow the application to exhibit the best performance. Those
architectures can then be directly implemented on the target
platform as SpaceStudio generates the code and project files
for downstream HLS tools to synthesize application-tasks
mapped as co-processor. The result of this process can be
directly deployed on the target to be tested and to confirm
the performance characteristics of the program.

The input of SpaceStudio is a SystemC code partitioned
into several logical modules (called “Space Modules”) that
communicate using a dedicated communication API. Those
modules are directly generated from the program source code.
OpenMP annotations are used to designate the parts to be
offloaded, and to capture the control and data dependencies.
This generation process is implemented in the TOAST tool
described hereafter.

III. FROM OPENMP TO SYSTEM LEVEL DESIGN WITH

TOAST

Offloading directives have been introduced in OpenMP 4.0.
They support the deployment of part of a program on one or
several devices. A device may be another processor, a GPU,
a FPGA coprocessor, etc. This allows to exploit the various
forms of hardware-level parallelism using a unique technology
and a consistent model of computation and communication,
rather than using specialized languages or APIs to target
directly these kind of accelerators. Using these offloading
annotations, the code running on the main CPU (or host) can
move data from its memory to the device’s (or target) memory,
execute logic on the target device and move data back to the
host memory.

TOAST (Tool for OpenMP Annotations to System design
Translation) is the bridge between OpenMP and the system
level design. It interprets the OpenMP offloading directives
(omp target) to generate a functionally equivalent archi-
tecture ready to be deployed on one or several device config-
urations.

The input of TOAST is a source file containing the host
code as well as the target regions to offload (i.e., the code that
will be ultimately run on the device).

The output of the tool is composed of several source files:
• One for the host, consisting of the input file with the

modifications listed in the next section applied to it.
• One file for every Space Module generated out of a target

directive.
Next, for each Space Module device specification, there are

two possible refinements:
• The use of an HLS tool to produce a bitstream if the

device is an FPGA. In that process, OpenMP constructs
still in the device source file (such as parallel regions or
tasks constructs) will be discarded.

• The use of an appropriate compilation toolchain depend-
ing on the device the module is mapped to. For example,
a version of gcc to compile code for soft cores such as
the MicroBlaze or Nios.

Note that TOAST keeps all OpenMP annotations of the
initial OpenMP file, except those interpreted during the of-
floading process implementation. In practice, this means that
those annotations can still be processed by the host or the
target3 dedicated compilers (for example gcc for the Cortex-A9
or Cortex-A53), as long as they support OpenMP. For instance,
if the OpenMP source file contains both offloading annotations
(omp target) and loop or task parallelization annotations
(i.e., omp parallel for, omp task), the latter may be
exploited by the host compilation toolchain to generate multi-
threaded and multi-core implementations of the host part.

3If the target device is another processor, not a FPGA.

3



Fig. 4. TOAST Code generation

Interconnects and communication between host and devices
are handled by the SpaceStudio platform and its API. They are
not covered in this paper.

IV. TOAST IMPLEMENTATION DETAILS

TOAST is implemented using the Clang LibTooling frame-
work [5]. This framework provides a set of services to access
and modify the Abstract Syntax Tree (AST) of a C program.

Figure 3 presents the architecture of TOAST and how it
integrates Clang LibTooling by implementing:

• AST Matchers, which are used to find the elements
of the AST corresponding to the OpenMP offloading
directives

• Match Callback Functions, which are used to replace
elements of the original source code and create the source
files to be deployed on the devices.

Figure 4 schematically describes the structure of the
generated files for one OpenMP offloading directive (omp
target). As shown on this figure, some code parts are simply
“translocated” from the input file to the host or target files
whereas other, “template code” and “communication code”
are generated according to the OpenMP directives.

A. Subset of OpenMP currently covered by TOAST

The current implementation of TOAST supports the follow-
ing OpenMP directives:

• pragma omp target
• pragma omp target data
• pragma omp target enter data
• pragma omp target exit data
• pragma omp target update

It also fully supports the map clause that is the core of the
OpenMP API to manage communications and avoid unneces-
sary transfers between the host and device memories.

It is worth noting that a omp target clause does not
fork any treatment: it simply offloads some code block to
some external device, in order to accelerate its computation.
Accordingly, the host thread that initiates this computation is
blocked until the computation is complete. Stated differently,

the offloaded part is executed synchronously with the host
thread. If one wants to parallelize computations, he has to add
other clauses such as nowait and depend that allow to decouple
the execution of the target region from the host control flow.
Those clauses are also supported by TOAST. Their use is
illustrated later in subsection V-B.

The following runtime library routines are also imple-
mented:

• omp_target_alloc
• omp_target_free
• omp_target_is_present

They are part of the runtime library and are used by the higher
level memory management services that compose the runtime
library. They are also available to the user as specified in the
OpenMP standard.

B. Runtime library technical details

The runtime library is the part of the implementation that
will be linked to the final host binary. As shown in Figure 5,
the runtime library has the following roles:

• Manage the device memory
• Trigger execution of computations on the device

1) Device Memory Management: Memory allocations on
the device are done through the RunTime Library (RTL).
Memory can be manually allocated by the user by calling
the omp_target_alloc service. It can also be allocated
automatically by the RTL when it encounters a target or target
data directive that requires memory allocation on the device.
The RTL uses three structures to keep track of the state of the
device memory:

• Memory page containing the address of the memory page
in the device memory, the number of memory blocks
used, and whether it is allocated or not.

• A hash table holding all references to memory pages
created during the lifetime of the program, indexed by
their address in memory.

• A set of free memory page addresses.

Fig. 5. Runtime library interaction with the host and the device at runtime

4



Fig. 6. TOAST Memory structure

The RTL uses two structures to keep track of memory associ-
ations between the host and the device as well as the reference
count associated with each memory block in the device:

• A hash table holding references to memory pages asso-
ciated with a host pointer (which is the index).

• A hash table holding the reference count of a given host
pointer (therefore the reference count of the associated
memory on the device).

These structures consume memory on the the host, but they
also reduce the number of data copies between the host and
the device at runtime. The interconnection between the host
and the accelerators being a bottleneck, it is important to
limit those copies as much as possible to get the benefits of
offloading computations.

This constraint also applies to the choice of the memory
used to implement communications. Device memory is allo-
cated in the central SDRAM for it provides faster commu-
nications (and, also, larger storage) than the FPGA-located
Block RAMs (BRAMs). This way the BRAM is only used
for the scratchpad memory of the different accelerators that
are generated. The memory transactions within this structure
shown in Figure 6 are the following:

1) variables are copied from the Host memory into the
Device memory by the Host, following the map clause
if specified

2) variables are copied from the Device memory into the
scratchpad memory by the accelerator

3) local scratchpad memory is modified by the accelerator
execution.

4) variables are copied from the scratchpad memory into
the Device memory by the accelerator

5) variables are copied from the Device memory into the
Host memory by the Host, following the map clause if
specified

2) Trigger Execution: As mentionned previously, the target
device can be an FPGA or a CPU (e.g., a softcore). In both

cases, the code to run on the device is extracted from the
original source code, synthesized (or compiled), and loaded
on the FPGA (or CPU) before execution. Note that, contrary
to off-line offloading scheme implemented by TOAST, in the
gcc implementation, the logic to be executed on the device
when the device is a CPU is uploaded to the device at
runtime. This scheme is extremely flexible but it can hardly
be implemented on a FPGA. In addition, it makes temporal
analysis (e.g., Worst-Case Execution Time estimation) much
harder to achieve.

A typical OpenMP offloading implementation (such as the
one from gcc or clang) can be summarized as follows:

1) The host asks the runtime library to run a target region
2) The runtime library updates the device memory state
3) The runtime library loads the associated binary on the

target along with the device memory addresses of all
variables accessed during the execution of the offloaded
region

4) The runtime library launches the execution of the of-
floaded region

5) The runtime library updates the host memory state once
the offloaded region has finished its execution

In our implementation, the RTL does not need a dedicated
“trigger device computation” service. Instead, control flow
is transferred to/from the device using the SpaceStudio API.
Therefore, our offloading implementation can be summarized
as follows:

1) The host asks the runtime library to update the device
memory state

2) The host gets the addresses of the variables required to
execute the offloaded region (from the RTL)

3) The host sends these addresses to the device
4) The host sends the signal to start the device computation
5) The host waits for the signal indicating that the device

has finished its execution
6) The host asks the runtime library to update the host

memory state according to the device memory state

V. APPLICATION AND EVALUATION

A. Offloading with one accelerator

To validate our approach, we have applied it to the de-
velopment of a line detection program. The initial program,
written in C++, implements a sequence of three steps: filtering,
edge detection, and line detection. After profiling this mono-
threaded program, the filtering step was found to be the
most CPU-intensive, so we used TOAST to offload it to the
FPGA. The resulting architecture is described in Figure 7.
TOAST created the Filtering Space Module and added the
communications to the host source code.

The original OpenMP code of the Filtering function is
presented in Listing 1. The only difference from the original
code is the pragma added on line 3 to offload the included
computations. The map clause requires to copy the input

5



Fig. 7. TOAST HW/SW partitioning results applied to a Line Detection example

image to the FPGA before execution of the offloaded region. It
is not copied back to the host after execution since the image
is not changed by the algorithm. This clause also prevents to
copy the initial result_array to the device memory, as
the value of the result is only set by the device.

The code generated by TOAST for the host and target mod-
ules are given in Listing 2 and 3, respectively. The following
elements are worth being commented (for an overview of the
memory management, please refer to Section IV-B1).

On the host side (Listing 2):
• Lines 9–10: create the mappings to access the input and

output images
• Lines 11–12: get the addresses of the input and output

images
• Lines 13–17: send the addresses of the input and output

images, and other parameters to the device
• Line 19: trigger the processing
• Line 20: wait until the processing is complete
• Lines 21–22: deallocate the memory mappings used to

access the input and output images
On the target side (Listing 3):
• Lines 14–18: read the addresses of the input and output

images, and other parameters
• Lines 19–20: copy the input and output images to the

local scratchpad memory
• Line 22: wait for the execution trigger

1 vo id l i n e d e t e c t i o n : : c o n v o l u t i o n f i l t e r ( i n t h e i g h t ,
i n t width , i n t k e r n e l s i z e , u n s i g n e d c h a r ∗
source image , u n s i g n e d c h a r ∗ r e s u l t i m a g e ) {

2

3 # pragma omp t a r g e t map ( always , t o : s o u r c e i m a g e [ 0 :
IMAGE SIZE ] ) map ( from : r e s u l t i m a g e [ 0 : IMAGE SIZE
] )

4 {
5 / / c o n v o l u t i o n a c c e s s i n g s o u r c e i m a g e and

w r i t i n g r e s u l t s i n r e s u l t i m a g e
6 . . .
7 }
8 }

Listing 1. Original OpenMP source code

• Lines 23–26: do the filtering operation
• Lines 27–28: copy the input and output image from the

local scratchpad to the main memory
• Line 29: signal the end of the computation

For this simple example, TOAST generates the Space Mod-
ule source files in less than a second thanks to the speed of
the Clang Libtooling framework. The overhead of the transfor-
mation is negligible compared to the rest of the compilation
process which takes around 15 seconds to compile the host

1 vo id f i f o w r i t e ( T∗ h o s t p t r , i n t device num ) ;
2 vo id f i f o r e a d ( T∗ h o s t p t r , i n t device num ) ;
3 vo id map ( T∗ h o s t p t r , i n t map type , i n t map modif ie r

, i n t device num , i n t nb e lemen t s , u n s i g n e d
long o f f s e t ) ;

4 vo id end map ( T∗ h o s t p t r , i n t map type , i n t
map modif ie r , i n t device num , i n t nb e lemen t s ,
u n s i g n e d long o f f s e t ) ;

5 . . .
6

7 vo id l i n e d e t e c t i o n : : c o n v o l u t i o n f i l t e r ( i n t h e i g h t ,
i n t width , i n t k e r n e l s i z e , u n s i g n e d c h a r ∗
source image , u n s i g n e d c h a r ∗ r e s u l t i m a g e ) {

8

9 d e v i c e . map ( source image , OMP MAP to , OMP MOD always ,
DEVICEMEMORY ID, IMAGE SIZE , 0 ) ;

10 d e v i c e . map ( r e s u l t i m a g e , OMP MAP from , OMP MOD none ,
DEVICEMEMORY ID, IMAGE SIZE , 0 ) ;

11 u n s i g n e d long s o u r c e i m a g e a d d r 0 = d e v i c e .
g e t a d d r i n d e v i c e m e m o r y ( s o u r c e i m a g e ) ;

12 u n s i g n e d long r e s u l t i m a g e a d d r 0 = d e v i c e .
g e t a d d r i n d e v i c e m e m o r y ( r e s u l t i m a g e ) ;

13 d e v i c e . f i f o w r i t e (& source image addr0 , 0 ) ;
14 d e v i c e . f i f o w r i t e (& r e s u l t i m a g e a d d r 0 , 0 ) ;
15 d e v i c e . f i f o w r i t e (& k e r n e l s i z e , 0 ) ;
16 d e v i c e . f i f o w r i t e (& h e i g h t , 0 ) ;
17 d e v i c e . f i f o w r i t e (& width , 0 ) ;
18 i n t go 0 ;
19 d e v i c e . f i f o w r i t e (&go 0 , 0 ) ;
20 d e v i c e . f i f o r e a d (&go 0 , 0 ) ;
21 d e v i c e . end map ( source image , OMP MAP to ,

OMP MOD always , DEVICEMEMORY ID, IMAGE SIZE , 0 ) ;
22 d e v i c e . end map ( r e s u l t i m a g e , OMP MAP from ,

OMP MOD none , DEVICEMEMORY ID, IMAGE SIZE , 0 ) ;
23 }

Listing 2. Host code after TOAST transformation

6



1 vo id read from memory ( T∗ l o c a l p t r , u n s i g n e d long
memory address , i n t nb e lemen t s , i n t e l e m o f f s e t
) ;

2 vo id wr i te to memory ( T∗ l o c a l p t r , u n s i g n e d long
memory address , i n t nb e lemen t s , i n t e l e m o f f s e t
) ;

3 . . .
4

5 vo id T a r g e t 0 : : t h r e a d ( vo id ) {
6 u n s i g n e d c h a r s o u r c e i m a g e [ IMAGE SIZE ] ;
7 u n s i g n e d c h a r r e s u l t i m a g e [ IMAGE SIZE ] ;
8 i n t k e r n e l s i z e ;
9 i n t h e i g h t ;

10 i n t w id th ;
11 u n s i g n e d long s o u r c e i m a g e a d d r ;
12 u n s i g n e d long r e s u l t i m a g e a d d r ;
13 w h i l e ( t r u e ) {
14 ModuleRead ( HOST0 ID , SPACE BLOCKING , &

s o u r c e i m a g e a d d r ) ;
15 ModuleRead ( HOST0 ID , SPACE BLOCKING , &

r e s u l t i m a g e a d d r ) ;
16 ModuleRead ( HOST0 ID , SPACE BLOCKING , &

k e r n e l s i z e ) ;
17 ModuleRead ( HOST0 ID , SPACE BLOCKING , &h e i g h t ) ;
18 ModuleRead ( HOST0 ID , SPACE BLOCKING , &wid th ) ;
19 read from memory ( source image , sou rce image add r

, IMAGE SIZE , 0 ) ;
20 read from memory ( r e s u l t i m a g e , r e s u l t i m a g e a d d r

, IMAGE SIZE , 0 ) ;
21 i n t go ;
22 ModuleRead ( HOST0 ID , SPACE BLOCKING , &go ) ;
23 {
24 / / c o n v o l u t i o n a c c e s s i n g s o u r c e i m a g e and

w r i t i n g r e s u l t s i n r e s u l t i m a g e
25 . . .
26 }
27 wri te to memory ( source image , sou rce image add r ,

IMAGE SIZE , 0 ) ;
28 wri te to memory ( r e s u l t i m a g e , r e s u l t i m a g e a d d r ,

IMAGE SIZE , 0 ) ;
29 ModuleWri te ( HOST0 ID , SPACE BLOCKING , &go ) ;
30 }
31 }

Listing 3. Target code after TOAST transformation

binary and the SystemC simulation of the hardware modules.
After this phase, the complete design can be simulated, pro-
filed, and evaluated at the functional level using SpaceStudio’s
own virtual platform. Coupled with OpenMP’s flexibility to
designate the code parts to be offloaded, this toolchain allows
for a fast – hence large – architectural exploration process.
Once the best architecture is identified on the basis of profiling
figures, it takes around 15 minutes to generate the bitstream
and test the complete application in its production environment
on the target board.

The focus of this work was to obtain a functional val-
idation of the application on the device. The example ap-
plication has been successfully deployed on both a Xilinx
XC7Z020 (ZedBoard from Digilent) and an Intel Cyclone V
5CSEMA5F31C6N (DE1-SoC from Terasic), both SoCs are
fitted with a 667MHz dual-core ARM Cortex-A9 processor
and an on-chip programmable logic area. At this phase of the
experiment, no low-level optimizations have been applied (i.e.,

no increase of the clock frequency, no burst or DMA trans-
fers, etc). Furthermore, the filter computation has only been
offloaded, not parallelized. So, considering the performance of
the host CPU (one dual-core ARM Cortex A9 at 667 MHz),
performance increase can only be achieved by a better usage
of the FPGA resource. This improvement is investigated in the
next section.

B. Offloading to multiple accelerators

The example previously shown does a simple offloading,
without parallelization. In order to improve performances, the
initial program is slightly tweaked to dispatch the filter work
on multiple accelerators, as shown in Listing 4.

This listing shows two target directives (starting line 15
and line 20, respectively), each one covering a call to the
same function (sub_filter) but with specific map clauses
designating the part of the initial image to be processed by
each target. Each clause corresponding to one target, this
implementation generates two accelerators, but it could easily

1 # pragma omp d e c l a r e t a r g e t
2 vo id s u b f i l t e r ( i n t l i n e s t a r t , i n t l i n e e n d , i n t

h e i g h t , i n t width , i n t k e r n e l s i z e , u n s i g n e d
c h a r ∗ source image , u n s i g n e d c h a r ∗ r e s u l t i m a g e )
{

3 / / c o n v o l u t i o n a c c e s s i n g s o u r c e i m a g e and
w r i t i n g r e s u l t s i n r e s u l t i m a g e

4 . . .
5 }
6 # pragma omp end d e c l a r e t a r g e t
7

8 vo id l i n e d e t e c t i o n : : c o n v o l u t i o n f i l t e r ( i n t h e i g h t ,
i n t width , i n t k e r n e l s i z e , u n s i g n e d c h a r ∗
source image , u n s i g n e d c h a r ∗ r e s u l t i m a g e ) {

9

10 # pragma omp p a r a l l e l
11 {
12 # pragma omp m a s t e r
13 # pragma omp t a r g e t d a t a map ( always , t o : s o u r c e i m a g e

[ 0 : IMAGE SIZE ] ) map ( from : r e s u l t i m a g e [ 0 :
IMAGE SIZE ] )

14 {
15 # pragma omp t a r g e t map ( t o : s o u r c e i m a g e [ 0 :

SLICE SIZE + OVERLAP SIZE ] ) map ( from :
r e s u l t i m a g e [ 0 : SLICE SIZE ] ) no wa i t

16 {
17 s u b f i l t e r ( 0 , h e i g h t / 2 , h e i g h t , width ,

k e r n e l s i z e , source image , r e s u l t i m a g e ) ;
18 }
19

20 # pragma omp t a r g e t map ( t o : s o u r c e i m a g e [ SLICE SIZE −
OVERLAP SIZE : SLICE SIZE + 2 ∗ OVERLAP SIZE ] )

map ( from : r e s u l t i m a g e [ SLICE SIZE : SLICE SIZE ] )
no wa i t

21 {
22 s u b f i l t e r ( h e i g h t / 2 , h e i g h t , h e i g h t , width

, k e r n e l s i z e , source image , r e s u l t i m a g e ) ;
23 }
24 }
25 }
26 }

Listing 4. Parallelized OpenMP source code

7



Fig. 8. Block design of the generated FPGA configuration with 8 accelerators

be extended to generate as many accelerators as supported
by the FPGA. It is worth noting that each target directive
uses the nowait clause in order to prevent the serialization
of computations (i.e., call to accelerator n only once call to
accelerator n− 1 is complete).

Using the workflow presented in Figure 1, we have gener-
ated variants with 2, 4, 8 and 10 accelerators and used the
SpaceStudio environment to estimate the FPGA occupation
of each variant and generate its implementation on the target
board.

The performance characteristics of the generated variants
on the board are presented in Table I. At this stage, we chose
to use 8 accelerators as adding more accelerators does not
improve the performance (as shown by the data collected). We
parallelize the filtering process by dividing the computation
of the filter on slices of the image. However, the algorithm
needs the preceding and following lines of the current line
being processed to produce a result, meaning that, as we
increase the number of accelerators computing a slice of

Fig. 9. Utilization of the generated FPGA configuration with 8 accelerators

the image, the number of overlapping lines that needs to
be transferred to several accelerators increases, hence the
total number of communications happening between the host
and the accelerators. This phenomenon leads to diminishing
returns when adding accelerators as they increase the time
of communication more than the time gained by having lines
processed concurrently on the FPGA.

TABLE I
PERFORMANCE OF VARIANTS

Accelerators 0 (ref) 1 4 8 10
filter time (ms) 61.4 202.3 63.9 40.9 41.1

acceleration (times) 1 0.3 0.96 1.5 1.49

The block representation of the generated design is shown
in Figure 8, and its utilization of the target FPGA (ZedBoard)
is shown in Figure 9.

Performance figures given in Table I show that at least 8
accelerators are needed to observe an acceleration with respect
to the reference implementation. The performance vs. resource
ratio is not as high as what would be achieved by manual
VHDL or Verilog coding, but the performance vs. development
cost is certainly much higher. Indeed, this result is obtained

1) with very few modifications of the source code
2) with very few manual operations, thanks to the auto-

mated tool chain,
3) using a high-level formalism (OpenMP) allowing a com-

prehensive and consistent expression and exploitation of
application-level parallelism,

4) using a compilation chain and runtimes (OpenMP com-
pliant compilers) allowing the deployment of the same
application on diverse targets (GPU, acceleration boards,
or FPGA),

8



5) with practically no knowledge of HDL programming.
Moreover, performances can actually be significantly im-

proved by simply adding HLS pragmas to the source code.
For instance, with the addition of two HLS pragmas in our
algorithm, we were able to obtain a total execution time of
the filter of 16.7 ms, which correspond to a 3.7x speedup.

This example illustrates the feasibility of the workflow
presented in Section II. However, this demonstration has been
performed on a simple, integer code. Will our workflow be
applicable to applications making an extensive use of floating
point operations (FPOps)? Indeed, deploying FP-extensive
code on a FPGA is very resource demanding. In some cases,
it may be necessary to re-code the offloaded part so that it
uses fixed-point operations instead of FPOps. In that case,
accelerating the application does not simply consists to select
the code to be offloaded using OpenMP annotations and to
press a button: the offloaded part must be re-coded. If the
developer relies on the HLS compiler to handle floating point
operations, he must ensure that the computed results are
always “identical” to those that would be obtained on the
host. Finally, performances gains achieved by offloading FP-
intensive code may be limited due to the necessity to comply
with the operation ordering in the C code in order to ensure
identical results [6].

VI. RELATED WORKS

Several academic works have addressed the problem of
translating an OpenMP annotated code to an FPGA imple-
mentation. A comprehensive bibliography can be found in [7,
Section B]).

In [8], Podobas et al propose a solution where an OpenMP
code is transformed into custom FPGA hardware units or-
chestrated by a NiosII softcore. This approach differs from
ours for three main reasons: (i) they translate OpenMP
tasks (#pragma omp task), whereas we process OpenMP
offloading directives (#pragma omp target); (ii) they
provide a specific HLS chain that generates “hyper-tasks”,
whereas we use standard HLS chains provided by FPGA
vendors (Xilinx or Intel) in order to leverage on the maturity
of these products; (iii) they start HLS from the compiler’s
intermediate representation (IR) whereas we use a source-to-
source transformation in order to maintain a direct traceability
from the OpenMP code to the code provided as input to the
HLS toolchain.

In [7], Sommer et al also process OpenMP target directives,
and also uses commercial HLS tools to generate an FPGA
implementation. The transformation relies on the ThreadPool-
Composer (TPC) API (see [9]), later improved in TaPaSCo4,
whereas our workflow relies on the communication API im-
plemented in the SpaceStudio environment. Leveraging the
capabilities of SpaceStudio, our workflow allows to evaluate
the performance of different deployment solutions starting

4Available at git.esa.informatik.tu-darmstadt.de

from a unique OpenMP source code. It also allows to deploy
to either Intel or Xilinx platforms.

Finally, in [10], Ceissler et al propose HardCloud5, which
extends OpenMP 4.x with clauses expressing the fact that
the annotated software code will be replaced by either a pre-
synthesized hardware implementation (mode 1) or an hardware
implementation generated from source code (mode 2). Mode
2 seems to be similar to our solution, but as of the writing of
this paper, only the first mode is described and supported.

VII. CONCLUSION

Software developers need appropriate programming para-
digms and languages to expose the parallelism of their appli-
cations, and exploit efficiently the huge processing capabilities
of the recent hardware platforms of the embedded market.
OpenMP is a possible solution towards that goal thanks to the
large scope of parallelization approaches supported, including
the capability to offload parts of a software application to an
external processing unit such as a GPU or an FPGA, to its
very large user base, and its maturity. In domains where size,
weight and power constraints are stringent, FPGA solutions
are a promising alternative to general purpose CPUs or GPUs,
as long as the transformation from software to hardware (i)
does not mean re-coding manually the application in some
low-level hardware description language such as VHDL or
Verilog, and (ii) does not hinder the capability to explore
various implementation solutions. To comply with conditions
(i) and (ii), we have implemented a complete workflow based
on two main components: TOAST, a new tool that extracts and
“encapsulates” the OpenMP target code, and SpaceStudio, that
provides Design Space Exploration and platform-independant
implementation capabilities. Thanks to the independence of
OpenMP with respect to the hardware platform, this solution
can be used to deploy the same software first on a multi-core
for early verification and functional validation activities, then
on non-embeddable hardware accelerators (such as GPUs), and
finally on FPGAs. We have presented the application of this
workflow on a simple use case.

In the short term, we are completing TOAST to support
the complete offloading capabilities of OpenMP and add
optimizations to the generated code.

On the long term, several issues remain to be addressed.
First, our workflow strongly relies on the capabilities of the
HLS toolchain and of the target FPGA. If some significant part
of code needs to be modified to be deployed on an FPGA, this
means that some design choice must be done very early in the
process, i.e., before the coding phase, and this would strongly
affect the DSE capabilities of the approach. For instance,
an application containing floating point operations may need
to be rewritten using fixed point operations before being
given to the HLS toolchain. Second, we strongly believe that
OpenMP can make its way into the domain of safety critical

5See www.hardcloud.org.

9

www.hardcloud.org


embedded systems, but this is conditioned by the improvement
of OpenMP determinism, which will require the application
of specific implementation and usage constraints. Hopefully,
several academic works have been carried out towards that
goal (see e.g., [11]).

REFERENCES

[1] OpenMP Architecture Review Board. (2015) OpenMP Application
Programming Interface Version 4.5. [Online]. Available: http://www.
openmp.org/wp-content/uploads/openmp-4.5.pdf

[2] G. Bois. (2017) CPU plus FPGA design flow for software developers: A
new tangible reality. https://www.embedded.com/electronics-blogs/say-
what-/4458785/CPU-plus-FPGA-design-flow-for-software-developers–
A-new-tangible-reality.

[3] (2019). [Online]. Available: https://www.xilinx.com/products/
design-tools/vivado.html

[4] (2019). [Online]. Available: https://www.intel.com/content/www/us/en/
programmable/support/support-resources/design-software/qsys.html

[5] LLVM Project. (2018) Libtooling Documentation. [Online]. Available:
https://clang.llvm.org/docs/LibTooling.html

[6] J. Hrica, “Floating-PointDesign with Vivado HLS,” XIL-
INX, Tech. Rep. XAPP599, Sep. 2012. [Online]. Avail-
able: https://www.xilinx.com/support/documentation/application notes/
xapp599-floating-point-vivado-hls.pdf

[7] L. Sommer, J. Korinth, and A. Koch, “OpenMP device
offloading to FPGA accelerators,” in Application-specific Systems,
Architectures and Processors (ASAP), 2017 IEEE 28th
International Conference on. IEEE, 2017, pp. 201–205. [Online].
Available: https://www.esa.informatik.tu-darmstadt.de/twiki/pub/Staff/
AndreasKochPublications/2017 ASAP LS paper preprint.pdf

[8] A. Podobas and M. Brorsson, “Empowering OpenMP with Automati-
cally Generated Hardware,” in SAMOS XVI, 2016. [Online]. Available:
http://www.diva-portal.org/smash/record.jsf?pid=diva2:1033786

[9] J. Korinth, D. d. l. Chevallerie, and A. Koch, “An Open-Source Tool
Flow for the Composition of Reconfigurable Hardware Thread Pool
Architectures,” in 2015 IEEE 23rd Annual International Symposium on
Field-Programmable Custom Computing Machines, May 2015, pp. 195–
198.

[10] C. Ceissler, R. Nepomuceno, M. Pereira, and G. Araujo, “Automatic
Offloading of Cluster Accelerators,” in 2018 IEEE 26th Annual
International Symposium on Field-Programmable Custom Computing
Machines (FCCM). Boulder, CO, USA: IEEE, Apr. 2018, pp. 224–224.
[Online]. Available: https://ieeexplore.ieee.org/document/8457673/

[11] R. Vargas, E. Quinones, and A. Marongiu, “OpenMP and timing
predictability: A possible union?” in Proceedings of the 2015
Design, Automation & Test in Europe Conference & Exhibition.
EDA Consortium, 2015, pp. 617–620. [Online]. Available: http:
//dl.acm.org/citation.cfm?id=2755893

10

http://www.openmp.org/wp-content/uploads/openmp-4.5.pdf
http://www.openmp.org/wp-content/uploads/openmp-4.5.pdf
https://www.embedded.com/electronics-blogs/say-what-/4458785/CPU-plus-FPGA-design-flow-for-software-developers--A-new-tangible-reality
https://www.embedded.com/electronics-blogs/say-what-/4458785/CPU-plus-FPGA-design-flow-for-software-developers--A-new-tangible-reality
https://www.embedded.com/electronics-blogs/say-what-/4458785/CPU-plus-FPGA-design-flow-for-software-developers--A-new-tangible-reality
https://www.xilinx.com/products/design-tools/vivado.html
https://www.xilinx.com/products/design-tools/vivado.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources/design-software/qsys.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources/design-software/qsys.html
https://clang.llvm.org/docs/LibTooling.html
https://www.xilinx.com/support/documentation/application_notes/xapp599-floating-point-vivado-hls.pdf
https://www.xilinx.com/support/documentation/application_notes/xapp599-floating-point-vivado-hls.pdf
https://www.esa.informatik.tu-darmstadt.de/twiki/pub/Staff/AndreasKochPublications/2017_ASAP_LS_paper_preprint.pdf
https://www.esa.informatik.tu-darmstadt.de/twiki/pub/Staff/AndreasKochPublications/2017_ASAP_LS_paper_preprint.pdf
http://www.diva-portal.org/smash/record.jsf?pid=diva2:1033786
https://ieeexplore.ieee.org/document/8457673/
http://dl.acm.org/citation.cfm?id=2755893
http://dl.acm.org/citation.cfm?id=2755893

	Introduction and contributions
	Overview of the Proposed Workflow
	Overview
	System Design Environment and FPGA vendors specific toolchains

	From OpenMP to System Level Design with TOAST
	TOAST Implementation details
	Subset of OpenMP currently covered by TOAST
	Runtime library technical details
	Device Memory Management
	Trigger Execution


	Application and Evaluation
	Offloading with one accelerator
	Offloading to multiple accelerators

	Related works
	Conclusion
	References

