
HAL Id: hal-02474341
https://hal.science/hal-02474341

Submitted on 11 Feb 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Branch-and-Bound Method for Just-in-Time
Optimization of Radar Search Patterns

Yann Briheche, Frédéric Barbaresco, Fouad Bennis, Damien Chablat

To cite this version:
Yann Briheche, Frédéric Barbaresco, Fouad Bennis, Damien Chablat. Branch-and-Bound Method for
Just-in-Time Optimization of Radar Search Patterns. Nature-Inspired Methods for Metaheuristics
Optimization, pp.465-488, 2020, �10.1007/978-3-030-26458-1_25�. �hal-02474341�

https://hal.science/hal-02474341
https://hal.archives-ouvertes.fr

Branch-and-Bound Method for Just-in-Time Optimization of Radar
Search Patterns

Yann Briheche1,2,*, Frederic Barbaresco1, Fouad Bennis2, Damien Chablat2

1THALES AIR SYSTEMS, Voie Pierre-Gilles de Gennes, 91470 Limours, France
2Laboratoire des Sciences du Numérique de Nantes, UMR CNRS 6004, 44321 Nantes, France
*yanis.briheche@thalesgroup.com

1. Introduction & Context

Set covering is a well-known problem in combinatorial optimization. The objective is to cover a
set of elements, called the universe, using a minimum number of available covers. The theoretical
problem is known to be generally NP-difficult to solve [1], and is often encountered in indus-
trial processes and real-life problem. In particular, the mathematical formulation of the set cover
problem is well-suited for radar search pattern optimization of modern radar systems.

Electronic scanning and numerical processing allow modern radars to dynamically use bi-
dimensional beam-forming, giving them great control on the radar search pattern. While tradi-
tional rotating radars search the space sequentially along the azimuth axis and reproduce at each
azimuth the same pattern along the elevation axis, modern radars can optimize the search pattern
along both axis simultaneously (Fig. 1). Those new possibilities requires a more sophisticated for-
mulation for the optimization problem of the radar search pattern. Approximation of radar search
pattern optimization as a set cover problem offers a flexible yet powerful formulation [2], capa-
ble of accounting radar specific constraints (localized clutter, adaptive scan-rate updates, multiple
missions) without changing the underlying mathematical structure of the optimization problem.

Various optimization algorithms have been proposed for solving the set cover problem: exact
methods such as branch-and-bound combined with relaxations methods, and approximation algo-
rithms such as greedy algorithm, simulated annealing and genetic algorithms (see [3] for a recent
survey of those methods). In practice, problems of reasonable size can be efficiently solved by
branch-and-bound exploration using linear relaxation for lower bound estimation. More impor-
tantly, branch-and-bound features interesting characteristics, making it particularly fit for produc-

azimuth

elevation

azimuth

elevation

Fig. 1. Radar search pattern for a rotating radar (left) and a modern fixed-panel radar (right)

1

mailto:corresponding.author@second.com

{ }, ,

, ,

,

T1=2 T2=2 T3=2

T5=2 T6=1 T7=1C7 =

,

,

T4=2

T8=1G = g1,1

g0,1

g1,2

g0,2

g1,0

g0,0

g2,1 g2,2g2,0

C =g1,1

g0,1

g1,2

g0,2

(m0,n0)0 1 2 3
0

1

2

3
(m1,n1)

Fig. 2. Grid G to cover (left), a cover (center) and the collection C of available covers (right)

ing just-in-time solutions, for example for radars in operational situation.

2. Problem Statement

2.1. Definition

Let G = {gm,n} be the set representation of a finite bi-dimensional M -by-N regular grid with

• each element gm,n representing a cell indexed by (m,n) ∈ [0,M [×[0, N [⊂ N2. The grid
contains MN cells.

• each couple (m,n) representing the node at the intersection of the m-th horizontal line and
the n-th vertical line with (m,n) ∈ [0,M] × [0, N] ⊂ N2. The grid has (M + 1)(N + 1)
nodes.

On the grid, a rectangular cover is a subset of elements included in a rectangle, uniquely defined
by its upper left corner node (m0, n0) and its lower right corner node (m1, n1), such that 0 ≤ m0 <
m1 ≤ M and 0 ≤ n0 < n1 ≤ N . The set representation of a cover defined by corners (m0, n0)
and (m1, n1) is:

C = {gm,n, (m,n) ∈ [m0,m1[×[n0, n1[}
For example, in cover C7 (Fig. 2), the corners are (m0, n0) = (0, 1) and (m1, n1) = (1, 2).

Let C = {C1, . . . , CD} be a collection of D rectangular covers on G.
Let TC ∈ R+ be the associated cost of cover C ∈ C (also noted Ti for cover Ci).
Find a minimum cost sub-collection S ⊂ C covering all cells of grid G.

2.2. Example

There are six available covers such as in Figure 2 to cover G:

• S1 = {C1, C4, C5, C6, C7} is a valid sub-optimal covering collection with total cost T1 +T4 +
T5 + T6 + T7 = 8.

• S2 = {C2, C3, C6, C7} is a valid optimal covering collection with total cost T2+T3+T6+T7 =
6, as there are no solution with total cost 5 or less.

• S3 = {C2, C5, C6, C8} is another optimal covering collection, thus an optimal solution is not
necessarily unique.

2

az

el

az

el

G

Fig. 3. Surveillance areaAS (left), its projection in direction cosines (center) and the surveillance
grid (right)

azimuth

elevation

tilt

direction cosines

Fig. 4. Radar detection beam (left), its radiation pattern (center) and the associated cover (right)

The optimization formulation of this set cover problem can be written as:

min
∑

C∈S TC
s.t. ∀gm,n ∈ G,∃C ∈ S, gm,n ∈ C

S ⊂ C
(1)

In the case of radar search pattern application, the grid G represents the surveillance area (Fig.
3), while each cover C ∈ C represents a radar beam and its detection area on the grid G (Fig. 4).
The associated cost TC is the duration required to emit the radar signal, then receive and process
the echo. The total cost of collection of radar beams is the time required to emit all beams in
sequential order, as the radar cannot emit simultaneously several beams.

2.3. Combinatorial complexity

A rectangle cover is uniquely define by its upper left and lower right corners. Those corners are
mathematically defined by choosing two values m0 and m1 among the M + 1 horizontal lines, and
two values n0 and n1 among the N + 1 vertical lines on the grid. Thus there are at most(

M + 1

2

)(
N + 1

2

)
=
MN(M + 1)(N + 1)

4
= O(M2N2)

possible distinct rectangles on a M -by-N grid. And so the maximum number of possible sub-
collections of rectangular covers on the grid is 2MN(M+1)(N+1)/4.

Even for a 10-by-10 grid, which is relatively small, the number of possible sub-collections is
approximately 10900, which is far too big to allow the use of brute-force exploration.

3

c = N.M

0
0
0

0

0
0

0

1
1

C =

N

M
0

0
0
0

0
0
0

1
1

Fig. 5. Radar detection beam (left), its binary matrix representation (center) and its binary vector
representation (right)

3. Integer Programming

3.1. Problem Formulation

The set cover problem can be written as an integer program by using matrix formulations. We
represent each cover C ∈ C as a binary M -by-N matrix noted C, or as a binary vector of length
MN noted c:

C(m,n) = c(m+Mn) =

{
1 if gm,n ∈ C
0 otherwise

For each cover Ci ∈ C, let xi ∈ {0, 1} be the binary selection variable of cover Ci, such that
the vector x = (x1, . . . , xD) ∈ {0, 1}D represents the sub-collection S = {Ci ∈ C s.t. xi = 1},
containing the chosen covers.

Let T = (T1 · · ·TD)T be the cost vector and let

A =
(
c1 · · · cD

)
=

C1(0, 0) · · · CD(0, 0)
C1(1, 0) · · · CD(1, 0)

...
C1(m,n) · · · CD(m,n)

...
...

...

be the cover matrix.

Then the set cover problem (1) can be written as the following integer program:

min TT .x
s.t. A · x ≥ 1

x ∈ {0, 1}D
(2)

where 1 is the vector (1 · · · 1) of length MN . As an example, the set cover problem represented in

4

Figure 2 can described by the following Equation:

A =

0 0 0 0 0 1 0 1
0 0 0 1 0 1 0 0
0 1 0 1 0 0 0 0
0 0 0 0 0 1 1 1
0 0 0 0 0 1 1 0
1 1 1 0 0 0 0 0
0 0 0 0 0 0 1 1
0 0 0 0 1 0 1 0
0 0 1 0 1 0 0 0

, T =

(
2 2 2 2 2 1 1 1

)T and x =

x1
x2
x3
x4
x5
x6
x7
x8

(3)

In their general form, integer programs are NP-hard to solve. Intuitively, this means that solv-
ing those problems is difficult, and requires some form of exhaustive enumeration of all possible
solutions, whose number is often exponential in respect to the problem size.

3.2. Linear Relaxation

The linear relaxation of an integer program can be obtained by relaxing the integrality constraint of
(2) into a positivity constraint, allowing the variables (xi)1≤i≤D to take continuous values in [0, 1]:

min TT .x
s.t. A · x ≥ 1

0 ≤ x ≤ 1
(4)

Any valid solution of the integer program is also a valid solution of its linear relaxation. Con-
sequently the optimal value of the linear relaxation is inferior to the optimal value of the integer
program, since an optimal solution of the integer program is a valid solution of the linear relaxation.

Note that the constraint x ≤ 1 is in fact unnecessary, since the problem

min TT .x
s.t. A · x ≥ 1

0 ≤ x
(5)

has the same optimal solutions as (4). Intuitively, in the linear relaxation, a cell is going to be
covered by a sum of “fractional” covers (with xi < 1), or as at least one integer cover (with
xi = 1) and thus has no need for covers with xi > 1.

We formalize mathematically this idea in the following proof:

• Let xb = (xb1 · · · xbD) be an optimal solution of (5). Let y = (y1 · · · yD) with yi = min{xbi , 1}.
Immediately we have TTy ≤ TTxb. Since xb is a valid solution of (5):

∀(m,n),
∑
i

xbiCi(m,n) =
∑
xb
i≤1

xbiCi(m,n) +
∑
xb
i>1

xbiCi(m,n) ≥ 1

- Case 1:
∑

xb
i>1 x

b
iCi(m,n) = 0∑

i

yiCi(m,n) ≥
∑
xb
i≤1

xbiCi(m,n) =
∑
xb
i≤1

xbiCi(m,n) +
∑
xb
i>1

xbiCi(m,n) ≥ 1

5

- Case 2:
∑

xb
i>1 x

b
iCi(m,n) > 0

∃j s.t. xbj > 1 and Cj(m,n) > 0, and since Cj(m,n) ∈ {0, 1}, Cj(m,n) = 1, thus:∑
i

yiCi(m,n) ≥ yjCj(m,n) ≥ Cj(m,n) ≥ 1

So y is a valid solution of (5), and since TTy ≤ TTxb, y is also an optimal solution of (5).
From this, we deduce TTy = TTxb and with T > 0, we deduce xb = y, so xb is a valid
solution for (4).

• Let xa be an optimal solution of (4), xa is also a valid solution of (5), so TTxb ≤ TTxa. We
just showed that if xb is an optimal solution of (5) then it is also a valid solution of (4), so we
also have TTxa ≤ TTxb, and thus we can conclude TTxb = TTxa.
So any optimal solution of (4) is an optimal solution of (5) and reciprocally, thus both prob-
lems have the same set of optimal solutions.

Furthermore, the positivity constraints 0 ≤ x can be integrated in the matrix formulation with

R =

(
A
I

)
and d =

(
1
0

)
by rewriting the linear program as

min TT .x
s.t. R · x ≥ d

(6)

And the three formulations of the linear relaxation (4), (5) and (6) are equivalent.
The integer program representing our set cover problem and its linear relaxation have two more

interesting properties:

• Easily-checked feasibility: an integer program is feasible if there is at least one solution
validating all constraints. It is possible that no valid solution exists if some constraints are
conflicting, or if one constraint is impossible. In our case, feasibility is easy to check: the
integer program as well as its linear relaxation are feasible if and only if xF = (1 · · · 1) is a
feasible solution, i.e. A · xF =

∑D
i=1 ci ≥ 1:

– if xF is a valid solution, then the problem is feasible by definition.
– if xF is an invalid solution, then there is an invalidated constraint for xF , i.e.:
∃(m,n) s.t.

∑D
i=1Ci(m,n) < 1, and since ∀(i,m, n), Ci(m,n) ∈ {0, 1},

∃(m,n) s.t. ∀i,Ci(m,n) = 0⇒ ∃(m,n) s.t. ∀(xi)1≤i≤D,
∑D

i=1 xiCi(m,n) = 0 < 1
In other words,A has its (m+Mn)-th row filled with zeros, corresponding to a constraint
which can be satisfied by no solution.
Intuitively, xF represents C, the collection of all available covers itself, and if it is an
invalid solution, then there is a cell which cannot be covered. This can happen in a real
system if there is a cell which cannot be scanned, because of an obstacle or because the
radar has not enough power to achieve the desired detection range.

• Boundedness: a recurring question for linear programs is whether they are bounded, that is
whether the cost function is bounded (below for minimization) for valid solutions. In our case
the cost function is positive and thus bounded below by 0.

6

infeasible integer solution
feasible integer solution

cost on feasible space (blue is lower)

basic vertex (feasible space corner)

Fig. 6. Decision space for 2D linear and integer programs

simplex (linear solver)

linear optimal solution
integer optimal solution

Fig. 7. Illustration of Dantzig’s simplex method for solving linear programs

3.3. Linear Programming

There are three important geometrical aspects describing the decision space of the integer and
linear programs (Fig. 6):

• T is the cost function gradient. The cost function is linear and its gradient is constant. −T is
the direction of maximum decrease of the cost function.

• A is the cover matrix. Each row of A correspond to a detection constraint on a cell of G.
In the decision space, each constraint corresponds to an hyperplane, the limit between the
halfspace of solutions validating the constraint and the halfspace of solutions violating the
constraint. The intersection of those halfspace forms a convex polyhedron.

• The positivity constraint of the linear relaxation 0 ≤ x ≤ 1 bounds the values of the valid
solutions in the hypercube [0, 1]D.
For the integer program, the integrality constraint x ∈ {0, 1}D further reduces the set of valid
solutions to the vertices of the hypercube [0, 1]D.

So the set of valid solutions for the linear relaxation is the intersection of the valid halfspaces for
all constraints, and the hypercube [0, 1]D. Geometrically, it is a bounded convex polyhedron in RD,
and can be described by its vertices (“corners”). Each vertex of this polyhedron is a point where
at least D hyperfaces of the polyhedron intersect, in other words, a point where D constraints are
tight.

Such a point is called a basic solution (or basic vertex) of the linear program. It has been proved
that if a linear program is bounded and feasible, then it has a basic optimal solution [4].

For a linear program, the polyhedron convexity allows the use of descent methods, such as
Dantzig’s simplex method, represented in Figure 7, which moves from vertex to vertex on the
feasible polyhedron until it reaches an basic optimal solution, i.e. a vertex with no decreasing
neighbor. However, this type of method generally cannot be used to solve integer programs, for
which solutions are isolated points.

7

So for a given basic optimal solution, we haveD tight constraints. LetB ≤MN be the number
of tight detection constraints. If D > B then we have Z = D − B tight bound constraints. By
considering formulation (5), we know that those Z tight bound constraints are of the form xi ≤ 0,
thus xi = 0. The corresponding Z variables are called non-basic variables and are zeroes. The
otherD−Z = B variables are called basic variables and can be non-zero values. We reorganize the
variables as xT = (xT

B xT
Z), where xB are the basic variables, and xZ are the non-basic variables.

Thus we have B tight detection constraints in A, such that

ABxB = 1

where AB is the squareB-by-B submatrix of A linking the basic variables xB to the tight detection
constraints. Furthermore, AB is necessarily non-singular: since the hyperplanes of all constraints
intersect, the constraints are linearly independent.

3.4. Integral Program and Total Unimodularity

So for any basic optimal solution of the linear program, there is a (possibly non-unique) square
non-singular submatrix AB of A such that ABxB = 1 (note that the reverse is not true, the
condition is necessary, but not sufficient). Thus, xB = A−1B 1 and xT = (xT

B xT
Z) = (xT

B 0).
So if A−1B is an integral matrix (i.e. contains only integral values), then x is also integral. This

means that the linear program and the integer program share an optimal solution. The integrality
of an invert matrix is determined by the determinant of its forward matrix:

det(AB) ∈ {−1,+1} ⇒ A−1B =
com(AB)T

det(AB)−1
is integral

A matrix A is said to be unimodular if det(A) ∈ {−1, 0,+1}. A matrix is said to be totally uni-
modular if all its square submatrices are unimodular. An integer program whose constraint matrix
is totally unimodular can be directly solved by linear relaxation, because the integer program and
its linear relaxation have the same basic optimal solutions. In this case, the problem and its asso-
ciated convex polyhedron are said to be integral. Geometrically, this means that all vertices of the
polyhedron are integral points.

Total unimodularity is an important concept in combinatorial optimization, because it reduces
integer programming to linear programming, which is theoretically an “easier” problem. Linear
programming is solvable in polynomial time, and very efficient practical algorithms exist.

3.5. One-dimensional cover problem

For example, let us consider the one-dimensional case of our problem, with M = 1:

• G = {gn, n ∈ [0, N [} is a vector with N cells to covers.

• a cover C = {gn, n ∈ [n0, n1[} is a contiguous subset of G, uniquely defined by a starting
element n0 and an ending element n1 such that 0 ≤ n0 < n1 ≤ N . Each cover can be
represented by a binary vector

c(n) =

{
1 if n0 ≤ n < n1

0 otherwise

which contains contiguous “ones”, i.e. there is no “zero” between two “ones”.

8

G = g5 g6g1 g2 g3 g4 g7 g8 g9 { }C =

T1=1
,

T2=1
,

T3=1
,

T4=1
,

T5=1 T6=1
,

Fig. 8. Instance of the one-dimensional cover problem

• C = {C1, . . . , CD} is a collection of covers on G.

An example of this problem is presented in Figure 8.
For the one-dimensional cover problem, the cover matrix A =

(
c1 · · · cD

)
is an interval

matrix, i.e. each column ci of A has its ones “consecutively”. Interval matrices are known to
be unimodular [5], and thus totally unimodular, since every submatrix is also an interval matrix.
Every basic optimal solution of the linear relaxation is an integral solution, and a valid solution
for the integer program. Solving the linear relaxation of the one-dimensional cover is sufficient to
solve the problem itself, making it an “easy” problem.

However this not the case for the two-dimensional cover problem. For the problem repre-
sented in Figure 2 and described by Equation (3), the linear basic optimal solution is xL =
(0 1

2
1
2

1
2

1
2

1
2

1
2

1
2
)T . A possible AB submatrix for this solution is

which has a determinant of −2, thus explaining the appearance of 1
2

values in the linear basic
solution. This counterexample disproves the total unimodularity of the two-dimensional cover.

3.6. Integrality Gap

For the two-dimensional cover problem, the linear optimal solution might not be a valid solution
for the integer problem and may have fractional values. The optimal cost of the linear relaxation
described by Equation (3) is TTxL = 11

2
. The optimal cost of the integer program cannot be

fractional and is necessarily integer (in this case, it is 6). The difference between the optimal cost
of the integer program and its linear relaxation is called the integrality gap.

3.7. Dynamic programming

Interestingly, the difficulty gap between the one-dimensional and two-dimensional cover prob-
lems can be found by a completely different, algorithmic approach using dynamic programming.
Dynamic programming is a method for solving an optimization problem by recursively solving
smaller sub-problems. Problems solved by dynamic programming usually possess an optimal sub-
structure, which means that an optimal solution can be constructed by combining optimal solutions

9

= + } } }optimal sub-solution for n0 cells cover for the last N-n0 cellsoptimal solution for N cells

Fig. 9. Optimal substructure of the one-dimensional cover problem

of its sub-problems. The method is particularly efficient if this substructure can be broken down
recursively in a polynomial number of sub-problems.

This the case for the one-dimensional cover (Fig. 9). An optimal subcollection S covering G
for this problem is going to be the combination of:

• a cover c including the last cell, so such that n0 ≤ n < N(= n1). Thus c covers the last cell
but might also covers some previous cells.

• a subcollection covering optimally the first n0 cells (which are not covered by c)

Then it’s possible to recursively define the solution covering optimally the first K cells as the
union of a one cover including the K-th cell and a solution covering optimally the first k cells with
k < K. This is formalized by the following equation, called the Bellman recursion:

x[1,K] =

 0 if K = 0
x[1,K−1] if Ax[1,K−1] ≥ 1[1,K]

argmin{TTx s.t. x = (x[1,k] + xi), k < K, Ax ≥ 1[1,K]} otherwise

where

- x[1,K] is the solution covering optimally at least the first K cells

- 1[1,K] is the vector of length N starting with K ones and ending with N −K zeroes

- xi is the vector of length D with a one at position i and zeroes elsewhere, representing the
addition of the cover ci.

- k is the first non-zero element of the given cover ci

And the recursion can be described by the following steps

- x[1,0] is the solution covering zero cells, initialized at 0

- If the solution covering K − 1 cells also covers the K-th cell, we keep it.

- Otherwise, search the optimal solution covering the first K cells as a combination of:

· a cover ci containing the K-th cell
· the sub-solution x[1,k] optimally covering the first k < K cells not covered by ci

So the dynamic programming method computes optimal sub-solutions for all sub-problems of
covering the first K cells for K ≤ N . So we must solve N sub-problems. For each sub-problem,
the solution is computed as a combination of a cover and a smaller substructure optimal solution, so
requires O(D) steps to search through all covers. Thus, the algorithmic complexity of the dynamic
programming algorithm is O(ND), which is polynomial.

10

first substructure
second substructure
substructures cut

Fig. 10. Substructure decomposition of the one-dimensional cover problem (left) and the two-
dimensional cover problem (middle)

A natural question would be whether this approach can be generalized to the two-dimensional
cover problem. Let us consider an optimal solution for the two-dimensional cover problem. It can
be viewed as a combination of a rectangular cover C including the last bottom-right cell and an
optimal cover for the substructure of cell not covered by C.

So the optimal substructure of the two-dimensional cover problem is the cover sub-problem of
a first “top-left” half of the M -by-N grid G. The number of sub-problems is equal to the number
of way of cutting G into two substructures: a top-left part and a bottom-right part, as presented in
Figure 10. Equivalently, this is equal to the number of paths between the top-right corner and the
bottom-left corner of G.

A cut is constituted byN+M edges on the grid, withM vertical edges andN horizontal edges.
Any cut can be defined uniquely by choosing the N vertical edges (or equivalently M horizontal
edges) among the N + M edges. So the number of possible paths between two opposite corners
of G, and thus the number of cover sub-problems on G is

(
N+M
N

)
=
(
N+M
M

)
.

Let K = min{N,M}, then the number of possible cuts can be bound below by the following
approximation using Stirling’s formula(

N +M

N

)
≥
(

2K

K

)
'
√

2π2K(2K)2K

e2K

(
eK√

2πKKK

)2

=
22K

√
πK

Thus, the number of sub-problems to solve grows exponentially with the grid size: an increase by
10 of the grid size increase the number of sub-problems by approximately 22·10 ≈ 106. Even for
small values, the number of sub-problems explodes:

N = M 10 20 30 40 50(
2N
N

)
' 105 ' 1011 ' 1017 ' 1023 ' 1029

Table 1 Number of sub-problems

So while theoretically usable for the two-dimensional cover problem, dynamic programming
has an exponential complexity for this problem, making the approach rather unpractical. This hints
that the two-dimensional cover problem is computationally harder than the one-dimensional cover
problem. The two-dimensional cover problem is in fact NP-difficult to solve [6]. To efficiently
solve the two-dimensional cover problem, we need to use a more general optimization method.

11

...

LB0 LB1

LB10 LB11

x1=0 x1=1

x2=0 x2=1 x2=0 x2=1

...

>

<

Fig. 11. Finite tree of solutions (left) and branch-and-bound method (right)

4. Branch&Bound

Integer programs are generally NP-hard optimization problems: there is currently no know algo-
rithm capable of finding quickly an optimal solution. Informally, exact algorithms “have to” search
through the solution space.

The space of all possible solutions can be represented as a finite binary tree with depth p, each
node representing the value choice of an integer variable (Fig. 11). Each end leaf represents a so-
lution for the integer program. The number of possible solutions is finite, but grows exponentially
and is usually huge: in our case, 2D possible solutions.

Exploring the entire tree is computationally unfeasible in reasonable time. However it is possi-
ble at each node to estimate a lower bound of the node sub-tree best solution, by solving its linear
relaxation. Knowing their lower bound, it is possible to avoid exploring certain subsets. This
method is known as the branch-and-bound method [7]:

• Branching: Each branch at the current node (with depth i− 1) correspond to a chosen value,
0 or 1, for the next variable xi. In each branch, xi is no longer a variable but a parameter.
The current problem is thus divided into 2 smaller sub-problems, each considering a different
value for xi and each having one less variable.

• Bounding: The current problem is relaxed into a linear program, whose solution is a lower
bound of the current problem best solution. Depending on the lower bound value, the node
sub-tree will be explored next (if it is the most promising branch), later (if there is a more
promising branch), or never (if a better solution has already be found in another branch).

Defining what a promising branch is a difficult question, a lower bound is not necessarily better
since deeper nodes may have higher bounds while being closer to optimal solutions. Integer pro-
gramming solvers usually rely on various heuristics to define the exploration strategy and improve
bound estimations.

4.1. Description

We present in this section a pseudo-code describing a basic implementation of the branch-and-
bound method in Algorithm 1. Each node in the tree can be described by the sequence of choices
leading to it:

N = (x1, x2, . . . , xn)

From a given node, we can compute its children N0 = (x1, . . . , xd, 0) and N1 = (x1, . . . , xd, 1).
At each node N explored, (x1, x2, . . . , xn) are set, and we solve a linear relaxation of the problem

12

with respect to the variables (xn+1, . . . , xD) using the simplex method, then add N to the list of
nodes to explore.

The algorithm can be summarized by the following steps:

0. Initialization:
Initialize the list of node to explore with the root node.

1. Exploration:
Pop next node to explore from the list of nodes and compute its linear relaxation.

2. Bounding:
If the current node relaxation value is less than the current best solution found, proceed to
Step 3, otherwise, drop current node and go back to Step 1.

3. Update:
If the current node relaxation is an integral solution, then its an improving solution (note that
an end leaf always yield an integral solution). Update best current solution and proceed to
Step 1.
Otherwise:

4. Branching:
Compute the current node children. For each child, check if the descendants contains a valid
solution (this can be done by summing covers already used by the parent, the cover of the
child node if used, and covers available to the descendants). If the child node is valid, add it
to the list of node to explore. Proceed to Step 1.

This very generic description is just a presentation of the general idea of the method. Efficient
implementations of the branch-and-method usually combined several techniques such as cutting
planes, diving heuristics and local branching to improve bounds estimation and speed.

4.2. Application example

In this section, we apply and describe the behavior of the branch-and-bound method on the example
represented in Figure 2 and described in Equation 3.

• N = {}, xbest = (1 1 1 1 1 1 1 1), fbest = TT · xbest = 13 :
Solving the root relaxation yields the linear solution (0 1

2
1
2

1
2

1
2

1
2

1
2

1
2
) with cost 11

2
≤ 13. Root

node children (0) and (1) are feasible, and thus added to the exploration list N := {(0), (1)}

• N = {(0), (1)}, xbest = (1 1 1 1 1 1 1 1), fbest = TT · xbest = 13 :
Relaxation of (0) yields the same linear solution (0 1

2
1
2

1
2

1
2

1
2

1
2

1
2
) with cost 11

2
. We add the

children (0, 0) and (0, 1) to the exploration list N := {(1), (0, 0), (0, 1)}

• N = {(1), (0, 0), (0, 1)}, xbest = (1 1 1 1 1 1 1 1), fbest = TT · xbest = 13 :
Relaxation of (1) yields the linear optimal solution xL = (1 0 1 1 1

2
1
2

1
2

1
2
) with cost 15

2
< 13.

We add the children (0, 0) and (0, 1) to the exploration list N := {(1, 0), (1, 1)}

• N = {(0, 0), (0, 1), (1, 0), (1, 1)}, xbest = (1 1 1 1 1 1 1 1), fbest = TT · xbest = 13 :
Relaxation of (0, 0) yields the linear optimal solution xL = (0 0 1 1 0 0 1 1) with cost 6 < 13.
xL is an integral solution, thus we update the best current solution xbest := xL; fbest := 6.

13

Algorithm 1 Branch-and-bound
% LP SOLVE is the relaxation subroutine called during branching
function LP SOLVE(N)

(x1, . . . , xd−1) := N . At node N , the first d− 1 variables are set
(xd, . . . , xD) := argmin{

∑D
j=d Tjxj , s. t. A · x ≥ 1} . Optimization of non-set variables

return xL := (x1, . . . , xd, xd+1, . . . , xD)
end function

% Initialization
Nroot = ()
N := {Nroot} . Start with root node
xbest := xF = (1 · · · 1) . Best solution found so far (by default, xF is a valid solution)

% Exploration
while N is not empty do

N := pop(N) . Take next node in N
xL := LP SOLVE(N) . Solve node relaxation

% Bounding
if TT · xL < TT · xbest then . Explore node N only if it can improve best solution

% Update
if xL ∈ {0, 1}D then . Check if xL is an integral solution

xbest := xL

else
(x1, . . . , xd) := N

% Branching
for x ∈ {0, 1} do . Compute children of node N

Nc := (x1, . . . , xd, x)

if
∑d

j=1 xjcj + xcd+1 +
∑D

j=d+2 cj ≥ 1 then . Check child feasibility
N := N ∪ {Nc} . Add child to the candidate list

end if
end for

end if
end if

end while
return xbest

At this point, we can already deduce than we have found an integer optimal solution. The root
relaxation has linear optimal cost 11

2
. Since any integer solution is a valid linear solution, it has

an integer cost greater than the linear optimal cost 11
2

, so greater than 6. This suffices to prove the
optimality of xbest = (0 0 1 1 0 0 1 1) for the integer program described by Equations (2,3).

14

4.3. Multiple solutions enumeration

While we could terminate the exploration once we have found an optimal solution, we also have
the possibility to pursue the exploration in order to found alternative optimal solutions.

In engineering applications, multiple solutions are a desirable feature for engineers and opera-
tors who can select a solution among multiple candidates based on their expertise. This choice in
turn can be analyzed to define preferences, to add secondary selection criterion to the method or
even refined the model into a multi-objective optimization problem.

Multiple solutions enumeration can be done by slightly modifying steps 2. and 3. of the branch-
and-bound method:

2. Bounding:
If the current node relaxation value is less than or equal to the current best solution found,
proceed to Step 3, otherwise, drop current node and go back to Step 1.

3. Update and Enumerate:
If the current node relaxation is an integral solution, then its an improving solution. If it is
strictly better than the current solution, empty the set of best solutions and update best current
solution. Otherwise, update the set of best solutions. Proceed to Step 4 (as there could be
other optimal solutions among the children of the current node).

This result in modifications to Algorithm 1 pseudo-code as described in Algorithm 2.
If we pursue the method application to the numerical example previously described:

• N = {(0, 0), (0, 1), (1, 0), (1, 1)}, xbest = (1 1 1 1 1 1 1 1), fbest = TT · xbest = 13 :
Relaxation of (0, 0) yields the linear optimal solution xL = (0 0 1 1 0 0 1 1) with cost 6 ≤ 13.
xL is an integral solution, thus we update the best current solution xbest := xL; fbest := 6.
We add the children (0, 0, 0) and (0, 0, 1) to the exploration list N .

• N = {(0, 1), (1, 0), (1, 1), (0, 0, 0), (0, 0, 1)}, xbest = (0 0 1 1 0 0 1 1), fbest = TT · xbest = 6
:
Relaxation of (0, 1) yields the linear optimal solution x1 = (0 1 1 0 0 1 1 0) with cost 6 ≤ 6.
x1 is an integral solution, thus added to Xbest := {xbest,x1}. We add the children (0, 1, 0) and
(0, 1, 1) to the exploration list N .

• N = {(1, 0), (1, 1), (0, 0, 0), . . . }, xbest = (0 0 1 1 0 0 1 1), fbest = TT · xbest = 6 :
Relaxation of (1, 0) yields the linear optimal solution xL = (1 0 1 1 1

2
1
2

1
2

1
2
) with cost 15

2
> 6.

We drop node (1, 0) and proceed with the next node.

• N = {(1, 1), (0, 0, 0), . . . }, xbest = (0 0 1 1 0 0 1 1), fbest = TT · xbest = 6 :
Relaxation of (1, 1) yields the linear optimal solution xL = (1 1 1 0 0 0 1 1) with cost 8 > 6.
We drop node (1, 1) and proceed with the next node.

This numerical example is graphically represented in Figure 12, with the optimization phase,
the enumeration phase and some nodes rejection.

4.4. Just-in-time criteria

One of the most interesting features of the branch-and-bound method from an operational point
of view is the possibility to use a “just-in-time” criteria. For example, a radar system with an

15

Algorithm 2 Multiple solutions enumeration branch-and-bound
% Initialization
...
xbest := xF = (1 · · · 1) . Best solution found so far (by default, xF is a valid solution)
Xbest := {xF} . Set of best solutions found so far

% Exploration
while N is not empty do

...

% Bounding
if TT · xL ≤ TT · xbest then . Explore N if its relaxation is at least as good as xbest

% Update and Enumerate
if xL ∈ {0, 1}D then . Check if xL is an integral solution

if TT · xL < TT · xbest then
xbest := xL

Xbest := {xL}
else
Xbest := Xbest ∪ {xL}

end if
end if

% Branching
for x ∈ {0, 1} do

...
end for

end if
end while
return Xbest

embedded computer must optimize its cover just before a mission start. However, it only has five
minutes to perform the optimization. A “just-in-time” is a time limit condition that would ensure
that even if the optimum has not been reached, the algorithm will return the best solution it found
in the available lapse of time. Another strength of the method is the fact that linear relaxation
provides a lower bound of the optimal solution value:

BN = min{TT · xL : xL = LP SOLVE(N), N ∈ N}

thus during the computation of the method, we always have an interval of confidence for the
optimal solution value, above the lower bound but below the current best value:

BN ≤ T · xopt ≤ T · xbest

Knowing the lower bound, we can compute the (worst-case) relative optimality gap as:

∆opt =
T · xbest −BN

BN

16

optimization
enumeration
rejection

first optimum
second optimum

(0) (1)

(0,0) (0,1) (1,0) (1,1)

......(0,0,0)

fL=11/2

fL=11/2 fL=15/2

fL=6 fL=6 fL=15/2 fL=8

Fig. 12. Graphical representation of the branch-and-bound application example

which give as a percentage the best gain we can hope from the optimal solution relatively to the
current best solution. The pseudo-code modifications required to account a time limit and provided
the current lower bound are described in Algorithm 3.

Algorithm 3 Just-in-time branch-and-bound

% Exploration
current time := time() . Get current time
while N is not empty AND current time ≤ time limit do

...
end while
return Xbest, BN

In practice, if the algorithm has a broad choice of available covers, it will find very quickly a
good quality solution. Typically within ≤ 10% of relative optimality gap. However closing those
last percents to reach the optimal solution can be difficult. Because the decision space is often
huge, the algorithm spends a long time crossing out possibilities. In some case even, the algorithm
finds quickly the optimal solution, and spends a long time proving its optimality.

5. Application to Radar Engineering

In this section, we give a study case example of radar search pattern optimization and its simulation
results. We present first a quick informal description with intuitive and quantitative insight on our
mathematical model of the radar system.

5.1. Radar model

An active radar is a system capable of detecting distant metallic objects, by sending electromag-
netic waves and listening to reflected echos. To perform detection in a given azimuth-elevation
direction (az, el), the radar antenna is electronically controlled to focus power in direction (az, el),
maximizing the radiation pattern in that direction. A signal containing a series of impulses is then
sent through the radar. Upon reception, the reflected signal is filtered to detect echoes. A longer
signal is more energetic and easier to filter out. The energy received by the radar from a target at

17

el

az

el=0

Fig. 13. Desired detection range: elevation cut (left), azimuth cut (center) and 3D view (right)

distance R is

Er = K
g2 T

R4
(7)

where K is a constant accounting for the radar emitting power, internal losses, target reflectability,
etc., g is the antenna radiation pattern in direction (az, el), and T is the signal duration.

Equation (7) is a simpler version of the radar equation [8], a fundamental concept in radar
theory. It formalize the intuitive idea that the reflected energy increases with antenna directivity and
signal duration, but decreases with the target distance. The radar has a certain detection threshold
Et, and detects a target only if its reflected energy is above this threshold.

For a given radar system, we have a set of feasible rectangular radiation patterns for the antenna
and a set of available signals. The combination of a radiation pattern and a time signal is called a
dwell.

5.2. Simulation parameters

The desired detection range is defined by a minimum distance Dminand a minimum altitude Hmin.
We want to detect targets within that range, closer than Dmin and below altitude Hmin, so the
desired detection range is defined as:

Rc(az, el) =

{
Dmin if el ≤ asin

(
Hmin

Dmin

)
Hmin

sin(el)
otherwise

Informally, the volume defined by the detection range resembles a sliced cylinder (Fig. 13). The
radar can use two different type of signals: a short signal and a long signal.

In our simulation, the detection grid G is a 20×20 lattice with 326 valid cells. We computed
866 feasible dwells in our study case, with 815 dwells using a short time signal with duration Ts
and 51 dwells using a long time signal with duration Tl. We compute the cost vector T with size
866 associating each dwell to its signal time duration.

We want to find a optimal radar search pattern, i.e. a sub-collection of dwells among the 866
available dwells covering all 326 valid detection cells with minimal total time-budget. For each of
the 866 dwells, we use Equation (7) to compute the dwell detection cover on the 326 cells. From
the detection covers, we can compute the cover matrix A with shape 326 × 866.

Having computed T and A, we can use the branch-and-bound method described previously to
search an optimal radar search pattern. The corresponding integer program has 866 variables and
326 detection constraints.

The optimization is done through the CPLEX solver [9], which implements an improved ver-
sion of the branch-and-bound. The total time required to find the solution is 5 seconds on an
i7-3770@3.4GHz processor.

18

Long

Short

Fig. 14. From left to right: computed radar search pattern, emission pattern and detection range

5.3. Optimal solution

The returned optimal solution is shown in Figure (14): the left sub-figure shows the discrete covers
of the 20 dwells used in the pattern. 10 dwells use a short signal (represented in blue) and cover
high elevation, and 10 dwells use a long signal (represented in red) and cover low elevations.

This result is explained by the fact that a radar must usually achieve high detection range near
the horizon (where targets are located) and low detection range at high elevation (since most air-
crafts have limited flying altitude). It makes sense to use longer, and thus “more energetic” dwells
at low elevations than at high elevations.

5.4. Enumeration

As we have seen before, there may be multiple optimal solutions. In this simulation we managed
to found 3500 different optimal solutions in 5 minutes. However, this search is unlikely to be
exhaustive: due to the wide choice of possible dwells, there is often an extremely high number of
possible alternative optimal solutions. Finding all solutions is unfeasible in practice.

However optimal solutions share certain characteristics: all solutions have 10 shorts signal
dwells at high elevation and 10 long signal dwells at low elevation. The long-signal dwells (in
red) are mostly the same for all optimal solutions found, and form an optimality invariant. The
short-signal dwells (in blue) are however different for each solution.

Intuitively, the low-elevation area is more “energetically demanding”; thus low-elevation detec-
tion constraints are the “hardest constraints” of the problem, and do not leave a lot of choice for
covering the low-elevation area. High-elevation detection constraints are in comparison “easier”
and can be validated by different covers.

Fig. 15. Two other possible optimal solutions

19

6. Conclusion

The branch-and-bound method is a practical and powerful technique. It can be used as an exact
algorithm if exploration is pushed to its completion, when there is no more branch left with a
potentially better solution. It can also be used as an heuristic, with stopping criterion based on
an time limit or a optimality gap treshold. This is especially useful in operational situations with
broad choices, when finding a good solution is easy, but proving optimality is difficult.

The method is very generic, and can be used to solve a lot of different combinatorial problems.
Many of those problems have evident practical values and important applications in various in-
dustries, such as the set cover problem in radar applications. The versatility of the method and
its various “flavors” can be used for different purposes: enumeration permits analysis of the radar
“possibilities” during conception, while just-in-time criteria improves resources management in
operational situations. Branch-and-bound is an extremely efficient tool for a broad variety of engi-
neering applications.

Acknowledgments

This work is partly supported by a DGA-MRIS scholarship.

References

[1] V. V. Vazirani. Approximation Algorithms, (Springer-Verlag New York, Inc., 2001).

[2] Y. Briheche, F. Barbaresco, F. Bennis, D. Chablat, F. Gosselin. “Non-uniform constrained
optimization of radar search patterns in direction cosines space using integer programming”,
2016 17th International Radar Symposium (IRS), (2016).

[3] B. Yelbay, Ş. İ. Birbil, K. Bülbül. “The set covering problem revisited: An empirical study of
the value of dual information”, Journal of Industrial and Management Optimization, 11(2), pp.
575–594, (2015).

[4] J. Matouek, B. Gärtner. Understanding and Using Linear Programming (Universitext),
(Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2006).

[5] G. L. Nemhauser, L. A. Wolsey. Integer and Combinatorial Optimization, (Wiley-Interscience,
New York, NY, USA, 1988).

[6] Y. Briheche, F. Barbaresco, F. Bennis, D. Chablat. “Theoretical complexity of grid cover prob-
lems used in radar applications”, Journal of Optimization Theory and Applications, 179(3), pp.
1086–1106, (Dec 2018), [Online]. Available: https://doi.org/10.1007/s10957-018-

1354-x.

[7] M. Conforti, G. Cornuejols, G. Zambelli. Integer Programming, (Springer Publishing Com-
pany, Incorporated, 2014).

[8] M. Skolnik. Radar Handbook, Third Edition, (McGraw-Hill Education, 2008).

[9] “IBM ILOG CPLEX Optimization Studio, v12.6”, http://www-03.ibm.com/software/

products/en/ibmilogcplestud/, (2015).

20

https://doi.org/10.1007/s10957-018-1354-x
https://doi.org/10.1007/s10957-018-1354-x
http://www-03.ibm.com/software/products/en/ibmilogcplestud/
http://www-03.ibm.com/software/products/en/ibmilogcplestud/

	Introduction & Context
	Problem Statement
	Definition
	Example
	Combinatorial complexity

	Integer Programming
	Problem Formulation
	Linear Relaxation
	Linear Programming
	Integral Program and Total Unimodularity
	One-dimensional cover problem
	Integrality Gap
	Dynamic programming

	Branch&Bound
	Description
	Application example
	Multiple solutions enumeration
	Just-in-time criteria

	Application to Radar Engineering
	Radar model
	Simulation parameters
	Optimal solution
	Enumeration

	Conclusion

