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Abstract

Many spatio-temporal data record the time of birth and death of individuals, along with their
spatial trajectories during their lifetime, whether through continuous-time observations or discrete-
time observations. Natural applications include epidemiology, individual-based modelling in ecology,
spatio-temporal dynamics observed in bio-imaging, and computer vision. The aim of this article is to
estimate in this context the birth and death intensity functions, that depend in full generality on the
current spatial configuration of all alive individuals. While the temporal evolution of the population
size is a simple birth-death process, observing the lifetime and trajectories of all individuals calls
for a new paradigm. To formalise this framework, we introduce spatial birth-death-move processes,
where the birth and death dynamics depends on the current spatial configuration of the population and
where individuals can move during their lifetime according to a continuous Markov process with possible
interactions. We consider non-parametric kernel estimators of their birth and death intensity functions.
The setting is original because each observation in time belongs to a non-vectorial, infinite dimensional
space and the dependence between observations is barely tractable. We prove the consistency of the
estimators in presence of continuous-time and discrete-time observations, under fairly simple conditions.
We moreover discuss how we can take advantage in practice of structural assumptions made on the
intensity functions and we explain how data-driven bandwidth selection can be conducted, despite the
unknown (and sometimes undefined) second order moments of the estimators. We finally apply our
statistical method to the analysis of the spatio-temporal dynamics of proteins involved in exocytosis in
cells, providing new insights on this complex mechanism.

Keywords: birth-death process, branching processes, growth-interaction model, individual-based model,
kernel estimator.

1 Introduction
Simple birth-death processes have a long history, ever since at least Feller (1939) and Kendall (1949).
They constitute the basic model to explain the temporal evolution of the size of a population. However
in many applications, we not only observe the size of population over time, but we have access to the
spatio-temporal information of all individuals of the population, whether through continuous-time ob-
servations or discrete-time observations. This happens in epidemiology (Masuda and Holme, 2017) and
ecology (Pommerening and Grabarnik, 2019) where “individuals” may represent animals, plants or in-
fected subjects, and a birth can represent the biological birth, the time of appearance in some region or
the time of infection, for instance. In these applications, the birth time and death time of all individuals
are observed, along with their trajectories (e.g. their spatial displacement or their growth) during their
lifetime. This context also occurs in bio-imaging: the dataset that we will study later for illustration
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concerns the dynamics of proteins involved in the exocytosis mechanisms in cells. For biological reasons,
these proteins are visible at some time point (their birth) and disappear some time later (their death),
their “lifetime” being closely related to their activity during the exocytosis process. Meanwhile, they
follow some motion in the cell. As a last example, this kind of dynamics is also encountered in computer
vision (Wang and Zhu, 2002), where new objects (like flying birds or snowflakes) appear at some time
point in a video, then follow some motions before disappearing from the video.

Our aim in this article is to provide a non-parametric method to estimate the intensity function of
births and the intensity function of deaths for this kind of data. These functions rule the waiting time
before a new birth and a new death, respectively. For instance, if there are no interactions between the
individuals and if each individual has the same constant birth rate β over time (i.e. the same probability
βdt to give birth in the infinitesimal small interval [t, t + dt] for any t), then the global birth intensity
function of the population is just a linear function of the size of the population. This is the standard
setting of simple birth-death processes and the parametric estimation of the birth and death rates in this
case has been widely studied (Darwin, 1956; Wolff, 1965; Keiding, 1975). A more general approach for
simple birth-death processes is to ignore the linearity assumption for the intensity functions, and only
assume that they depend on the size of the population. A natural non-parametric estimator in this case is
studied in Wolff (1965) and Reynolds (1973): for each size n of the population, this estimator just counts
the number of observed births (respectively deaths) when the population has this cardinality n, divided
by the time spent by the population at this size. However, in full generality, the intensity functions may
depend on the spatial locations of the individuals, and not only on the size of the population, due to
spatial competitions or/and spatial dispersions, for example. Observing the trajectories of all individuals,
as in the applications we have in mind, opens the possibility to investigate this general dependence, which
is the objective of this contribution. A major difficulty comes from the fact that the intensity functions
now depend on the current spatial configuration of all individuals of the population, the number of which
varies over time. This means that these functions are defined on the space of finite point configurations,
a non-vectorial and infinite dimensional space. Furthermore, the underlying process becomes much more
complex than a simple birth-death process and it needs to be formalised precisely.

There is a rich amount of articles dealing with the non-parametric estimation of intensity functions
in other contexts. For temporal and spatial point processes, kernel estimators or penalised projection
estimators of the intensity of events are for instance considered in Diggle (1985); Guan (2008); Reynaud-
Bouret (2003); Reynaud-Bouret and Schbath (2010). For Lévy processes observed at discrete times, the
density of jumps is addressed by similar methods and also specific Fourier approaches in Van Es et al.
(2007); Figueroa-López (2009); Comte and Genon-Catalot (2011) to cite a few. These works can be viewed
as generalisations of the standard problem of non-parametric estimation of a density (Silverman, 1986).
A common feature is also that the space in which the considered processes evolve (that is the state space)
is R or Rd. In our case, the state space is more general and the intensity depends on the current value
of the process, which makes the estimation challenge closer to a non-parametric regression problem than
to a density estimation problem. Even if non-parametric regression estimators are nowadays routinely
used (Härdle, 1990), even for functional data (see Ferraty and Vieu (2006) for an introductory review),
few applications concern the estimation of intensity of events in stochastic processes. A non-parametric
estimator of the death intensity of a branching diffusion process is considered in Höpfner et al. (2002),
but in the very particular case where the diffusions evolve in R and independently of each other. Another
range of works concerns the estimation of the intensity function in survival analysis, commonly called
hazard rate function. Assuming a multiplicative intensity model, a standard non-parametric estimator
consists in smoothing the famous Nelson–Aalen estimator by kernel methods (Ramlau-Hansen, 1983).
This approach can be extended when the intensity not only depends on time but also on covariates, see
Martinussen and Scheike (2007) and the references therein. In the latter case, the problem resembles a
non-parametric regression problem. Generalisations to the estimation of the jump intensity of piecewise-
constant processes and piecewise deterministic Markov processes are considered in Azaïs et al. (2013,
2014), where the value of the process plays the role of covariate in the jump intensity. The state space
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of the process in these works can be quite general, but the jump intensity and the estimator have a
very specific form which implies a decoupling between time and space, in line with the multiplicative
model of Nelson–Aalen. The main differences of our setting with the existing literature therefore lie in
two aspects: first our intensity functions depend on the actual value Xt of the process, without any
decoupling between time and space; and second, our state space is infinite dimensional and non-vectorial,
a noticeable difference with most setting of non-parametric regression, including functional spaces (which
are vectorial).

To achieve our objective, the first task is to formalise properly the stochastic process (Xt)t≥0 cor-
responding to the dynamics described earlier. Here Xt denotes the spatial configuration of all alive
individuals at time t. In other words Xt is a set of points, the number of which corresponds to the
number of alive individuals at time t, each point representing the location of one individual. When the
individuals do not move during their lifetime, then (Xt)t≥0 is a spatial birth-death process, introduced by
Preston (1975). These processes have been used in Møller and Sørensen (1994) to describe the evolution
of dunes and in Sadahiro (2019) to analyse the opening and closure of shops and restaurants in a city.
The idea of allowing the individuals to move during their lifetime in this process is not new and has been
considered in several ways. An instance is the growth-interaction process introduced in forestry to model
the appearance of new plants, their growth and their death (Renshaw and Särkkä, 2001; Särkkä and
Renshaw, 2006; Pommerening and Grabarnik, 2019). In these applications, the growth process plays the
role of the motion and is deterministic, making this process part of the class of piecewise-deterministic
Markov processes (Davis, 1984). When each individual evolves independently according to a stochastic
diffusion, the dynamics is a particular instance of general branching diffusion processes, widely studied in
probability theory (Skorokhod, 1964; Athreya and Ney, 2012). On the opposite way, when all individuals
move on the same stochastic flow, we obtain a birth death process on a flow, introduced by Çinlar and
Kao (1991). Intermediate specific interactions between the individual diffusions are considered in Eisele
(1981) and Löcherbach (2002). Finally, a completely different stochastic motion has been considered in
Huber et al. (2012), where the individuals can only jump during their lifetime, which defines the so-
called birth-death swap (or shift) process. Spatial birth-death-move processes, as we introduce them in
Section 2, allow any continuous Markov motion of the individuals during their lifetime, with possible
interactions between them. As such, they contain all previous examples, to the exception of birth-death
swap processes (the motion being not continuous). Apart from the motion between two jumps, whether
they are a birth or a death, the dynamics of a birth-death-move process depends on the birth intensity
β and the death intensity δ, that are in full generality two functions of the current spatial configuration
of (Xt)t≥0, and on probability transition kernels for the births and the deaths. We present in Section 2
all basic ingredients to clearly understand the full dynamics of this mechanistic model, without technical
details. We then describe some examples, including the aforementioned references as particular cases,
and we provide an algorithm of simulation on a finite interval. A more formal presentation is given in the
supplementary material along with some theoretical properties needed for the statistical study conducted
in the rest of the article.

We address in Section 3 the non-parametric estimation of the birth and death intensity functions β
and δ, and of the total intensity function α = β + δ. We consider two settings, whether the process
(Xt)t≥0 is observed continuously in the time interval [0, T ] or at discrete time points t0, . . . , tm. In both
settings we introduce a kernel estimator and prove that it is consistent under natural conditions, when T
tends to infinity and the discretisation step tends to 0. This consistency holds true whatever the birth and
death transitions kernels are, and whatever the inter-jumps motions are. Our estimator typically involves a
bandwidth hT , which for consistency must tend to 0 but not too fast, as usual in non-parametric inference.
The second order moments of our estimator are not available in closed form, making least squares cross-
validation or standard plug-in methods impossible to set up to choose the bandwidth. We however
explain how hT can be selected in practice by a partial likelihood cross-validation procedure based on the
counting process defined by the cumulative number of jumps. We moreover discuss several strategies of
estimation, depending on structural assumptions made on the intensity functions. Their performances
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are assessed in two simulation studies carried out in Section 4. Consider for instance the estimation of
α(x) in the continuous case, where x is a configuration of points. In a pure non-parametric approach, this
estimation relies through the kernel on the distance between x and the observed configurations of (Xt)
for t ∈ [0, T ]. This approach is ambitious given the infinite dimension of the state space of the process. It
is however consistent if α is regular enough, as a consequence of our theoretical results and confirmed in
the simulation study. This first approach may constitute in practice a first step towards more structural
hypotheses on α. In a second approach, we exploit this kind of hypotheses by assuming that α(x) only
depends on some specific p features of x. For instance, we may assume that it depends only on the
cardinality of x, the common setting in standard birth-death processes, or we may assume that it depends
on geometric characteristics of the configuration x. Under this assumption, we make our estimator depend
only on the distance between the relevant characteristics of x and the ones of the observations (Xt) for
t ∈ [0, T ]. In this case the estimation problem reduces to a non-parametric problem in dimension p,
improving the quality of estimation. This effect is clearly demonstrated in our simulation study and also
reflected in our theoretical results where the rate of convergence becomes in such framework the usual
rate of kernel estimators in dimension p. A particular case is the estimator of Wolff (1965) and Reynolds
(1973) discussed before, where only observations with exactly the same cardinality as x are used for the
estimation of α(x). We instead allow to use all observations, which makes sense if α has some regularity
properties, a situation where our estimator outperforms the previous one in our simulation study. This
second approach is a way to question the classical assumption in birth-death processes, namely that each
individual has constant birth rate and death rate, implying that α(x) is a linear function in the cardinality
of x. Testing formally this hypothesis based on our non-parametric estimator is an interesting perspective
for future investigation.

We finally apply our methodology in Section 5 to the analysis of the spatio-temporal dynamics of
proteins involved in exocytosis. We observe a sequence of 1199 frames showing the dynamics of proteins
in a living cell. Each frame contains several tens of proteins, that can be of two types (Langerin or Rab11).
During the sequence, proteins appear, disappear and move, in keeping with a birth-death-move process.
Classical approaches either study the trajectories of each protein independently without considering spatial
interactions (Briane et al., 2019; Pécot et al., 2018), or study the spatial configurations of proteins at some
time points without temporal insight (Costes et al., 2004; Bolte and Cordelieres, 2006; Lagache et al., 2015;
Lavancier et al., 2020). In contrast, our method allows to investigate the joint spatio-temporal dynamics
of all proteins, a new approach. We question several biological hypotheses, which imply that the birth
intensity function should be constant whatever the current configuration of proteins is, and that the death
intensity function could instead depend on the current activity. Our study confirms these hypotheses and
further reveals the temporal interaction between Langerin and Rab11 during the exocytosis mechanisms.

Some complements on the data analysis and technical results, including the proofs, are available in
the supplementary material. The codes and data are accessible in the GitHub repository at https:
//github.com/lavancier-f/Birth-Death-Move-process.

2 Spatial birth-death-move processes
We introduce in this section spatial birth-death-move processes. A more formal presentation and some
theoretical properties are given in the supplementary material. After their general definition presented in
the first part, we discuss several examples including the well-known simple birth-death processes, spatial
birth-death processes, growth-interaction processes, and other models and applications considered in the
literature so far. We conclude by the presentation of a simulation algorithm on a finite time interval.

2.1 Definition and notation

The birth-death-move dynamics takes place in a space E =
⋃+∞
n=0En where the spaces En are disjoint and

E0 consists of a single element, written ∅ for short, i.e. E0 = {∅}. The main example we have in mind
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for En is the space of point configurations in Rd with cardinality n, meaning that x ∈ En if and only
if x = {x1, . . . , xn} where xi ∈ Rd, i = 1, . . . , n. The presentation of this section refers for simplicity to
this situation, but more general spaces En can be considered, as exemplified in Section 2.2 and detailed
in the supplementary material. Accordingly, since a birth-death-move process (Xt)t≥0 takes its values in
En, we will often call the value of Xt a configuration. We denote by n(x) the cardinality of x defined by
n(x) = n if and only if x ∈ En. Three ingredients rule the birth-death-move process (Xt)t≥0:

1. The birth intensity function β : E → R+ and the death intensity function δ : E → R+, both
assumed to be continuous on E. The value β(x) (resp. δ(x)) governs the probability to have a birth
(resp. a death) at time t given that the current configuration of the process is Xt = x. We denote
by T1, T2, . . . the sequence of jump times (whether a birth or a death) of the process Xt and we let
T0 = 0. The specific distribution of the waiting time before the next jump is given below in (1).
Given that a jump occurs at time Tj , it is a birth with probability β(XT−

j
)/(β(XT−

j
) + δ(XT−

j
)) and

it is a death otherwise. Here XT−
j

denotes the configuration of the process just before the jump.

2. Given that a birth (resp. a death) occurs and the process is in configuration x just before the
jump, we need the probability transition kernel for a birth Kβ(x, .) (resp. for a death Kδ(x, .)).
Specifically, if x = {x1, . . . , xn} ∈ En, Kβ(x, .) is the probability distribution that indicates where
the new born point is more likely to appear in Rd. Similarly if there is a death, Kδ(x, .) indicates
which point of x is more likely to disappear.

3. Between two jumps (whether a birth or a death), we assume that Xt evolves according to a con-
tinuous Markov process, which is the “move step”. After each jump Tj , we denote the process that
drives this motion as (Yt)t≥0 with Y0 = XTj . This means that between two jumps Tj and Tj+1,
Xt = Yt−Tj for Tj ≤ t < Tj+1. Strictly speaking, the process Yt depends on j since a different
process is generated after each jump Tj conditionally on Y0 = XTj . In the formal presentation in
the supplementary material, we use the notation Y (j)

t to stress this dependence. However we assume
that the distribution of Y (j)

t does not depend on j and is similar after all jumps. In the following, we
will simply write Yt when there is no confusion. The process Yt also depends on n = n(XTj ) between
Tj and Tj+1, meaning that it is a multivariate process with n components, each being a stochastic
process evolving in Rd. This dependence in n being implicit, we also omit it in the notation.

With this construction, the birth-death-move process is continuous except at the jump times where
it is right continuous. As introduced above, we denote by Xt− the limit from the left of Xt, i.e. Xt− :=
lims→t,s<tXs. At each jump time Tj , XT−

j
is therefore the configuration of the process before the jump

while XTj corresponds to the configuration after the jump. If t is not a jump time, then Xt− = Xt.
To fully define the dynamics, it remains to specify the distribution of the waiting times before each

jump. We denote by α = β + δ the intensity of jumps, whether it is a birth or a death. We will assume
that α is bounded from below and above, i.e. there exist α∗ > 0 and α∗ <∞ such that for every x ∈ E,
α∗ ≤ α(x) ≤ α∗. We also prevent a death in E0 by assuming that δ(∅) = 0. Given the jump time Tj ,
given XTj and given a realisation of the process (Yt)t≥0 conditionally on Y0 = XTj , the next jump Tj+1 is
distributed as

P(Tj+1 − Tj > t|Tj , XTj , (Yt)t≥0) = exp
(
−
∫ t

0
α(Yu)du

)
. (1)

This specific form is necessary to ensure the Markov property of the process, as verified in the supple-
mentary material. Note that to be able to compute this formula for any t, the process (Yt)t≥0 needs to
be known up to t =∞. We show however in Section 2.3 how we can simulate Xt on a finite time interval
without this obligation. The proposed algorithm may also constitute an illuminating alternative point of
view to understand the dynamics.

The thorough probabilistic study of the birth-death-move process is beyond the scope of this article,
but we establish in the supplementary material some important properties that are needed for its statistical
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study. Among them, we first verify that the birth-death-move process is a proper time-homogeneous
Markov process. We then specialise our results to the following hypothesis, that is assumed henceforth.
Let βn = supx∈En β(x) and δn = infx∈En δ(x).

(H1) There exists n∗ such that for all n ≥ n∗, βn = 0. Furthermore δn > 0 for all n ≥ 1.

In light of this hypothesis, we can redefine E =
⋃n∗
n=0En, meaning that there is a maximal number

n∗ of possible individuals in the population. Under (H1), the process (Xt)t≥0 converges to a stationary
distribution, denoted by µ∞, and we get a uniform rate of convergence. Recall that the existence of a
stationary distribution is a prerequisite for the consistency of most statistical procedures of a stochastic
process. It is worth noticing that µ∞ may exist even if (H1) is not satisfied, provided the sequence (δn)
compensates in a proper way the sequence (βn) to avoid explosion of the process. This is for instance
proved in Preston (1975) for a pure spatial birth-death process, the special case of a birth-death-move
process where there is no move between the jumps. The same kind of statement in the general case is
not straightforward to establish and would imply technicalities that we prefer to avoid in this article. We
think however that assuming the existence of n∗ is reasonable for most statistical applications, especially
since the value of n∗ has not to be known for our statistical procedure.

To help the reader, we finally summarise the main notation: Xt and Xt− denote the birth-death-move
process at time t and its limit from the left; E =

⋃n∗
n=0En is the state space of (Xt) and E0 = {∅};

β(.), δ(.), α(.) are the birth (resp. death and total) intensity functions (α = β + δ); T1, T2, . . . denote the
jump times of the process and T0 = 0; Nt will denote the number of total jumps (births and deaths) up to
time t; Kβ(x, .) and Kδ(x, .) are the probability transition kernels for a birth (resp. a death) given that
the configuration of the process before jump is x; (Yt)t≥0 is the continuous Markov process that drives
the motion of Xt between Tj and Tj+1; µ∞ denotes the stationary distribution of (Xt)t≥0.

2.2 Examples

The general definition above includes spatial birth-death processes, as introduced by Preston (1975).
They correspond to (Yt)t≥0 being the constant random variable Yt = Y0 for any t ≥ 0, so that (Xt)t≥0
does not move between two jumps. When En is the set of point configurations in Rd with cardinality
n (the main example described in the previous section), we obtain a spatial birth-death process in Rd.
This important special case is treated in details in Preston (1975) and further studied in Møller (1989).
Special instances are discussed in Comas and Mateu (2008b) and some applications to real data sets are
considered in Møller and Sørensen (1994) and Sadahiro (2019) for example. Perfect simulation of spatial
point processes moreover relies on these processes (Møller and Waagepetersen, 2004, Chapter 11). But
other spaces En can also be considered. The simplest choice En = {n}, implying E = N, leads to the
simple birth-death process where (Xt)t≥0 is interpreted as the evolution of a population size, each jump
corresponding to the addition of a new individual (a birth) or to a diminution (a death). In this case
the intensity functions β and δ are just sequences, i.e. functions of n. The standard historical simple
birth-death process, as introduced in Feller (1939) and Kendall (1949), corresponds to a constant birth
rate and a constant death rate for each individual of the population, leading to linear functions of n for
β and δ. The case of general sequences β and δ is considered in Wolff (1965) and Reynolds (1973), who
studied their estimation by maximum likelihood. This approach will be a particular case of our procedure,
see Example 4 (i) in Section 3.

Allowing each point of a spatial birth-death process in Rd to move according to a continuous Markov
process leads to a spatial birth-death-move process in Rd. A simple example is to assume that each
point independently follows a Brownian motion in Rd, which means that (Yt)t≥0 is in En a vector of n
independent Brownian motions. In fact, when the motions are independent of each other, the process
can be viewed as a branching process with immigration Athreya and Ney (2012), where the branching
mechanism just consists in a death. In Wang and Zhu (2002), a spatial birth-death-move dynamics in the
plane has been adopted to model and track the joint trajectories of elements in a video, like snowflakes
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or flying birds. The motion in this application is composed of independent autoregressive discrete-time
processes. Some interacting motions are considered in Comas and Mateu (2008a), where the authors study
by simulation the effect of some deterministic and stochastic Gibbsian motions in a spatial birth-death
process. Some specific interacting diffusion processes are also considered from a more theoretical point
of view in Eisele (1981); Löcherbach (2002); Çinlar and Kao (1991); Höpfner and Löcherbach (1999), the
two last references concerning the special case where all individuals follow the same stochastic flow. In
our real-data application in Section 5, we observe the location of proteins in a planar projection of a cell
during some time interval. The motion can be different from a protein to another and some interactions
may occur. Previous studies (Briane et al., 2019) have identified three main regimes: Brownian motion,
superdiffusive motion (like a Brownian process with drift) and subdiffusive motion (like the Ornstein-
Uhlenbeck process). The process (Yt)t≥0 in this application could then be a vector of n such processes,
and some interactions between these n processes may further been introduced. In Section 5, we do not
actually address the choice of a model for (Yt)t≥0, but rather focus on the estimation of the intensity
functions β and δ by the procedures developed in Section 3. Fortunately, no knowledge about the process
(Yt)t≥0 is needed for these estimations, except that it is a continuous Markov process.

Spatial birth-death-move processes also include spatio-temporal growth interaction models used in
individual-based modelling in ecology. In this case En is the set of point configurations in R2 × R+ with
cardinality n, where R2 represents the space of location of the points (the plants in ecology) and R+ the
space of their associated mark (the height of plants, say). Each birth in the process corresponds to the
emergence of a new plant in R2 associated with some positive mark. Through the birth kernel Kβ, we
may favor a new plant to appear nearby existing ones (or not in case of competitions) and the new mark
may be set to zero or be generated according to some specific distribution (Renshaw and Särkkä (2001)
chose for instance a uniform distribution on [0, ε] for some small ε > 0). The growth process only concerns
the marks. Let us denote by (Ui(t),mi(t))t≥0, for i = 1, . . . , n, each component of the process (Yt)t≥0,
to distinguish the location Ui(t) ∈ R2 to the mark mi(t) ∈ R+ of a plant i. We thus have Ui(t) = Ui(0)
for all i, and some continuous Markov dynamics can be chosen for (m1(t), . . . ,mn(t)). In Renshaw and
Särkkä (2001); Renshaw et al. (2009); Comas (2009); Häbel et al. (2019) several choices for this so-called
growth interaction process are considered. Furthermore, while in the previous references the birth rate of
each plant is constant, the death rate may depend on the location and size of the other plants, leading to
a non trivial death intensity function δ.

2.3 Simulation on a finite time interval

Algorithm 1 shows how we can simulate a birth-death-move process on the time interval [0, T ] for some
T < ∞, starting from an initial configuration X0. It requires as an input to be able to simulate Yt
on a finite interval and to be able to simulate a birth and a death with respect to the kernels Kβ and
Kδ, respectively. The algorithm is a straightforward implementation of the construction explained in
Section 2.1, where after each jump we first simulate whether the next jump will occur before T (this
happens with probability 1− p using the notation of Algorithm 1) or not.

The simulation can be speeded up by noticing that most inter-jump times τj = Tj+1 − Tj are likely
to happen much before T − Tj , so that instead of generating at each step (Yt) on [0, T − Tj ], it is often
sufficient to simulate it on a smaller interval. Choose for instance τmax = α∗ log(1/ε) for some ε > 0 where
we recall that α∗ is a lower bound of the total intensity function α. In view of (1), this choice implies that
P (τj > τmax) < ε for any j. Then it is sufficient in most cases to generate (Yt) on [0,min(τmax, T − Tj)]
only, since τj < min(τmax, T −Tj) with high probability. The rare situations when τj > min(τmax, T −Tj)
can be handled as in Algorithm 1. The detailed procedure is provided in the supplementary material.
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Algorithm 1 Simulation of a birth-death-move process on the finite interval [0, T ]
set t = 0 and j = 0.
while t < T do
generate Ys for s ∈ [0, T − Tj ] conditionally on Y0 = XTj

set p = exp
(
−
∫ T−Tj
0 α(Yu)du

)
generate U1 ∼ U([0, 1])
if U1 ≤ p then
set Xs = Ys−Tj for s ∈ [Tj , T ] and t← T

else
generate the waiting time τj before the next jump according to the distribution

∀s ∈ [0, T − Tj ], P (τj < s|τj ≤ T − Tj) = 1
1− p

(
1− exp

(
−
∫ s

0
α(Yu)du

))

set Tj+1 = Tj + τj and Xs = Ys−Tj for s ∈ [Tj , Tj+1)
generate U2 ∼ U([0, 1])
if U2 ≤ β(Yτj )/α(Yτj ) then
generate XTj+1 according to the transition kernel Kβ(Yτj , .)

else
generate XTj+1 according to the transition kernel Kδ(Yτj , .)

end if
t← t+ τj and j ← j + 1

end if
end while

3 Estimation of the intensity functions

3.1 Continuous time observations

Assume that we observe continuously the birth-death-move process (Xt) in the time interval [0, T ]
for some T > 0. Let (kT )T≥0 be a family of non-negative functions on E × E such that k∗ :=
supx,y∈E supT≥0 |kT (x, y)| < ∞. For x ∈ E and y ∈ E, the role of kT (x, y) is to quantify the prox-
imity of x and y. It can be an indicator function or a kernel function that involves a bandwidth hT .
Some typical choices for kT are discussed in the examples below. Using the convention 0/0 = 0, a natural
estimator of α(x) for a given configuration x ∈ E is

α̂(x) = 1
T̂ (x)

∫ T

0
kT (x,Xs−)dNs = 1

T̂ (x)

NT∑
j=1

kT (x,XT−
j

), (2)

where NT is the number of jumps before T , i.e. NT = Card{j ≥ 1 : Tj ≤ T} and

T̂ (x) =
∫ T

0
kT (x,Xs)ds (3)

is an estimation of the time spent by (Xs)0≤s≤T in configurations similar to x. In words, α̂(x) counts the
number of times (Xs)0≤s≤T has jumped when it was in configurations similar to x over the time spent in
these configurations. Similarly, we consider the following estimators of β(x) and δ(x):

β̂(x) = 1
T̂ (x)

NT∑
j=1

kT (x,XT−
j

)1{a birth occurs at Tj},
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δ̂(x) = 1
T̂ (x)

NT∑
j=1

kT (x,XT−
j

)1{a death occurs at Tj}.

Example 1: If (Xt)t≥0 is a pure spatial birth-death process, corresponding to the case where there is no
motion between its jumps, then XT−

j
= XTj−1 and T̂ (x) becomes a discrete sum, so that

α̂(x) =
∑NT−1
j=0 kT (x,XTj )∑NT−1

j=0 (Tj+1 − Tj)kT (x,XTj ) + (T − TNT )kT (x,XTNT
)
.

Similar simplifications occur in this case for β̂(x) and δ̂(x).

The next proposition establishes the consistency of our estimators under the following assumptions.

(H2) Setting vT (x) =
∫
E kT (x, z)µ∞(dz),

lim
T→∞

TvT (x) =∞.

(H3) Let γ be either γ = β or γ = δ or γ = α. Setting wT (x) = 1
vT (x)

∫
E(γ(z)− γ(x))kT (x, z)µ∞(dz),

lim
T→∞

wT (x) = 0.

The meaning of Assumptions (H2) and (H3) will appear more clearly in the following examples. In
fact, 1/(TvT (x)) may be understood as a variance term, while wT (x) can be seen as a bias term. Strictly
speaking, this interpretation is wrong as discussed in the supplementary material. However, in line with
this point of view, the following rate of convergence is a standard bias-variance tradeoff in non-parametric
kernel-based estimation. Its proof is given in the supplementary material.

Proposition 1. Let γ be either γ = β or γ = δ or γ = α. Assume (H1), (H2) and (H3), then for any
x ∈ E and any ε > 0

P(|γ̂(x)− γ(x)| > ε) ≤ c
( 1
TvT (x) + w2

T (x)
)

where c is a positive constant depending on ε. Consequently γ̂(x) is a consistent estimator as T →∞.

Example 2: A standard choice for kT is

kT (x, y) = k

(
d(x, y)
hT

)
(4)

where k is a bounded kernel function on R, d is a pseudo-distance on E and hT > 0 is a bandwidth
parameter. In this case, (H2) and (H3) can be understood as hypotheses on the bandwidth hT , demanding
that hT tends to 0 as T → ∞ but not too fast, as usual in non-parametric estimation. To make this
interpretation clear, assume that k(u) = 1|u|<1 and that γ is Lipschitz with constant `. Then, denoting
B(x, hT ) := {y ∈ E, d(x, y) < hT }, we have that vT (x) = µ∞(B(x, hT )) and

|wT (x)| ≤ 1
vT (x)

∫
B(x,hT )

|γ(z)− γ(x)|µ∞(dz) ≤ `

vT (x)

∫
B(x,hT )

d(x, z)µ∞(dz) ≤ `

vT (x)hT vT (x) = `hT .

In this setting, (H2) and (H3) are satisfied whenever hT → 0 and Tµ∞(B(x, hT )) → ∞. Note moreover
that the rate wT (x) = O(hT ) in this example is in agreement with the standard rate for the bias of
the kernel estimator of a Lipschitz function, justifying the interpretation of wT (x) as a bias term. On
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the other hand 1/TvT (x) = O(1/(Tµ∞(B(x, hT )))) depends on the underlying dimension through the
pseudo-distance d defining the ball B(x, hT ), as usual for the variance term of a kernel estimator. These
rates are made explicit in the particular setting of Example 5.

Example 3: When En is the space of point configurations in Rd with cardinality n, we can take kT as in
(4) where d(x, y) is a pseudo-distance on the space E of finite point configurations in Rd. Several choices
for this pseudo-distance are possible. A first standard option is the Hausdorff distance

dH(x, y) = max{max
u∈x

min
v∈y
‖u− v‖,max

v∈y
min
u∈x
‖v − u‖}

if x 6= ∅ and y 6= ∅, while kT (x, y) = 1x=y if x = ∅ or y = ∅. Some alternatives are discussed in Mateu
et al. (2015). Another option, that will prove to be more appropriate for our applications in Section 4, is
the optimal matching distance introduced by Schuhmacher and Xia (2008). Letting x = {x1, . . . , xn(x)},
y = {y1, . . . , yn(y)} and assuming that n(x) ≤ n(y), this distance is defined for some κ > 0 by

dκ(x, y) = 1
n(y)

 min
π∈Sn(y)

n(x)∑
i=1

(‖xi − yπ(i)‖ ∧ κ) + κ(n(y)− n(x))

 ,
where Sn(y) denotes the set of permutations of {1, . . . , n(y)}. In words, dκ calculates the total (truncated)
distance between x and its best match with a sub-pattern of y with cardinality n(x), and then it adds
a penalty κ for the difference of cardinalities between x and y. If all point configurations belong to a
bounded subset W of Rd, a natural choice for κ is to take the diameter of W , in which case the distance
between two point patterns with the same cardinalities corresponds to the average distance between their
optimal matching. The definition of dκ when n(x) ≥ n(y) is similar by inverting the role played by x and
y. The choice of dH or dκ does not exploit any particular structural form of γ(x), allowing for a pure
non-parametric estimation. Note however that some regularities are implicitly demanded on γ(x) because
of (H3), as illustrated in Example 2 where γ is assumed to be Lipschitz.

Example 4: If we assume that γ(x) = γ0(n(x)) only depends on the cardinality of x through some
function γ0 defined on N, the setting becomes similar to simple birth-death processes, except that we
allow continuous motions between jumps. We may consider two strategies in this case:

(i) We recover the standard non-parametric likelihood estimator of the intensity studied in Wolff (1965)
and Reynolds (1973) by choosing kT (x, y) = 1 if n(x) = n(y) and kT (x, y) = 0 otherwise. Then
α̂(x) (resp. β̂(x), δ̂(x)) just counts the number of jumps (resp. of births, of deaths) of the process
(Xs)0≤s≤T when it is in En(x) divided by the time spent by the process in En(x). We get in this case
that vT (x) = µ∞(En(x)) does not depend on T and vT (x)wT (x) = 0, so (H2) and (H3) are satisfied
whenever µ∞(En(x)) 6= 0.

(ii) Alternatively, we may choose kT as in (4) with d(x, y) = |n(x) − n(y)|, in which case γ̂(x) differs
from the previous estimator in that not only configurations in En(x) are taken into account in γ̂(x)
but all configurations in En provided n is close to n(x). For this reason this new estimator can be
seen as a smoothing version of the previous one, the latter being in fact the limit when hT → 0 of
the former. This smoothing makes sense if we assume some regularity properties on n 7→ γ0(n), as
demanded by (H3), and results in a less variable estimation (see the simulation study of Section 4).

Example 5: In the spirit of the previous example, we may assume that γ(x) = γ0(f(x)) only depends on
some specific characteristics of x encoded in a function f : E → Rp for some p ≥ 1 and γ0 is defined
on Rp. For instance in our simulation study of Section 4.2, En is the space of point configurations in
[0, 1]2 with cardinality n and we consider for f(x) the maximal area of the Delaunay cells associated
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to the configuration x, while γ0 is an increasing function. For this example, jumps are more likely to
happen when there is a large “available” empty region in between the elements of x. The estimation
problem then reduces to a non-parametric estimation in dimension p and we may choose kT as in (4) with
d(x, y) = ‖f(x)− f(y)‖. Under this setting, it is not hard to prove the following corollary, showing that
we recover the standard rate of convergence for kernel estimators of Lipschitz functions in dimension p.

Corollary 2. Assume γ(x) = γ0(f(x)) where f : E → Rp for some p ≥ 1 and γ0 is a Lipschitz function
defined on Rp. If kT is as in (4) with d(x, y) = ‖f(x)− f(y)‖ and

∫
R |t|pk(|t|)dt <∞, and if f(Z) admits

a bounded continuous density with respect to the Lebesgue measure in Rp when Z ∼ µ∞, then under (H1),

P(|γ̂(x)− γ(x)| > ε) ≤ c
(

1
ThpT

+ h2
T

)
.

3.2 Discrete time observations

Assume now that we observe the process at m + 1 time points t0, . . . , tm where t0 = 0 and tm = T . We
denote ∆tj = tj − tj−1, for j = 1, . . . ,m, and ∆m = maxj=1...m ∆tj the maximal discretization step. We
thus have T =

∑m
j=1 ∆tj and T ≤ m∆m. We assume further that m∆m/T is uniformly bounded. The

asymptotic properties of this section will hold when both T →∞ and ∆m → 0, implying m→∞.
To consider a discrete version of the estimator (2) of α(x), a natural idea is to replace the involved

integrals by Riemann sums, leading to the estimator∑m−1
j=0 ∆Ntj+1kT (x,Xtj )∑m−1
j=0 ∆tj+1kT (x,Xtj )

(5)

where ∆Ntj = Ntj −Ntj−1 , for j = 1, . . . ,m. However ∆Ntj is not necessarily observed because we can
miss some jumps in the interval (tj−1, tj ] (for instance the birth of an individual can be immediately
followed by its death). For this reason we introduce an approximation Dj of ∆Ntj which is observable.
For the asymptotic validity of our estimator, we specifically require that this approximation satisfies:

(H4) For all j ≥ 1, Dj = ∆Ntj if ∆Ntj ≤ 1 and Dj ≤ ∆Ntj if ∆Ntj ≥ 2.

When ∆m → 0, the case ∆Ntj ≥ 2 becomes unlikely, so that asymptotically the only important case is
∆Ntj ≤ 1, a situation where Dj = ∆Ntj is a perfect approximation under (H4). An elementary example is
to takeDj = 1n(Xtj−1 )6=n(Xtj ). This choice satisfies (H4) but some better approximations may be available.
For instance, when En is the space of point configurations in Rd with cardinality n, assuming that we can
track the points between times tj−1 and tj , we can choose for Dj the number of new points in Xtj (that is
a lower estimation of the number of births), plus the number of points that have disappeared between tj−1
and tj (that is a lower estimation of the number of deaths), in short Dj = n(Xtj \Xtj−1) +n(Xtj−1 \Xtj ).

Our estimator of α(x) in the discrete case is then defined as follows:

α̂(d)(x) =
∑m−1
j=0 Dj+1kT (x,Xtj )∑m−1
j=0 ∆tj+1kT (x,Xtj )

. (6)

Obvious adaptations lead to the definition of β̂(d)(x) and δ̂(d)(x), the discrete versions of β̂(x) and δ̂(x).
The details are provided in the supplementary material.

To get the consistency of these estimators, we assume that the discretization step ∆m asymptotically
vanishes at the following rate.

(H5) Let vT (x) be as in (H2),

lim
T→∞

∆m

v2
T (x)

→ 0.
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We also need some regularity assumptions on the process (kT (x, Yt))t≥0. This is necessary to control
the difference between T̂ (x) defined in (3) and its discretized version T̂(d)(x) =

∑m−1
j=0 ∆tj+1kT (x,Xtj )

appearing in the denominator of (6).

(H6) There exist `T (x) ≥ 0 and a > 0 such that for any s, t satisfying |s− t| < ∆m and for all y ∈ E,

E
[
|kT (x, Ys)− kT (x, Yt)|

∣∣Y0 = y
]
≤ `T (x)|s− t|a with lim

T→∞

∆a
m`T (x)
v2
T (x)

→ 0.

The inequality in (H6) with a > 1 implies the continuity of the process (kT (x, Yt))t≥0, in virtue of the
Kolmogorov continuity theorem. In fact continuous processes that do not satisfy this inequality are
the exception, and a standard way to prove the continuity of a stochastic process consists precisely in
verifying this condition. The last condition in (H6) demands that ∆m converges sufficiently fast to zero to
capture this regularity. We come back to Examples 1-5 in the supplementary material to show that these
assumptions are mild and reduce, when the kernel takes the form (4), to assuming that the bandwidth
hT tends to 0 but not too fast and that ∆m tends to zero sufficiently fast, the latter rate depending on
the regularity exponent a. We finally get the following consistency result, the proof of which is given in
the supplementary material.

Proposition 3. Let γ be either γ = β or γ = δ or γ = α. Assume (H1)-(H6), then

γ̂(d)(x)− γ(x) = Op

(
1

TvT (x) + w2
T (x) + ∆m

v2
T (x)

+ ∆a
m`T (x)
v2
T (x)

)

as T →∞, whereby γ̂(d)(x) is a consistent estimator of γ(x).

3.3 Bandwidth selection by partial likelihood cross-validation

We assume in this section that kT takes the form (4), in which case we have to choose in practice a value
of the bandwidth hT to implement our estimators, whether for γ̂(x) in the continuous case or for γ̂(d)(x)
in the discrete case. We explain in the following how to select hT by (partial) likelihood cross-validation,
a widely used procedure in kernel density estimation of a probability distribution and intensity kernel
estimation of a point process, see for instance (Loader, 2006, Chapter 5). Remark that the alternative
popular plug-in method and least-squares cross-validation method, that are both based on second order
properties of the estimator, do not seem adapted to our setting because, as discussed in the supplementary
material, γ̂(x) is not necessarily integrable. Furthermore we only have an upper bound for the rate of
convergence and this one depends on unknown quantities that appear difficult to estimate.

We focus for simplicity on the estimation of α(x) but the procedure adapts straightforwardly to the
estimation of β(x) or δ(x). As verified in the supplementary material, the intensity of Nt is α(Xt−). By
the Girsanov theorem (Brémaud, 1981, Chapter 6.2), the log-likelihood of (Nt)0≤t≤T with respect to the
unit rate Poisson counting process on [0, T ] is therefore

∫ T

0
(1− α(Xs−))ds+

∫ T

0
logα(Xs−)dNs = T −

∫ T

0
α(Xs)ds+

NT∑
j=1

logα(XT−
j

).

Note that this is not the log-likelihood of the process (Xt)0≤t≤T but only of (Nt)0≤t≤T . This is the
reason why we call our approach a partial likelihood cross-validation. For continuous time observations,
bandwidth selection then amounts to choose hT as

ĥ = argmax
h

NT∑
j=1

log α̂(−)
h (XT−

j
)−

∫ T

0
α̂

(−)
h (Xs)ds
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where α̂(−)
h (Xs) is the estimator (2) of α(x) for x = Xs, associated to the choice of bandwidth hT = h,

but without using the observation Xs. To carry out this removal, we suggest to discard all observations
in the time interval [TNs , TNs+1], which gives

α̂
(−)
h (Xs) =

∑NT
i=1,i 6=Ns+1 k(d(Xs, XT−

i
)/h)∫

[0,T ]\[TNs ,TNs+1] k(d(Xs, Xu)/h)du.

In particular

α̂
(−)
h (XT−

j
) =

∑NT
i=1,i 6=j k(d(XT−

j
, XT−

i
)/h)∫

[0,T ]\[Tj−1,Tj ] k(d(XT−
j
, Xu)/h)du.

For discrete time observations, this cross-validation procedure becomes

ĥ(d) = argmax
h

m−1∑
j=0

Dj+1 log α̂(−)
(d),h(Xtj )−

m−1∑
j=0

∆tj+1α̂
(−)
(d),h(Xtj ),

using the same notation as in Section 3.2 and where

α̂
(−)
(d),h(Xtj ) =

∑m−1
i=0,i 6=j Di+1k(d(Xtj , Xti)/h)∑m−1
i=0,i 6=j ∆ti+1k(d(Xtj , Xti)/h)

.

4 Simulation study

4.1 First situation: a dependence on the cardinality

In order to assess the performances of our intensity estimator, we simulate a birth-death-move process
in the square window W = [0, 1]2 during the time interval [0, T ] with T = 1000 (the time unit does not
matter). The initial configuration at t = 0 consists of the realization of a Poisson point process with
intensity 100 in W . For the jump intensity function α, we choose α(x) = exp(5(n(x)/100− 1)), i.e. α(x)
only depends on the cardinality of x, as in the setting of Example 4, and this dependence is exponential.
We fix a truncation value n∗ = 1000. If 0 < n(x) < n∗, each jump is a birth or a death with equal
probability. If n(x) = 0 the jump is a birth, and it is a death if n(x) = n∗. Each birth consists of the
addition of one point which is drawn uniformly on [0, 1]2, and each death consists of the removal of an
existing point uniformly over the points of x. Finally, between each jump, each point of x independently
evolves according to a planar Brownian motion with standard deviation 2.10−3. Many other dynamics
could have been simulated. Our choice for this first example is motivated by the real-data dynamics
treated in Section 5, that we try to roughly mimic. The next example considered in Section 4.2 is quite
different as it involves geometric characteristics of x.

Figure 1 shows, for one simulated trajectory, the configuration of the process at the initial time T0 = 0
and after the first jump time (at t = T1). This first jump was a birth and the location of the new point
is indicated by a red dot, pointed out by a red arrow. The locations of the other points at time T1 are
indicated by black dots, while their initial locations are recalled in gray, illustrating the motions between
T0 and T1. For this simulation, NT = 1530 jumps have been observed in the time interval [0, T ]. The
two last plots of Figure 1 show the evolution of the number of points before each jump time and the time
elapsed between each jump time.

For this simulation, we consider the estimation of α(x) at each x = XTi , i = 0, . . . , NT . This choice for
the target point configurations x is a way to analyse the temporal evolution of the intensity, as we intend
to do in the real-data application of Section 5. Assuming for the moment that we observe the process
continuously in [0, T ], we consider the estimator (2) and the following four different choices for kT . The
first two strategies are fully non-parametric and follow Example 3 : the first one depends on the Hausdorff
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(a) T0 = 0, n = 108 (b) T1 = 0.17, n = 109 (c) (d)

Figure 1: (a) Initial point configuration of the simulation considered in Section 4.1; (b) Configuration after the
first jump (i.e. at t = T1) that was a birth. This second plot shows the new born point in red (pointed out by a red
arrow); the other points show as black dots while their initial locations at time T0 are recalled in gray. (c) Number
of points before each jump time; (d) Time elapsed between each jump time.

dH dκ Ex. 4 (i) Ex. 4 (ii)
Continuous time obs. 151 (34) 18 (8) 93 (21) 1.8 (1.1)
Discrete time, m+ 1 = 5000 266 (62) 18 (8) 141 (44) 3.0 (1.9)
Discrete time, m+ 1 = 1000 226 (56) 20 (9) NA 4.1 (1.8)
Discrete time, m+ 1 = 100 376 (94) 36 (16) NA 36 (19)
Discrete time, m+ 1 = 30 767 (131) 182 (48) NA 128 (37)

Table 1: Mean square errors of the estimation of α(xj) at 100 different point configurations xj , along with their
standard deviations in parenthesis. The same four estimators as in Figure 2 are considered. First row: estimation
based on continuous time observations in [0, T ]; other rows: estimation based on m+1 observations regularly spaced
in [0, T ] implying NT /m = 1530/m jumps in average between each observation.

distance dH , while the second one depends on the distance dκ where we have chosen κ =
√

2 to be the
diameter of W . The two other strategies assume (rightly) that α(x) only depends on the cardinality of
x. They respectively correspond to the cases (i) and (ii) of Example 4. Each time needed, we select the
bandwidth by likelihood cross-validation as explained in Section 3.3 and the kernel function k in (4) is
just the standard Gaussian density. The result of these four estimations are showed in Figure 2. The
first row depicts the evolution of the true value of α(XTi) in black, for i = 0, . . . , NT , along with its
estimation in red. The second row shows the scatterplot (n(XTi), α̂(XTi)) along with the ground-truth
curve exp(5(n(XTi)/100− 1)).

From the two left scatterplots of Figure 2, we see that the two non-parametric estimators based on
dH and dκ are able to detect a dependence between α(x) and n(x). Between them, the estimator based
on dκ seems by far more accurate. Concerning the two other estimators that assume a dependence in
n(x), the second one is much less variable. As indicated in Example 4, this is because this estimator
exploits the underlying regularity properties of α(x) in n(x), unlike the other one. It is remarkable that
the non-parametric estimator based on dκ, because it takes advantage of the smoothness of α(x), achieves
better performances than the third estimator, although this one assumes the dependence in n(x). All
in all, the best results come from the last estimator, defined in Example 4-(ii), that takes advantage of
both the dependence in n(x) and the smoothness of α(x). These conclusions are confirmed by the mean
squared errors reported in the first row of Table 1, computed from the estimation of α(xj) at 100 point
configurations xj = XTj for j regularly sequenced from 1 to NT = 1530.

In order to assess the effect of discretisation, we consider m+1 observations Xtj taken from the above
simulated continuous trajectory, regularly spaced from t0 = 0 to tm = T = 1000. This implies an average
of NT /m = 1530/m jumps between two observations. We then apply the estimator (6) of α(x) at the same
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Figure 2: (a) True value of α(XTi
) in black, for i = 0, . . . , NT , along with its estimation in red, for the simulation of

Section 4.1, using the estimator (2) with the kernel kT specified in Example 3, i.e. based on the Hausdorff distance
dH ; (b) Same as in (a) when the distance in kT is dκ; (c) Same as in (a) when kT is as in Example 4 (i); (d) Same
as in (a) when kT is as in Example 4 (ii); (e)-(h) Ground-truth curve exp(5(n(XTi)/100− 1)), in black, along with
the scatterplots (n(XTi

), α̂(XTi
)), in red, for the same estimators as in (a)-(d) respectively.

100 point configurations xj as above and the same four choices of kT , based on the m + 1 observations.
For the approximation Dj of the number of jumps between two observations Xtj−1 and Xtj , we take the
number of new points observed in Xtj plus the number of points having disappeared from Xtj−1 . The
mean square errors of the results, for different values of m, are reported in Table 1, along with their
standard deviations. Note that for some configurations xj , there was no observation with cardinality
n(xj) making impossible the computation of the third estimator, which explains the presence of some
NA’s in the table. As seen from Table 1, the comparison between the four estimators are in line with the
continuous case and their performances increase with m, as could be expected. For illustration, Figure 3
compares the true values of α(xj) for j = 1, . . . , 100 with their estimation by the second estimator based
on dκ (in blue) and the last estimator (in red), for the same different values of m as in Table 1. While
the quality of estimation degrades when m decreases, it remains quite decent even for small values of m,
in particular when m+ 1 = 100 implying more than 15 jumps in average between each observation.

4.2 Second situation: a dependence on geometric characteristics

For this example, we simulate a birth-death-move process onW = [0, 1]2 where the birth intensity function
and the birth transition kernel depend on the Delaunay tessellation associated to the current configuration.
Specifically, given a point pattern x inW , the birth transition kernelKβ(x, .) is the probability distribution
on W which is constant in each cell of the Delaunay tessellation of x and equal to the area of the cell (up
to the normalisation). An example of such distribution is given in the leftmost plot of Figure 4. Note
that in order to allow a birth outside the convex hull of x, we add the corners of W in the construction
of the tessellation. This distribution makes a birth more likely to occur in the large empty spaces in
between the points of x. Concerning the birth intensity function, we let β(x) = exp(50maxarea(x))/25)
where maxarea(x) denotes the maximal area of the cells. This choice implies that births appear more
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Figure 3: (a) Top: true value of α(xj) in black, for 100 different xj extracted from the simulated continuous
trajectory of Section 4.1, along with the discrete time estimations α̂(d)(xj) based on m+ 1 = 30 observations, with
the choice of distance dκ, in blue, and with the choice of kT as in Example 4-(ii), in red. Bottom: ground-truth
curve exp(5(n(xj)/100−1)), in black, along with the scatterplots (n(xj), α̂(xj)) for the same two estimators; (b)-(d)
Same plots as in (a) but with m+ 1 = 100, m+ 1 = 1000 and m+ 1 = 5000 observations, respectively.

quickly if there is a large “available” empty space. An alternative natural choice would have been to
take the mean area of the cells instead of the maximal area. But choosing the mean area would imply a
strong dependence between β(x) and n(x), making this example a bit too close to the previous example
treated in Section 4.1. This is because for stationary spatial point processes, the expected area of a typical
Delaunay cell is inversely proportional to the intensity of the process (Chiu et al. (2013)), making the
empirical mean area very close to the inverse number of points. Choosing the maximal area instead allows
us to investigate a different situation, where β(x) does not depend on n(x) too much. Finally, we let the
death intensity function depend on the number of points: δ(x) = (n(x)/100)1n(x)≤1000, while the death
transition kernel Kδ(x, .) is just the uniform distribution over the points of x. The move process between
each jump is a Brownian motion with standard deviation 2.10−3, independently applied to each point of
the configuration.

The initial point pattern at t = 0 is shown in the first plot of Figure 4 along with its associated
Delaunay tessellation. In our simulation 839 jumps have been observed. The evolution of the number of
points over the jump times is represented in the middle plot of this figure, while the rightmost plot shows
the evolution of the maximal area of the Delaunay cells before each jump.

The estimation of the death and the birth intensity functions are considered in Figures 5 and 6,
respectively. We first consider the two purely non-parametric estimators associated to the Hausdorff
distance (in red) and to the distance dκ (in green). The results are shown in Figures 5-(a) and 6-(a), where
the ground-truth curves are in black. As a first remark, we can see that for the death intensity function,
the estimator based on the Hausdorff distance completely fails in this simulation, while the estimator
based on dκ works pretty well. For the estimation of the birth intensity function, both estimators behave
similarly but none is very accurate. These observations tend to confirm our preference, in a non-parametric
approach, for the choice dκ instead of the Hausdorff distance, and they also show the limits of a pure non-
parametric approach in such a high-dimensional estimation problem. However, based on these estimations,
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Figure 4: (a) Initial point configuration at t = 0 for the simulated trajectory of Section 4.2, along with its
Delaunay tessellation where each cell is coloured proportionally to its area. This coloured map represents the
probability distribution defining the birth transition kernel, while the birth intensity is an increasing function of
the maximal area; (b) Evolution of the number of points before each jump; (c) Evolution of the maximal area of
the Delaunay cells before each jump.

we can question the dependence between the intensities and some features of the configurations through
scatterplots. Figures 5-(b) and 6-(b) show the scatterplots between the estimations at each jump time and
the number of points at these times, while Figures 5-(c) and 6-(c) correspond to the scatterplots between
the estimations and the maximal area of the Delaunay cells. These plots seem to indicate a dependence
between the death intensity function and the number of points (but not the maximal area of cells), and
a dependence between the birth intensity function and the maximal area of cells (but not the number
of points). Finally, if we apply accordingly our estimator with the choice d(x, y) = |n(x) − n(y)| for the
death intensity and the choice d(x, y) = |maxarea(x) − maxarea(y)| for the birth intensity, we obtain
the estimations on Figures 5-(d) and 6-(d). The results are then very good because we have identified the
relevant feature defining δ(.) and β(.), reducing the estimation problem to a non-parametric estimation
in dimension 1.

5 Data analysis
Our data consist of a sequence of m = 1199 frames showing the locations of two types of proteins inside a
living cell, namely Langerin and Rab11 proteins, both being involved in exocytosis mechanisms in cells.
The total length of the sequence is 171 seconds for a 140 ms time interval between each frame. These
images have been acquired by 3D multi-angle TIRF (total internal reflection fluorescence) microscopy
technique (Boulanger et al., 2014), and we observe projections along the z-axis on a 2D plane close to
the plasma membrane of the cell. The raw sequence can be seen online in our GitHub repository. As
a result of this acquisition, we observe several tens of proteins of each type on each frame following
some random motions, while some new proteins appear at some time point and others disappear. The
reason why a protein becomes visible can be simply due to its appearance into the axial resolution of
the microscope, or because it becomes fluorescent only at the last step of the exocytosis process due to
the pH change close to the plasma membrane. Similarly, a protein disappears from the image when it
exits the axial resolution or when it disaggregates after the exocytosis process. Between its appearance
and disappearance, the dynamics of a protein depends on its function and its environment. The whole
spatio-temporal process at hand is thus composed of multiple fluorescent spots appearing, moving and
disappearing over time, all of them possibly in interaction with each other. The underlying biological
challenge is to be able to decipher this complex spatio-temporal dynamics, and in particular to understand
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Figure 5: (a) True value of δ(XTi
) in black, for i = 0, . . . , NT for the simulation of Section 4.2, along with its

non-parametric estimation based on the Hausdorff distance (in red) and based on dκ (in green); (b) Scatterplots
(n(XTi), δ̂(XTi)) for these two estimators; (c) Scatterplots (maxarea(XTi), δ̂(XTi)) for these two estimators; (d)
True value of δ(XTi

) in black along with its estimation based on d(x, y) = |n(x)− n(y)| in blue.

the interaction between the different types of involved proteins, in the present case Langerin and Rab11
proteins (Gidon et al., 2012; Boulanger et al., 2014). Existing works either study the trajectories of
each individual protein, independently to the other proteins (Briane et al., 2019; Pécot et al., 2018), or
investigate the interaction between different types of proteins frame by frame (which is the co-localization
problem), without temporal insight (Costes et al., 2004; Bolte and Cordelieres, 2006; Lagache et al., 2015;
Lavancier et al., 2020). As far as we know, the present approach is the first attempt to tackle the joint
spatio-temporal dynamics of two types of proteins involved in exocytosis mechanisms.

To analyse the data, we do not consider the raw sequence but the post-processed sequence introduced
in Pécot et al. (2008, 2014), leading to more valuable data, where the most relevant regions of the cell,
corresponding to the locations of the most dynamical proteins, have been enhanced thanks to a specific
filtering procedure. The post-processed sequence for each type of protein is available online in our GitHub
repository. We then apply the U-track algorithm developed in Jaqaman et al. (2008) in order to track
over time the locations of proteins. For both types of them, the result is a sequence of 1199 point patterns
that follow a certain birth-death-move dynamics for the reasons explained earlier. Figure 7 shows the
repartition of Langerin (resp. Rab11) proteins in the first (resp. second) row, for a few frames extracted
from these two sequences. The two leftmost plots correspond to the two first frames: we observe that a
new Langerin protein and two new Rab11 proteins, visible in red, appeared between times t0 = 0 and
t1 = 0.14s. In the second plot, we also recalled the initial positions of proteins as gray dots. Close
inspection reveals that the proteins have slightly moved between the two frames. This motion is more
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Figure 6: Same plots as in Figure 5 but concerning the estimation of the birth intensity function β(.) and where
the estimator in the last plot (d) is based on d(x, y) = |maxarea(x)−maxarea(y)|.

apparent on the full sequence available online. For the Langerin sequence, we observe 21 to 76 proteins
per frame (36.4 in average) and 1.26 jumps in average between each frame, 50.7% of which being deaths
and 49.3% being births. For the Rab11 sequence, there are 10 to 52 proteins per frame (22.3 in average)
and 0.85 jumps in average between each frame, 50.6% being deaths and 49.4% being births. Based on
these observations, we would like to question several biological hypotheses:

i) The first one assumes that each protein may appear at any time independently on the configuration
and the number of proteins already involved in the exocytosis process. This would imply a constant
birth intensity function over the whole sequence, for both types of proteins.

ii) The second hypothesis is that each protein disappears independently of the others after its exocytosis
process. Accordingly, the death intensity function at a configuration x should then depend linearly
on the cardinality of x, that is on the number of currently active proteins.

iii) The third hypothesis is that Langerin and Rab11 proteins interact during the exocytosis process,
which should imply a correlation between their respective intensities.

We estimate separately the birth intensity function and the death intensity function of both sequences
thanks to our estimator (6), where Dj is replaced by the observed number of new proteins having appeared
(resp. the number of proteins having disappeared) between frames j−1 and j.Motivated by the simulation
study conducted in the previous section, we consider the non-parametric estimator based on the distance
dκ, where κ is the diameter of the observed cell, and the estimator from Example 4-(ii) that assumes the
intensities only depend on the cardinality.
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Figure 7: Locations of Langerin proteins (first row) and Rab11 proteins (second row) at different time points tj ,
corresponding to the j-th frame extracted from two sequences of 1199 images, observed simultaneously in the same
living cell in TIRF microscopy. In the second plot (b) corresponding to time t1, the new proteins that appeared
during the first time interval are represented as red dots (pointed out by arrows), while the initial positions of the
other proteins are recalled in gray.

For the birth intensities, both estimators agree on a constant value of 4.45 births per second for the
Langerin sequence and 2.98 births per second for the Rab11 sequence. A graphical representation of the
estimated birth intensities is available in the online supplementary material. These constant values result
from the choice of a large value of the bandwidths by cross-validation, and they are in agreement with
the first biological hypothesis.

For the death intensities, we represent their estimations in Figure 8-(a) and Figure 8-(c) for the
Langerin and Rab11 sequences, respectively. For each sequence, both considered estimators provide
similar results. Figure 8-(b) and Figure 8-(d) show the evolution of the estimated death intensities with
respect to the number of observed proteins. From these plots we deduce first, that the death intensities
seem to depend on the number of proteins and second, that this dependence seems to be linear, up
to some value where the death intensities decrease. To make sure that this decrease is not due to an
estimation artefact, we conducted a short simulation study, reported in the supplementary material, that
showed that in presence of a true linear dependence, this kind of slump is unlikely to be observed in the
estimation. The observed decrease thus seems to be significant and it means that when many proteins are
active, they tend to spend more time than usual in the exocytosis process. This may be explained by some
saturation phenomena, inducing some interactions between the proteins. However, further experiments on
new cells must be made to investigate this new hypothesis and be sure that this is not due to experimental
conditions.

Finally, we reproduce in Figure 9 the estimated death intensities for both types of proteins, based
on the estimators from Example 4-(ii) (that are the red curves in Figure 8), along with the estimated
cross-correlation function (ccf) between these two estimated death intensities. This last plot represents
for each lag h = −20, . . . , 20 the empirical correlation between the death intensity of the Rab11 sequence
at frame j and the death intensity of the Langerin sequence at frame j + h, for j = 1, . . . ,m − h. The
leftmost plot of Figure 9 provides evidence that the death intensities of the two types of proteins follow
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Figure 8: (a) Estimation of the death intensity δL(xj) at each configuration xj of the Langerin sequence, for all
frames j from 1 to 1199, by the discrete time estimator given by (6) based on dκ (in blue) and the discrete time
estimator given by (6) with the choice of kT as in Example 4-(ii) (in red). (b) Scatterplot of (n(xj), δ̂L(xj)) for the
same two estimators and j = 1, . . . , 1199. (c)-(d) Same plots as (a)-(b) but for the Rab11 sequence.

the same trend, which is confirmed by the global high values of the empirical ccf. This observation is
consistent with the biological hypothesis that both proteins interact. Interestingly, the ccf is asymmetric,
showing higher values for positive lags than for negative lags. This behaviour is confirmed on the ccf
obtained from the detrended curves, as illustrated in the online supplementary material. This asymmetry
tends to corroborate previous studies (Gidon et al., 2012; Boulanger et al., 2014; Lavancier et al., 2020),
where it has been concluded that Rab11 seems to be active before Langerin.

Further discussion about this data analysis is provided in the supplementary material.
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Figure 9: (a) Estimation of the death intensity for the Langerin sequence (top curve) and the Rab11 sequence
(bottom curve) over the 1199 observed frames. These correspond to the red curves in Figure 8; (b) Empirical
cross-correlation function between these two estimated death intensities, where the reference is Rab11 and the lag
is applied to Langerin.
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Supplementary material
This supplementary material describes in Section S-1 an alternative simulation algorithm of birth-death-
move processes, which is more effective that the one presented in the main manuscript. In Section S-2,
we study some moment properties of the main estimator and we discuss the assumptions made in the
discrete observations setting. Section S-3 contains some supplementary information concerning the data
analysis carried out in Section 6 of the main manuscript. Section S-4 includes the formal definition of
birth-move-processes and some of their theoretical properties. The other sections contain the proofs of
the theoretical results and two appendices gather some technical lemmas. All numbering and references
in this supplementary material begin with the letter S, the other references referring to the main article.

S-1 Fast algorithm of simulation
In the main manuscript, Algorithm 1 shows how we can simulate a birth-death-move process on the time
interval [0, T ]. After each jump (whether a birth or a death) occurring at time Tj , this algorithm requires
the simulation of the process (Yt) on [0, T − Tj ] to generate the next jump time Tj+1. But as mentioned
in the main manuscript, it is very likely that the inter-jump times τj = Tj+1 − Tj are much smaller than
T − Tj , making the simulation of (Yt) on [0, T − Tj ] inessential. We may exploit this remark by choosing
τmax > 0, a value for which P (τj > τmax) is thought to be small for any j. For instance, if we know the
lower bound α∗ of α(x), a possible choice is τmax = α∗ log(1/ε) which implies P (τj > τmax) < ε in view
of (1). However the exact value of P (τj > τmax) has not to be known and the following Algorithm S2 is
exact whatever the choice of τmax is.

The justification of Algorithm S2 is the following. After each jump at t = Tj , we let τj,max =
min(τmax, T − Tj) and p1 corresponds to p1 = P (τj > τj,max). With high probability, specifically with
probability 1−p1, U1 > p1 and the simulation of τj given that τj ≤ τj,max is the last part of Algorithm S2
which requires the simulation of Yt on [0, τj,max] only. The first part of the algorithm, i.e. when U1 ≤ p1,
corresponds to the rare cases when τj > τj,max. Conditionally on this event, we then simulate whether
τj > T − Tj or not. This requires the simulation of Yt on [0, T − Tj ]. Since τj,max ≤ T − Tj ,

p2 = P (τj > T − Tj |τj > τj,max) = P (τj > T − Tj)/P (τj > τj,max) = exp
(
−
∫ T−Tj

0
α(Yu)du

)
/p1.

Then, either U2 ≤ p2, which means that τj > T − Tj , and there is no more jumps until t = T , or U2 > p2
and we need to simulate τj given that τj,max < τj < T − Tj . The latter distribution is

P (τj < s|τj,max < τj < T − Tj) = P (τj,max < τj < s) /P (τj,max < τj < T − Tj)

=
exp

(
−
∫ τj,max

0 α(Yu)du
)
− exp (−

∫ s
0 α(Yu)du)

P (τj < T − Tj |τj > τj,max)P (τj > τj,max)

= 1
(1− p2)p1

(
exp

(
−
∫ τj,max

0
α(Yu)du

)
− exp

(
−
∫ s

0
α(Yu)du

))
.

Once τj has been simulated, we have Tj+1 = Tj + τj and it remains to generate the post-jump location
XTj+1 as detailed in Algorithm S3.
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Algorithm S2 Fast simulation of a birth-death-move process on the finite interval [0, T ]
set t = 0 and j = 0.
while t < T do
set τj,max = min(τmax, T − Tj)
generate Ys for s ∈ [0, τj,max] conditionally on Y0 = XTj

set p1 = exp
(
−
∫ τj,max

0 α(Yu)du
)

generate U1 ∼ U([0, 1])
if U1 ≤ p1 then
generate Ys for s ∈ [τj,max, T − Tj ]
set p2 = exp

(
−
∫ T−Tj

0 α(Yu)du
)
/p1

generate U2 ∼ U([0, 1])
if U2 ≤ p2 then
set Xs = Ys−Tj for s ∈ [Tj , T ] and t← T

else
generate the waiting time τj before the next jump according to the distribution

∀s ∈ [τj,max, T − Tj ], P (τj < s|τj,max < τj < T − Tj)

= 1
p1(1− p2)

(
exp

(
−
∫ τj,max

0
α(Yu)du

)
− exp

(
−
∫ s

0
α(Yu)du

))

set Tj+1 = Tj + τj and Xs = Ys−Tj for s ∈ [Tj , Tj+1)
generate XTj+1 by Algorithm S3)
t← t+ τj and j ← j + 1

end if
else
generate the waiting time τj before the next jump according to the distribution

∀s ∈ [0, τj,max], P (τj < s|τj ≤ τj,max) = 1
1− p1

(
1− exp

(
−
∫ s

0
α(Yu)du

))

set Tj+1 = Tj + τj and Xs = Ys−Tj for s ∈ [Tj , Tj+1)
generate XTj+1 by Algorithm S3)
t← t+ τj and j ← j + 1

end if
end while

Algorithm S3 Simulation of the post-jump location at t = Tj+1 (where τj = Tj+1 − Tj)
generate U ∼ U([0, 1])
if U ≤ β(Yτj )/α(Yτj ) then
generate XTj+1 according to the transition kernel Kβ(Yτj , .)

else
generate XTj+1 according to the transition kernel Kδ(Yτj , .)

end if

S-2 Supplementary information concerning the estimators
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S-2.1 Moments of the estimator

As explained in the main manuscript, we may interpret wT (x) in Proposition 1 as a bias term and
1/(TvT (x)) as a variance term of γ̂(x). Strictly speaking, this interpretation is wrong because the esti-
mator γ̂(x) is not integrable in general. This is due to the presence of T̂ (x) in its definition. Even if we
know from Corollary S9 that E(T̂ (x))→∞ as T →∞, T̂ (x) may take infinitely small values for some x,
in which case γ̂(x) may be arbitrarily large. The following lemma provides a clear example.

Lemma S4. As in Example 4 (i), let kT (x, y) = 1n(x)=n(y). If P(X0 ∈ En(x)) 6= 0, then E(α̂(x)) =∞.

Proof. We have

E(α̂(x)) ≥ E(α̂(x)1NT=11X0∈En(x))

= E

 kT (x,XT−
1

)∫ T1
0 kT (x, Y (0)

s )ds+
∫ T
T1
kT (x, Y (1)

s−T1
)ds

1T1≤T1T2−T1>T−T11X0∈En(x)

 .
Since by assumption kT (x, y) = 1n(x)=n(y), we have kT (x,XT−

1
)1X0∈En(x) = kT (x,X0)1X0∈En(x) = 1.

Similarly for all s > 0, kT (x, Y (0)
s )1X0∈En(x) = 1 and kT (x, Y (1)

s−T1
)1X0∈En(x) = 0. Therefore

E(α̂(x)) ≥ E
( 1
T1

1T1≤T1T2−T1>T−T11X0∈En(x)

)
= E

(
1X0∈En(x)

∫ T

0

1
s
α(Y (0)

s )e−
∫ s

0 α(Y (0)
u )due−

∫ T−s
0 α(Y (1)

u )duds

)

≥ α∗e−α
∗Tµ0(En(x))

∫ T

0

1
s
e−α

∗sds =∞.

Arguably, a statistician would not trust any estimation of γ(x) if T̂ (x) is very small and in our
opinion the result of this lemma does not rule out using γ̂(x) for reasonable configurations x, that are
configurations for which a minimum time has been spent by the process in configurations similar to x.
To reflect this idea, let us consider the following modified estimator, for a given small ξ > 0,

γ̂ξ(x) = γ̂(x)1T̂ (x)>ξ.

By Corollary S9, 1T̂ (x)>ξ converges in probability to 1, while γ̂(x) is consistent under the assumptions of
Proposition 1. Therefore the alternative estimator γ̂ξ(x) is also consistent under the same assumptions,
but it has the pleasant additional property to be mean-square consistent, as stated in the following
proposition whose proof is given in Section S-6.

Proposition S5. Let γ be either γ = β or γ = δ or γ = α. Assume (H1), (H2) and (H3), then for all
ξ > 0 and all 0 < η < 1/3,

E
[
(γ̂ξ(x)− γ(x))2

]
= O

( 1
(TvT (x))1/3−η + w2

T (x)
)

as T →∞, whereby γ̂ξ(x) is mean-square consistent.
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S-2.2 Discrete time observations

In the main manuscript we provide the formula for the estimator of the total intensity function α̂(d)(x),
in case of discrete time observations, under the assumption H4. Regarding the birth intensity function,
its estimator is similarly defined in this case as

β̂(d)(x) =
∑m−1
j=0 Dβ

j+1kT (x,Xtj )∑m−1
j=0 ∆tj+1kT (x,Xtj )

,

where Dβ
j+1 is an approximation of the number of births ∆Nβ

tj between tj and tj+1. Similarly as for Dj

in α̂(d)(x), this approximation must satisfy:

(H4β) For all j ≥ 1, Dβ
j = ∆Nβ

tj if ∆Nβ
tj ≤ 1 and Dβ

j ≤ ∆Nβ
tj if ∆Nβ

tj ≥ 2.

Likewise, the estimator of the death intensity function for discrete time observations is

δ̂(d)(x) =
∑m−1
j=0 Dδ

j+1kT (x,Xtj )∑m−1
j=0 ∆tj+1kT (x,Xtj )

,

where Dδ
j+1 is an approximation of the number of deaths ∆N δ

tj between tj and tj+1 and satisfies:

(H4δ) For all j ≥ 1, Dδ
j = ∆N δ

tj if ∆N δ
tj ≤ 1 and Dδ

j ≤ ∆N δ
tj if ∆N δ

tj ≥ 2.

We now discuss the assumptions of Proposition 3 concerning the consistency of α̂(d)(x), β̂(d)(x) and
δ̂(d)(x), for the same examples as in the continuous time observations setting.

Example 1 (continued): If (Xt)t≥0 is a pure spatial birth-death process, then (H6) is satisfied with
`T (x) = 0.

Example 2 (continued): Assume kT takes the general form (4) and that u 7→ k(u) is Lipschitz with
constant ck. Then the inequality in (H6) holds true whenever E(d(Ys, Yt)|Y0 = y) ≤ cY |s − t|a, in which
case `T (x) = ckcY /hT . If k is moreover assumed to be supported on [−1, 1] and to satisfy k(u) ≥ k∗1|u|<c
for some k∗ > 0 and 0 < c < 1, the same interpretation of (H2) and (H3) as for the choice k(u) = 1|u|<1
remains valid for a Lipschitz function γ. We obtain in this case that (H2)-(H3) and (H5)-(H6) hold true
whenever hT → 0, Tµ∞(B(x, chT )) → ∞, ∆m = o(µ2

∞(B(x, chT )) and ∆a
m = o(hTµ2

∞(B(x, chT )). In
other words hT must tend to 0 but not too fast, and ∆m must tend to zero sufficiently fast, the latter
rate depending on the regularity exponent a.

Example 3 (continued): If each En is the space of point configurations in Rd with cardinality n, (Yt)t≥0
is a multivariate process formed of n(Y0) components, each of them being a stochastic process on Rd. In
this case, for usual pseudo-distances d, d(Ys, Yt) can be controlled by the Euclidean distance ‖Ys − Yt‖.
This is true when d is the Hausdorff distance or the optimal matching distance dκ. The condition
E(d(Ys, Yt)|Y0 = y) ≤ cY |s − t|a mentioned in the previous example when kT takes the form (4) is
then implied by E(‖Ys − Yt‖|Y0 = y) ≤ cY |s − t|a. The latter condition holds true for most continuous
processes, including Brownian motions, fractional Brownian motions, the Ornstein–Uhlenbeck process,
and more generally any solution to a stochastic differential equation with Lipschitz coefficients (Kunita,
1984, Chapter 2).

Example 4 (continued): Assume that γ(x) = γ0(n(x)), then

(i) if we choose kT (x, y) = 1n(x)=n(y) to recover the standard non-parametric likelihood estimator of
Wolff (1965) and Reynolds (1973), then we can take `T (x) = 0 in (H6) so that (H2)-(H3) and
(H5)-(H6) are satisfied whenever µ∞(En(x)) 6= 0 and ∆m → 0.
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(ii) if we choose kT as in (4) with d(x, y) = |n(x) − n(y)|, then kT (x, Ys) − kT (x, Yt) = 0 and (H6) is
also satisfied with `T (x) = 0.

Example 5 (continued): Assume more generally that γ(x) = γ0(f(x)) for some function f : E → Rp.
Following the discussion above for Example 2, if we choose kT as in (4) with d(x, y) = ‖f(x) − f(y)‖,
the key condition is E(‖f(Ys) − f(Yt)‖|Y0 = y) ≤ cY |s − t|a. If En is the space of point configurations
in Rd with cardinality n, this condition holds true if for instance f is Lipschitz and (Yt)t≥0 is any of the
processes listed in Example 3.

S-3 Supplementary information concerning the data analysis
As a complement to the data analysis carried out in Section 5 of the main manuscript, Figure S10 shows
the estimation of the birth intensity for the Langerin sequence (on the left) and the Rab11 sequence (on
the right). The are two estimations: the first one is the non-parametric method based on the distance
dκ (in blue), where κ is the diameter of the observed cell, and the second one in red uses the estimator
from Example 4-(ii) that assumes the intensities only depend on the cardinality. The scales of the plots
have been chosen to be similar to the scales of the death intensities estimations displayed in Figure 8
in the main manuscript. Based on these results, we conclude that the birth intensity is constant (4.45
births per second) for the Langerin sequence. It seems also constant for the Rab11 sequence if we refer
to the second estimator (2.98 births per second). The first estimator (in blue) for the Rab11 sequence
shows more variability, but we decide to consider these fluctuations as noise and to trust the second
estimator to conclude to a constant birth intensity. Providing a formal statistical test to decide whether
the intensity is constant or not is beyond the scope of this contribution, but it clearly constitutes an
interesting perspective for future investigations.
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Figure S10: (a) Estimation of the birth intensity at each configuration xj of the Langerin sequence, for all frames
j from 1 to 1199, by the discrete time estimator given by (6) based on dκ (in blue) and the discrete time estimator
given by (6) with the choice of kT as in Example 4-(ii) (in red). Both curves are almost constant and overlaid.
(b) Same plot as (a) but for the Rab11 sequence. For both plots the y-scale is similar as the one used for the
corresponding death intensity estimates, see Figure 8 in the main manuscript.

Concerning the death intensity functions, we have observed in Figure 8 of the main manuscript that
they depend on the cardinality of the proteins’ configurations. Of course this does not rule out a de-
pendence on other characteristics of the configurations. In an attempt to figure out whether geometrical
characteristics might influence the death intensities, we have represented in Figure S11 the estimated
death intensities of Langerin (top row) and Rab11 (bottom row) with respect to the maximal nearest
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neighbour distance of each configuration (left), to the maximal area of the Delaunay cells of each con-
figuration (middle), and as a recall to the number of proteins (right). The considered estimator is the
non-parametric one using the distance dκ. The two first characteristics are geometric quantities indicating
the maximal available empty space in each configuration. The plots in Figure S11 do not show a clear
dependence with these quantities. The slight negative dependence that we might observe in the top mid-
dle plot is to our opinion spurious and due to the expected dependence between the maximal Delaunay
area and the number of points (the less points, the more empty space).
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Figure S11: Estimated death intensities of Langerin (top row) and Rab11 (bottom row) with respect to
the maximal nearest neighbour distance of each configuration (left), to the maximal area of the Delaunay
cells of each configuration (middle), and to the number of proteins (right).

We moreover verify in Figure S12 that the decrease of the death intensity for the highest numbers
of proteins in the Langerin sequence is not due to an estimation artefact. To this end, we simulate 100
processes with the same characteristics as the sequence of Langerin proteins. Specifically, the time of
simulation is 171 seconds, the birth rate is constant and equals to 4.45 births per second and we assume
that the death rate is linear and follows the same trend as for the Langerin sequence (represented as a
black line in Figure S12). The starting configuration of the process consists of approximately 60 points
uniformly distributed. We considered for these 100 simulations the estimator based on the distance
d(x, y) = |n(x) − n(y)| for the same choice of bandwidth than that used for the Langerin sequence.
The scatterplots of these 100 estimators with respect to the number of points are shown as gray lines
in Figure S12. The observed scatterplot from the Langerin sequence is shown in red, proving that the
observed slump is unlikely to happen if the true death intensity was linear in the number of proteins.
This leads us to conclude that the death intensity is subject to a significant decrease when the number of
proteins is high.

Finally, Figure S13 completes Figure 8 of the main manuscript. It shows the ccf of the detrented
death intensities between Langerin and Rab11, where the lag is applied to Langerin. The estimated death
intensities are represented as red curves in Figure S13 while their trend is shown in black. These trends
are the result of a loess smoothing with a smoothing parameter (span) equals to 0.1, 0.2, 0.4 and 0.8 from
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Figure S12: In gray: scatterplots between the estimation of the death intensity and the number of points for 100
simulations where the true death intensity is the black line. In red: scatterplot between the estimation of the death
intensity of the Langerin sequence and the number of proteins.

left to right, respectively. Whatever the degree of smoothing, the ccf is clearly asymmetric, with more
significative correlations for the positive lags. This confirms the observation made in the main manuscript,
namely that Rab11 seems to be active before Langerin.

The study of this dataset is far to be exhaustive. We have examined the intensities independently
for each type of proteins. A natural extension would be to consider a joint intensity and/or marginal
intensities that may depend on the current configurations of both types of proteins. This approach
calls for the definition of multivariate birth-death-move processes, which certainly constitutes an exciting
perspective of research. It would be also interesting to construct formal testing procedures in order to
decide for instance whether the intensity function is constant (as we conclude it for the birth intensities in
our applied study), or whether it depends on some features like the cardinality of the configurations (as
for the death intensities in our application). Beyond the estimation of the intensities, the understanding
of the whole spatio-temporal dynamics involves the estimation of the birth and death transition kernels,
and the understanding of the inter-jumps dynamics. These aspects will be the subject of future works.

S-4 Formal definition of birth-death-move processes and some theo-
retical properties

Birth-death-move processes are a special case of what we call a jump-move process. Informally, the
dynamics of a jump-move process consists of a continuous stochastic motion in a space E during a
random time, followed by a jump in E, followed by a new continuous motion during a new random time,
then a new jump, and so on. This dynamics shares close similarities with Markov processes obtained by
“piecing out” strong Markov processes, as introduced in a very abstract way in Ikeda et al. (1968). We
present in Section S-4.1 below a mechanistic construction which seems to us more accessible to understand
and where the motions between jumps have not to be strong Markov but only Markov processes. We
then introduce birth-death-move processes in Section S-4.2 as a particular case of jump-move processes,
and we derive in Section S-4.3 important theoretical properties that are needed for the statistical study
conducted in the main manuscript. The proofs are provided in Section S-6.
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Figure S13: First row: estimation of the death intensity for the Langerin sequence (top red curve) and for the
Rab11 sequence (bottom red curve), along with their estimated trends (in black) obtained by a loess smoothing
with parameter span where, from left to right, span = 0.1, 0.2, 0.4, 0.8. Second row: empirical ccf for the detrended
curves (that are the difference between the red and the black curves of the first row).

S-4.1 Spatial jump-move processes

Let E be a Polish space equipped with the Borel σ-algebra E . Let further (Ω,F) be a measurable space
and (Px)x∈E a family of probability measures on (Ω,F).

In order to define the jump-move process (Xt)t≥0, we first introduce the process that will drive the
inter-jumps motions. Let ((Yt)t≥0, (Px)x∈E) be a continuous time-homogeneous Markov process on E with
respect to its natural filtration (FYt )t≥0. We denote its transition kernel on E × E by (QYt )t≥0, i.e. for
any x ∈ E and any A ∈ E ,

QYt (x,A) = Px(Yt ∈ A).

We then let (Y (j)
t )t≥0, j ≥ 0, be a sequence of processes on E identically distributed as (Yt)t≥0. In our

construction below, (Y (j)
t )t≥0 will support the motion of (Xt)t≥0 after the jth jump.

Moreover, to deal with the jumps of (Xt)t≥0, we introduce the jump intensity function α : E → R+,
which is assumed to be continuous on E, as well as a probability transition kernel for the jumps denoted
by K : E × E → [0, 1]. We assume that α is bounded from below and above, i.e. there exist α∗ > 0 and
α∗ <∞ such that for every x ∈ E, α∗ ≤ α(x) ≤ α∗.

Given an initial distribution µ0 on E and an initial configuration X0 ∼ µ0, the jump-move process
(Xt)t≥0 is constructed as follows:

1) Given X0 = z0, generate (Y (0)
t )t≥0 conditional on Y (0)

0 = z0 according to the kernel (QYt (z0, .))t≥0.
Then,

– Given X0 = z0 and (Y (0)
t )t≥0, generate the first inter-jump time τ1 according to the cumulative

distribution function
F1(t) = 1− exp

(
−
∫ t

0
α(Y (0)

u )du
)
.
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– Given X0 = z0, (Y (0)
t )t≥0 and τ1, generate the first post-jump configuration z1 according to

the transition kernel K
(
Y

(0)
τ1 , ·

)
.

– Set T1 = τ1, Xt = Y
(0)
t for t ∈ [0, T1) and XT1 = z1.

And iteratively, for j ≥ 1,

j+1) Given XTj = zj , generate (Y (j)
t )t≥0 conditional on Y (j)

0 = zj according to (QYt (zj , .))t≥0. Then

– Given XTj = zj and (Y (j)
t )t≥0, generate τj+1 according to the cumulative distribution function

Fj+1(t) = 1− exp
(
−
∫ t

0
α(Y (j)

u )du
)
. (S7)

– Given XTj = zj , (Y (j)
t )t≥0 and τj+1, generate zj+1 according to K

(
Y

(j)
τj+1 , ·

)
.

– Set Tj+1 = Tj + τj+1, Xt = Y
(j)
t−Tj for t ∈ [Tj , Tj+1) and XTj+1 = zj+1.

In this construction (Tj)j≥1 is the sequence of jump times of the process (Xt)t≥0 and we set T0 = 0.
The number of jumps before t is denoted by (Nt)t≥0, that is Nt = Card{j ≥ 1 : Tj ≤ t}.

Let F0
t = σ(Xu, u ≤ t), t > 0, be the natural filtration of the process (Xt)t≥0. To avoid any

measurability issues, we make this filtration complete (Bass, 2011, Section 20.1) and denote it by Ft,
i.e. Ft = σ(F0

t ∪ N ) where N is the collection of sets that are Px-null for every x ∈ E. For the same
reason, we also complete the natural filtration (FYt )t≥0 of (Yt)t≥0. We recall that (Yt)t≥0 remains a time-
homogeneous Markov process with respect to this completed filtration (Bass, 2011, Proposition 20.2). We
verify in the supplementary material that ((Xt)t≥0, (Px)x∈E) is a Markov process with respect to (Ft)t>0.
Note that the specific form (S7) of the distribution of the waiting times is necessary to get a memoryless
property. This is in line with the construction of piecewise-deterministic Markov processes (Davis, 1984).

Theorem S6. Let (Xt)t≥0 be a spatial jump-move process. Then ((Xt)t≥0, (Px)x∈E) is a time-homogeneous
Markov process with respect to (Ft)t≥0.

S-4.2 Birth-death-move processes

A birth-death-move process is a jump-move process in E =
⋃+∞
n=0En, associated with the σ-field E =

σ
(⋃+∞

n=0 En
)
, where (En)n≥0 is a sequence of disjoint Polish spaces, each equipped with the Borel σ-

algebra En. We assume that E0 consists of a single element, written ∅ for short, i.e. E0 = {∅}. In
addition, the move process (Yt)t≥0 is assumed to satisfy for all x ∈ E and all n ≥ 0,

Px(Yt ∈ En, ∀t ≥ 0) = 1x∈En .

In other words, (Yt)t≥0 may be defined separately in each space En. Concerning the intensity of jumps, it
writes α = β + δ, where β : E → R+ is the birth intensity function and δ : E → R+ is the death intensity
function, both assumed to be continuous on E. We prevent a death in E0 by assuming that δ(∅) = 0.
Similarly, the probability transition kernel depends on a kernel for the births Kβ : E × E → [0, 1] and a
kernel for the deaths Kδ : E × E → [0, 1]. They satisfy, for all x ∈ E,

Kβ(x,En+1) = 1x∈En if n ≥ 0

and
Kδ(x,En−1) = 1x∈En if n ≥ 1.
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The transition kernel for the jumps of (Xt)t≥0 is then, for any x ∈ E and any A ∈ E ,

K(x,A) = β(x)
α(x)Kβ(x,A) + δ(x)

α(x)Kδ(x,A). (S8)

Note that the intensity functions β, δ, α and the transition kernels Kβ, Kδ, K play exactly the same role
here as for a pure spatial birth-death process as introduced in Preston (1975), which is the particular case
of a birth-death-move process with no move (Yt = Y0 for all t ≥ 0).

S-4.3 Some basic properties of birth-death-move processes

We verify in the next proposition that under Assumption (H1), a birth-death-move process (Xt)t≥0
converges to a stationary distribution, uniformly over the initial configurations.
Proposition S7. Under (H1), (Xt)t≥0 admits a unique stationary distribution µ∞ and there exist a > 0
and c > 0 such that for any measurable bounded function g and any t > 0,

sup
y∈E

∣∣∣∣∫
E
g(z)Qt(y, dz)−

∫
E
g(z)µ∞(dz)

∣∣∣∣ ≤ ae−ct‖g‖∞. (S9)

For a pure spatial birth-death process, this proposition is a consequence of Preston (1975) and Møller
(1989). In these references, geometric ergodicity is also proven under a less restrictive setting than (H1), a
generalisation that is not straightforward to establish for a general birth-death-move process and that will
be addressed in a separate contribution. Moreover, the uniformity in (S9) only holds under (H1), even
for pure spatial birth-death processes, and this is a crucial property needed to establish (S11) in the next
corollary. In the following (and all along the article) we omit the dependence on the initial distribution
µ0 and simply write E and V instead of Eµ0 and Vµ0 .

Corollary S8. Under (H1), for any measurable bounded non-negative function g and any t ≥ 0,∣∣∣∣E(1
t

∫ t

0
g(Xs)ds

)
−
∫
E
g(z)µ∞(dz)

∣∣∣∣ ≤ a‖g‖∞
ct

(S10)

where a and c are the same positive constants as in (S9). Moreover,

V
(∫ t

0
g(Xs)ds

)
≤ c0‖g‖∞E

(∫ t

0
g(Xs)ds

)
(S11)

where c0 is some positive constant independent of t and g.
For g(Xs) = kT (x,Xs) and t = T , we immediately deduce the following result.

Corollary S9. Under (H2), T̂ (x) defined in (3) verifies, as T →∞,

E(T̂ (x)) ∼ TvT (x) and V
(
T̂ (x)

)
≤ cE(T̂ (x)),

where c is a positive constant.
Finally, we clarify the martingale properties of the counting processes Nt that are used in the proofs

of consistency and exploited in the likelihood cross-validation of Section 3.3. We set Ft+ =
⋂
s>tFs.

Proposition S10. A left-continuous version of the intensity of Nt with respect to Ft+ is α(Xt−). More-
over, for any measurable bounded function g, the process (Mt)t≥0 defined by

Mt =
∫ t

0
g(Xs−)[dNs − α(Xs)ds]

is a martingale with respect to Ft+ and for all t ≥ 0

E(M2
t ) = E

(∫ t

0
g2(Xs)α(Xs)ds

)
. (S12)

The same statements hold true by replacing Nt by the number of births (of deaths, respectively) and α(x)
by β(x) (by δ(x), respectively).
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S-5 Proofs of Propositions 1 and 3 of the main manuscript

S-5.1 Proof of Proposition 1

The proof is similar for α̂(x), β̂(x) and δ̂(x). We focus on α̂(x) and we consider the decomposition

α̂(x)− α(x) = MT

T̂ (x)
+RT ,

where

MT =
∫ T

0
kT (x,Xs−)[dNs − α(Xs)ds] and RT = 1

T̂ (x)

∫ T

0
(α(Xs)− α(x))kT (x,Xs)ds.

For all ε > 0,

P(|α̂(x)− α(x)| > ε) ≤ P
(
T̂ (x) < E(T̂ (x))

2

)
+ P

(
|α̂(x)− α(x)| > ε, T̂ (x) ≥ E(T̂ (x))

2

)

≤ P
(
T̂ (x) < E(T̂ (x))

2

)
+ P

(
|MT |
T̂ (x)

>
ε

2 , T̂ (x) ≥ E(T̂ (x))
2

)
+ P

(
|RT | >

ε

2

)

≤ P
(
|T̂ (x)− E(T̂ (x))| > E(T̂ (x))

2

)
+ P

(
|MT | >

εE(T̂ (x))
4

)
+ P

(
|RT | >

ε

2

)

≤ 4V(T̂ (x))
E(T̂ (x))2

+ 16E(M2
T )

ε2E(T̂ (x))2
+ 4E(R2

T )
ε2

, (S13)

using the Markov inequality in the last line. By (S12) applied with g(Xs) = kT (x,Xs) and t = T , and
since kT is uniformly bounded, we get that E

(
M2
T

)
≤ c0E(T̂ (x)). By Corollary S9, we deduce that

P(|α̂(x)− α(x)| > ε) ≤ c0
TvT (x) + 4E(R2

T )
ε2

.

The proof is then complete once we show that

E
(
R2
T

)
≤ c0

( 1
TvT (x) + w2

T (x)
)
. (S14)

To this end, notice that almost surely |RT | ≤ 2α∗ because α ≤ α∗, so

E
(
R2
T

)
≤ 4(α∗)2P

(
T̂ (x) ≤ E(T̂ (x))

2

)
+ 4

E(T̂ (x))2
E

(∫ T

0
(α(Xs)− α(x))kT (d(x,Xs))ds

)2
 .

Denoting IT =
∫ T

0 α(Xs)kT (x,Xs)ds and using the Chebyshev inequality, we obtain

E
(
R2
T

)
≤ c0

E(T̂ (x))2

(
V
(
T̂ (x)

)
+ E

[(
IT − α(x)T̂ (x)

)2
])

≤ c0

E(T̂ (x))2

(
V
(
T̂ (x)

)
+ 3V (IT ) + 3V

(
α(x)T̂ (x)

)
+ 3

(
E(IT )− α(x)E(T̂ (x))

)2
)
.

By (S10), we know that ∣∣∣∣E(IT )− T
∫
E
α(z)kT (x, z)µ∞(dz)

∣∣∣∣ ≤ c0α
∗k∗

and ∣∣∣∣α(x)E(T̂ (x))− Tα(x)
∫
E
kT (x, z)µ∞(dz)

∣∣∣∣ ≤ c0α
∗k∗

32



so, using the notation from (H2)-(H3),∣∣∣E(IT )− α(x)E(T̂ (x))
∣∣∣ ≤ 2c0α

∗k∗ + T

∣∣∣∣∫
E

(α(z)− α(x))kT (x, z)µ∞(dz)
∣∣∣∣ = c1 + TvT (x)|wT (x)|

where c1 = 2c0α
∗k∗. Moreover, from (S11), V (IT ) ≤ c0E(IT ) ≤ c0α

∗E(T̂ (x)) and by Corollary S9, we
obtain

E
(
R2
T

)
≤ c0

(TvT (x))2

(
TvT (x) + (c1 + TvT (x)|wT (x)|)2

)
≤ 2c0

(TvT (x))2

(
TvT (x) + c2

1 + T 2v2
T (x)w2

T (x)
)

which implies (S14) under (H2).

S-5.2 Proof of Proposition 3

We detail the proof for γ = α, the other cases being similar. Recall that T̂(d)(x) =
∑m−1
j=0 ∆tj+1kT (x,Xtj ).

To save space, we write T̂(d) for T̂(d)(x), T̂ for T̂ (x), `T for `T (x) and vT for vT (x). We have

|α̂(d)(x)− α(x)| ≤ 1
T̂(d)

m−1∑
j=0

kT (x,Xtj )|Dj+1 −∆Ntj+1 |+
1
T̂(d)

∣∣∣∣∣∣
m−1∑
j=0

kT (x,Xtj )∆Ntj+1 −
∫ T

0
kT (x,Xs−)dNs

∣∣∣∣∣∣
+
∫ T

0 kT (x,Xs−)dNs

T̂(d)T̂
|T̂ − T̂(d)|+ |α̂(x)− α(x)|

≤ k∗

T̂(d)

m−1∑
j=0

∆Ntj+11∆Ntj+1≥2 + 1
T̂(d)

m−1∑
j=0
|kT (x,Xtj )∆Ntj+1 −

∫ tj+1

tj

kT (x,Xs−)dNs|

+ k∗NT

T̂(d)T̂
|T̂ − T̂(d)|+ |α̂(x)− α(x)|.

Concerning the second term in this sum we have∣∣∣∣∣kT (x,Xtj )∆Ntj+1 −
∫ tj+1

tj

kT (x,Xs−)dNs

∣∣∣∣∣1∆Ntj+1=0 = 0,

∣∣∣∣∣kT (x,Xtj )∆Ntj+1 −
∫ tj+1

tj

kT (x,Xs−)dNs

∣∣∣∣∣1∆Ntj+1=1 =
∣∣∣∣∣kT (x,Xtj )− kT (x,XT−

Ntj+1
)
∣∣∣∣∣1∆Ntj+1=1

and ∣∣∣∣∣kT (x,Xtj )∆Ntj+1 −
∫ tj+1

tj

kT (x,Xs−)dNs

∣∣∣∣∣1∆Ntj+1≥2 ≤ 2k∗∆Ntj+11∆Ntj+1≥2,

so that
m−1∑
j=0
|kT (x,Xtj )∆Ntj+1 −

∫ tj+1

tj

kT (x,Xs−)dNs|

≤
m−1∑
j=0

∣∣∣∣∣kT (x,Xtj )− kT (x,XT−
Ntj+1

)
∣∣∣∣∣1∆Ntj+1=1 + 2k∗

m−1∑
j=0

∆Ntj+11∆Ntj+1≥2.
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On the other hand,

|T̂ − T̂(d)| ≤
m−1∑
j=0

∫ tj+1

tj

∣∣∣kT (x,Xs)− kT (x,Xtj )
∣∣∣ ds

≤
m−1∑
j=0

∫ tj+1

tj

∣∣∣kT (x,Xs)− kT (x,Xtj )
∣∣∣ ds1∆Ntj+1=0 + 2k∗∆m

m−1∑
j=0

1∆Ntj+1≥1

≤
m−1∑
j=0

∫ tj+1

tj

∣∣∣kT (x,Xs)− kT (x,Xtj )
∣∣∣ ds1∆Ntj+1=0 + 2k∗∆mNT . (S15)

We thus obtain

|α̂(d)(x)−α(x)|

≤ 3k∗

T̂(d)

m−1∑
j=0

∆Ntj+11∆Ntj+1≥2 + 1
T̂(d)

m−1∑
j=0

∣∣∣∣∣kT (x,Xtj )− kT (x,XT−
Ntj+1

)
∣∣∣∣∣1∆Ntj+1=1

+ k∗NT

T̂(d)T̂

m−1∑
j=0

∫ tj+1

tj

∣∣∣kT (x,Xs)− kT (x,Xtj )
∣∣∣ ds1∆Ntj+1=0 + 2(k∗NT )2∆m

T̂(d)T̂
+ |α̂(x)− α(x)|.

(S16)

The last term has been treated in Proposition 1. Let us consider the other terms. First note that (S15)
entails with (H6)

E[|T̂ − T̂(d)|] ≤ lT∆a
mT + 2k∗∆mE(NT ).

By Proposition S10 applied with g = 1, we get that E(NT ) = E
∫ T

0 α(Xs)ds ≤ α∗T and then

P(T̂(d) < TvT /4) ≤ P(|T̂ − T̂(d)| > TvT /4) + P(T̂ < TvT /2)

≤
4E[|T̂ − T̂(d)|]

TvT
+ c0
TvT

≤ c0lT∆a
m

vT
+ c0∆m

vT
+ c0
TvT

. (S17)

Since vT is bounded, we deduce from (H2), (H5) and (H6) that P(T̂(d) < TvT /4) tends to 0 and for
the rest of the proof we place ourselves on the event {T̂(d) ≥ TvT /4}. We shall use the following lemma.

Lemma S11. For any j = 1, . . . ,m and any i ∈ N, P(∆Ntj = i) ≤ (α∗∆tj)i/(i!).

Proof. By the Markov property, P(∆Ntj = i) = E[P(∆Ntj = i|Xtj )] = E[P(N∆tj = i|X0 = Xtj )]. The
lemma is proved once we verify that

∀t ≥ 0,∀i ∈ N, sup
x∈E

P(Nt = i|X0 = x) ≤ (α∗t)i

i! .

This inequality is obvious if i = 0. Let i ≥ 1,

P(Nt = i|X0 = x) = E
[
P
(
T1 < T2 < ... < Ti < t < Ti+1

∣∣∣X0 = x,XTj , (Y
(j)
t )t≥0,∀j ≥ 0

) ∣∣∣X0 = x
]
.

Let τj = Tj − Tj−1. Conditional on XTj and (Y (j)
t )t≥0, the random variable τj has density

t 7→ α(Y (j)
t )e−

∫ t
0 α(Y (j)

u )du,
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whereby

P
(
T1 < T2 < ... < Ti < t < Ti+1

∣∣∣X0 = x,XTj , (Y
(j)
t )t≥0,∀j ≥ 0

)
= P

τ1 < t, τ2 < t− τ1, . . . , τi < t−
i−1∑
j=1

τj , τi+1 > t−
i∑

j=1
τj
∣∣∣X0 = x,XTj , (Y

(j)
t )t≥0,∀j ≥ 0


=
∫ t

0
α(Y (0)

s1 )e−
∫ s1

0 α(Y (0)
u )duds1

∫ t−s1

0
α(Y (1)

s2 )e−
∫ s2

0 α(Y (1)
u )duds2

· · ·
∫ t−

∑i−1
j=1 sj

0
α(Y (i−1)

si )e−
∫ si

0 α(Y (i−1)
u )dudsi e

−
∫ t−∑i

j=1 sj
0 α(Y (i)

u )du

≤ (α∗)i
∫ t

0
ds1

∫ t−s1

0
ds2...

∫ t−
∑i−1

j=1 sj

0
dsk = (α∗)i

∫
Ri

1t1<t2<...<ti<tdt1 . . . dti = (α∗t)i

i! .

Let us control the first term in (S16). For any ε > 0, using the previous lemma,

P

 3k∗

T̂(d)

m−1∑
j=0

∆Ntj+11∆Ntj+1≥2 > ε, T̂(d) ≥
TvT

4

 ≤ P

m−1∑
j=0

∆Ntj+11∆Ntj+1≥2 >
εTvT
12k∗


≤ 12k∗

εTvT

m−1∑
j=0

E(∆Ntj+11∆Ntj+1≥2)

≤ 12k∗

εTvT

m−1∑
j=0

∑
i≥2

iP(∆Ntj+1 = i)

≤ 12k∗

εTvT
m
∑
i≥2

i
(α∗∆m)i

i! = 12k∗mα∗∆m

εTvT
(eα∗∆m − 1).

This last expression is lower than m∆2
m/(TvT ), up to a positive constant, because ∆m → 0 as a conse-

quence of (H5). Since by assumption m∆m/T is uniformly bounded we deduce that

P

 3k∗

T̂(d)

m−1∑
j=0

∆Ntj+11∆Ntj+1≥2 > ε

 ≤ c0
∆m

vT
. (S18)

Concerning now the second term in (S16),

P

 1
T̂(d)

m−1∑
j=0
|kT (x,Xtj )− kT (x,XT−

Ntj+1
)|1∆Ntj+1=1 > ε, T̂(d) ≥

TvT
4


≤ P

 4
TvT

m−1∑
j=0
|kT (x,Xtj )− kT (x,XT−

Ntj+1
)|1∆Ntj+1=1 > ε



≤
4
∑m−1
j=0 E[|kT (x,Xtj )− kT (x,XT−

Ntj+1
)|1∆Ntj+1=1]

TvT ε
.

Let us give an upper bound for this expectation. Using the Markov property, we compute

E[|kT (x,Xtj )− kT (x,XT−
Ntj+1

)|1∆Ntj+1=1] ≤ E[EXtj [|kT (x,X0)− kT (x,XT−
1

)|1T1<∆tj+11T2>∆tj+1 ]].
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Moreover for every y ∈ E,

Ey[|kT (x,X0)− kT (x,XT−
1

)|1T1<∆tj+11T2>∆tj+1 ]

≤ Ey[|kT (x, Y (0)
0 )− kT (x, Y (0)

T1
)|1T1<∆tj+1 ]

= Ey[Ey[|kT (x, Y (0)
0 )− kT (x, Y (0)

T1
)|1T1<∆tj+1 |Y

(0)]]

= Ey[
∫ ∆tj+1

0
α(Y (0)

s )e−
∫ s

0 α(Y (0)
u )du|kT (x, Y (0)

0 )− kT (x, Y (0)
s )|ds]

≤
∫ ∆tj+1

0
α∗Ey[|kT (x, Y (0)

0 )− kT (x, Y (0)
s )|]ds

≤ α∗lT∆a+1
m ,

where we have used (H6) in the last line. We therefore obtain

P

 1
T̂(d)

m−1∑
j=0
|kT (x,Xtj )− kT (x,XT−

Ntj+1
)|1∆Ntj+1=1 > ε

 ≤ c0
lT∆a

m

vT
. (S19)

Let us now control the third term in (S16). From Proposition S10 with g = 1, we deduce that
V(NT ) = E

∫ T
0 α(Xs)ds ≤ α∗T , which along with E(NT ) ≤ α∗T gives P(NT > 2α∗T ) ≤ c0/T . This result

combined with P(T̂ < TvT /2) ≤ c0/TvT and (S17) entails

P( NT

T̂(d)T̂
>

16α∗

Tv2
T

) ≤ c0lT∆a
m

vT
+ c0∆m

vT
+ c0
TvT

. (S20)

From this inequality and (H6), we deduce that

P(k
∗NT

T̂(d)T̂

m−1∑
j=0

∫ tj+1

tj

∣∣∣kT (x,Xs)− kT (x,Xtj )
∣∣∣ ds1∆Ntj+1=0 > ε)

≤ c0lT∆a
m

vT
+ c0∆m

vT
+ c0
TvT

+ P(
m−1∑
j=0

∫ tj+1

tj

∣∣∣kT (x,Xs)− kT (x,Xtj )
∣∣∣ ds1∆Ntj+1=0 >

εTv2
T

16α∗ )

≤ c0lT∆a
m

v2
T

+ c0∆m

vT
+ c0
TvT

. (S21)

Finally, for the remaining term in (S16), we have

P
(

2(k∗NT )2∆m

T̂(d)T̂
> ε, T̂(d) ≥

TvT
4

)

≤ P
(

2(k∗NT )2∆m

T̂
>
εTvT

4 , T̂ ≥ TvT
2

)
+ P

(
T̂ <

TvT
2

)

≤ P
(

2(k∗NT )2∆m >
ε(TvT )2

8

)
+ c0
TvT

≤ 16(k∗)2∆m

ε(TvT )2 E(N2
T ) + c0

TvT

≤ c0∆m

v2
T

+ c0
TvT

(S22)

where we have used the fact that E(N2
T ) < c0T

2 (that can be proven as a consequence of Proposition S10).
The proof is then complete by gathering (S18), (S19), (S21), (S22).
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S-6 Proofs concerning the supplementary material

S-6.1 Proof of Proposition S5

We detail the proof for γ = α, the other cases being similar. Using the same decomposition and the same
notation as in the proof of Proposition 1, we get for T large enough

E((α̂ξ(x)− α(x))2) ≤ 3E
(1T̂ (x)>ξ

T̂ (x)2
M2
T (k)

)
+ 3E(R2

T ) + 3(α∗)2P
(
T̂ (x) ≤ ξ

)
≤ 3E

(1T̂ (x)>ξ

T̂ (x)2
M2
T (k)

)
+ c0

( 1
TvT (x) + w2

T (x)
)
, (S23)

where we write MT (k) for MT to highlight the dependence in k. With the latter convention, let us
introduce M̃T = M2

T (k)−
∫ T

0 k2
T (x,Xs−)dNs and set IT (k2) =

∫ T
0 k2

T (x,Xs)α(Xs)ds. We have

E
(1T̂ (x)>ξ

T̂ (x)2
M2
T (k)

)
= E

(1T̂ (x)>ξ

T̂ (x)2
M̃T

)
+ E

(1T̂ (x)>ξ

T̂ (x)2
MT (k2)

)
+ E

(1T̂ (x)>ξ

T̂ (x)2
IT (k2)

)
=: A1 +A2 +A3. (S24)

For the third term A3, since α(x) ≤ α∗,

A3 ≤ k∗α∗E
(1T̂ (x)>ξ

T̂ (x)

)
≤ k∗α∗

E[T̂ (x)]
+ k∗α∗E

(∣∣∣∣∣ 1
T̂ (x)

− 1
E[T̂ (x)]

∣∣∣∣∣1T̂ (x)>ξ

)
≤ k∗α∗

E[T̂ (x)]
+ k∗α∗

ξ

√
V(T̂ (x))
E[T̂ (x)]

.

So for T large enough, by Corollary S9,
A3 ≤

c0√
TvT (x)

. (S25)

For the second term A2, we have

A2 =E

MT (k2)
T̂ (x)2

1T̂ (x)>ξ1IT (k2)>TvT (x) + 1T̂ (x)>ξ1IT (k2)≤TvT (x)MT (k2)
(

1
T̂ (x)

− 1
E[T̂ (x)]

+ 1
E[T̂ (x)]

)2


≤E
[
|MT (k2)|
T̂ (x)2

1T̂ (x)>ξ1IT (k2)>TvT (x)

]
+ 2E

[
|MT (k2)|
E[T̂ (x)]2

(T̂ (x)− E[T̂ (x)])2

T̂ (x)2
1T̂ (x)>ξ1IT (k2)≤TvT (x)

]

+ 2E
[
|MT (k2)|
E[T̂ (x)]2

1T̂ (x)>ξ1IT (k2)≤TvT (x)

]
=:A2,1 +A2,2 +A2,3.

Let us control each term. First note that by Jensen inequality and Proposition S10,

E[|MT (k2)|]2 ≤ E[|MT (k2)|2] = E
(∫ T

0
k4
T (x,Xs)α(Xs)ds

)
≤ c0E[T̂ (x)] ≤ c0TvT (x).

Therefore, since IT (k2) ≤ k∗α∗T̂ (x),

A2,1 = E
[
|MT (k2)|
IT (k2)2

IT (k2)2

T̂ (x)2
1T̂ (x)>ξ1IT (k2)>TvT (x)

]
≤ (k∗α∗)2

(TvT (x)2E[|MT (k2)|] ≤ c0

(TvT (x))
3
2

(S26)

and for T large enough,

A2,3 ≤ 2E[|MT (k2)|]
E[T̂ (x)]2

≤ c0

(TvT (x))
3
2
. (S27)
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For the term A2,2, let θ ∈ (1
2 , 1) and consider the decomposition

A2,2 = 2
E[T̂ (x)]2

E
[
|MT (k2)|(T̂ (x)− E[T̂ (x)])2

T̂ (x)2
1T̂ (x)>ξ1IT (k2)≤TvT (x)1|MT (k2)|≤(TvT (x))θT̂ (x)2

]

+ 2
E[T̂ (x)]2

E
[
|MT (k2)|(T̂ (x)− E[T̂ (x)])2

T̂ (x)2
1T̂ (x)>ξ1IT (k2)≤TvT (x)1|MT (k2)|>(TvT (x))θT̂ (x)2

]

≤2(TvT (x))θV(T̂ (x))
E[T̂ (x)]2

+ c0E[|MT (k2)|1IT (k2)≤TvT (x)1|MT (k2)|>(TvT (x))θξ2 ]

≤c0
(
(TvT (x))θ−1 + E[|MT (k2)|1IT (k2)≤TvT (x)1|MT (k2)|>(TvT (x))θξ2 ]

)
. (S28)

Letting Z = MT (k2)1IT (k2)≤TvT (x),

E[|MT (k2)|1IT (k2)≤TvT (x)1|MT (k2)|>(TvT (x))θξ2 ] = E[|Z|1|Z|>(TvT (x))θξ2 ]

=
∫ +∞

(TvT (x))θξ2
P(|Z| ≥ u)du+ (TvT (x))θξ2P(|Z| > (TvT (x))θξ2). (S29)

Since Z =
∫ T

0 k2
T (x,Xs−)1IT (k2)≤TvT (x)[dNs − α(Xs)ds], Theorem 1 of Le Guével (2021) with Hs =

k2
T (x,Xs−)1IT (k2)≤TvT (x), ‖H‖∞ = (k∗)2 and ‖H‖22 = (k∗)2TvT (x) leads for u ≥ 0 to

P(|Z| ≥ u) ≤ 2 exp
(
−TvT (x)

(k∗)2 I

(
u

TvT (x)

))
(S30)

where I(u) = (1 + u) log(1 + u)− u. Using the fact that I(u) ∼0 u
2/2, (S30) leads to

(TvT (x))θξ2P(|Z| ≥ (TvT (x))θξ2) ≤ 2(TvT (x))θξ2 exp
(
−TvT (x)

(k∗)2 I

(
ξ2

(TvT (x))1−θ

))
≤ c0
TvT (x) . (S31)

Moreover, thanks again to (S30) we have∫ +∞

(TvT (x))θξ2
P(|Z| ≥ u)du ≤ 2

∫ +∞

(TvT (x))θξ2
exp

(
−TvT (x)

(k∗)2 I

(
u

TvT (x)

))
du

and by the inequality I(u) ≥ (u2/3)10≤u<1 + (u/3)1u≥1 we get∫ +∞

(TvT (x))θξ2
P(|Z| ≥ u)du ≤ 2

∫ TvT (x)

(TvT (x))θξ2
exp

(
− u2

3(k∗)2TvT (x)

)
du+ 2

∫ +∞

TvT (x)
exp

(
− u

3(k∗)2

)
du

≤ c0

(√
TvT (x)

∫ TvT (x)

(TvT (x))2θ−1ξ4
e
− ω

3(k∗)2 dω√
ω

+ e
−TvT (x)

3(k∗)2

)

≤ c0

(
(TvT (x))1−θe

− ξ
4(TvT (x))2θ−1

3(k∗)2 + e
−TvT (x)

3(k∗)2

)
≤ c0
TvT (x) . (S32)

Gathering (S28), (S29), (S31) and (S32), we obtain A2,2 ≤ c0(TvT (x))θ−1, which combined with (S26)
and (S27) provides

|A2| ≤
c0

(TvT (x))1−θ . (S33)

It remains to control the term A1 in (S24). Using exactly the same decomposition and arguments
than for A2, along with the inequality E[|M̃T |] ≤ c0E[T̂ (x)], we obtain for θ ∈ (0, 1) and ρ ∈ (1

2 , 1) such
that θ/2 < ρ < θ

E[|A1] ≤ c0
(TvT (x))2ρ−1 + c0

(TvT (x))1−θ + c0E
[
|M̃T1IT (k2)≤(TvT (x))ρ1|M̃ |>(TvT (x))θξ2

]
. (S34)
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To control the last term in (S34), we can use (S29) where now Z = M̃T1IT (k2)≤(TvT (x))ρ . Theorem 2 of
Le Guével (2021) with Hs = kT (x,Xs−)1IT (k2)≤(TvT (x))ρ , ‖H‖∞ = k∗ and ‖H‖22 = (TvT (x))ρ leads for
u ≥ 0 to

P(|Z| ≥ u) ≤ 6 exp
(
−(TvT (x))ρ

(k∗)2 I

(
k∗

(TvT (x))ρ

√
u

2

))
, (S35)

which gives for u = (TvT (x))θξ2, since I(u) ∼0
u2

2 and θ/2 < ρ < θ,

(TvT (x))θξ2P
(
|Z| ≥ (TvT (x))θξ2

)
≤ c0
TvT (x) . (S36)

Moreover, using again (S35) and the same arguments as to get (S32), we obtain∫ +∞

(TvT (x))θξ2
P(|Z| ≥ u)du ≤ 6

∫ +∞

(TvT (x))θξ2
exp

(
−(TvT (x))ρ

(k∗)2 I

(
k∗

(TvT (x))ρ

√
u

2

))
du ≤ c0

TvT (x) .

Coming back to (S34), we deduce that

|A1| ≤
c0

(TvT (x))2ρ−1 + c0
(TvT (x))1−θ . (S37)

The best rate is clearly achieve for the highest values of ρ, or writing ρ = θ − η/2 with 0 < η < 2θ − 1,
for the smallest values of η. The best trade-off in θ between 2ρ− 1 = 2θ− 1− η and 1− θ is obtained for
θ = 2/3. This result combined with (S25) and (S33) in (S23) concludes the proof.

S-6.2 Proof of Theorem S6

Our aim is to prove that ((Xt)t≥0, (Px)x∈E) is a time-homogeneous Markov process with respect to (Ft)t≥0.
We know from (Bass, 2011, Proposition 20.2) that it is enough to show that it is a time-homogeneous
Markov process with respect to (F0

t )t≥0. We therefore want to prove that for 0 ≤ s ≤ t, A ∈ E and x ∈ E,

Px(Xt ∈ A|F0
s ) = PXs(Xt−s ∈ A), Px a.s.

Let T (s) be the next jump after s, i.e. T (s) = infTj>s{Tj}. We use the decomposition

Px(Xt ∈ A|F0
s ) = Ex[1Xt∈A1T (s)≤t|F

0
s ] + Ex[1Xt∈A1T (s)>t|F

0
s ]. (S38)

We begin by controlling the first term. Since the event {Tj > s} = {Ns ≤ j − 1} is F0
s -measurable,

Ex[1Xt∈A1T (s)≤t|F
0
s ] =

∑
j≥1

Ex[1Xt∈A1Tj≤t|F0
s ]1Tj−1≤s<Tj

=
∑
j≥1

Ex[Ex[1Xt∈A|F0
Tj ]1Tj≤t|F

0
s ]1Tj−1≤s<Tj .

By construction of the process (Xt)t≥0, given F0
Tj
, the process (Xt)t≥Tj has the same distribution as

the process (Xt−Tj )t≥Tj given X0 = XTj , so for t ≥ Tj , Ex[1Xt∈A|F0
Tj

] is a function of XTj , t− Tj and A.
We thus may write Ex[1Xt∈A|F0

Tj
] = h(XTj , t− Tj , A) where h is a borelian function, so that

Ex[1Xt∈A1T (s)≤t|F
0
s ] =

∑
j≥1

Ex[h(XTj , t− Tj , A)1Tj≤t|F0
s ]1Tj−1≤s<Tj . (S39)

We have

Ex[h(XTj , t− Tj , A)1Tj≤t|F0
s ]1Tj−1≤s<Tj

= Ex[Ex[h(XTj , t− Tj , A)1Tj≤t|F0
s , (Y (j−1)

u )u≥0, τj ]|F0
s ]1Tj−1≤s<Tj

= Ex[
∫
E
h(z, t− Tj , A)K(Y (j−1)

τj , dz)1Tj≤t|F0
s ]1Tj−1≤s<Tj

= Ex[g(Y (j−1)
τj , t− Tj , A)1Tj≤t|F0

s ]1Tj−1≤s<Tj , (S40)
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where g(y, t, A) =
∫
E h(z, t, A)K(y, dz).

In the sequel, for a σ-field G and an event B satisfying Px(B) > 0, Ex[X|G, B] stands for the conditional
expectation of X given G, under the conditional probability measure Px|B(.) = Px(B ∩ .)/Px(B), that is
Ex[X|G, B] = Ex|B[X|G]. Specifically, Z = Ex|B[X|G] if and only if Z is G-measurable, integrable and for
any G-measurable bounded random variable U , Ex(XU1B) = Ex(ZU1B). In particular, for any events B
and C,

Px(B ∩ C|G) = Px(C|G, B)Px(B|G), (S41)

and if B is G-measurable, this gives Px(B ∩C|G) = Px(C|G, B)1B. Accordingly, for v ≥ 0, since {Tj > s}
belongs to F0

s , we get

Px(τj > v|F0
s ,FTj−1 , Y

(j−1))1Tj−1≤s<Tj = Px
(
τj > v|FTj−1 , Y

(j−1), Tj−1 ≤ s < Tj
)

1Tj−1≤s<Tj . (S42)

This probability can be computed using (S41) and (S7), so that (S42) simplifies into

Px(τj > v|F0
s ,FTj−1 , Y

(j−1))1Tj−1≤s<Tj

=
(

1v≤s−Tj−1 + 1v>s−Tj−1e
−
∫ v
s−Tj−1

α(Y (j−1)
u )du

)
1Tj−1≤s<Tj . (S43)

By continuity of (Y (j−1)
u )u≥0 and α, this proves that

B 7→ Ex[1τj∈B|F0
s ,FTj−1 , Y

(j−1)]1Tj−1≤s<Tj

defines a measure with density v 7→ α(Y (j−1)
v )e

−
∫ v
s−Tj−1

α(Y (j−1)
u )du

1v>s−Tj−11Tj−1≤s<Tj . Therefore,

Ex[g(Y (j−1)
τj , t− Tj , A)1Tj≤t|F0

s ,FTj−1 , Y
(j−1)]1Tj−1≤s<Tj

=
∫ t−Tj−1

s−Tj−1
g(Y (j−1)

v , t− Tj−1 − v,A)α(Y (j−1)
v )e

−
∫ v
s−Tj−1

α(Y (j−1)
u )du

dv1Tj−1≤s<Tj

=
∫ t

s
g(Y (j−1)

v−Tj−1
, t− v,A)α(Y (j−1)

v−Tj−1
)e
−
∫ v−Tj−1
s−Tj−1

α(Y (j−1)
u )du

dv1Tj−1≤s<Tj .

Coming back to (S40), this gives

Ex[h(XTj , t− Tj , A)1Tj≤t|F0
s ]1Tj−1≤s<Tj

= Ex[
∫ t

s
g(Y (j−1)

v−Tj−1
, t− v,A)α(Y (j−1)

v−Tj−1
)e
−
∫ v−Tj−1
s−Tj−1

α(Y (j−1)
u )du

dv|F0
s ]1Tj−1≤s<Tj . (S44)

Let us now prove that the latter conditional expectation is equal to H(Xs)1Tj−1≤s<Tj , Px-almost surely,
where

H(z) = Ez[
∫ t−s

0
g(Yv, t− v − s,A)α(Yv)e−

∫ v
0 α(Yu)dudv].

Denoting Z =
∫ t
s g(Y (j−1)

v−Tj−1
, t− v,A)α(Y (j−1)

v−Tj−1
)e
−
∫ v−Tj−1
s−Tj−1

α(Y (j−1)
u )du

dv, this amounts to prove that

Ex[Z1Tj−1≤s<Tj |F0
s ] = Ex[H(Xs)1Tj−1≤s<Tj |F0

s ] (S45)

because H(Xs)1Tj−1≤s<Tj is F0
s -mesurable. Since F0

s is generated by functions of the form
∏n
i=1 fi(Xsi)

for n ≥ 0, 0 ≤ s1 < s2 < ... < sn ≤ s and measurable functions f1, . . . , fn, it is sufficient to prove that

Ex[Z1Tj−1≤s<Tj

n∏
i=1

fi(Xsi)] = Ex[H(Xs)1Tj−1≤s<Tj

n∏
i=1

fi(Xsi)].
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Let Bj
n0 = {sn0 < Tj−1 ≤ sn0+1}, for n0 = 0, . . . , n with the convention s0 = 0 and sn+1 = s. We have

Ex[Z1Tj−1≤s<Tj

n∏
i=1

fi(Xsi)] =
n∑

n0=0
Ex[Z1Tj−1≤s<Tj1Bjn0

n0∏
i=1

fi(Xsi)
n∏

i=n0+1
fi(Y (j−1)

si−Tj−1
)]

=
n∑

n0=0
Ex[

n0∏
i=1

fi(Xsi)1Tj−1≤s1Bjn0
Ex[Z1Tj>s

n∏
i=n0+1

fi(Y (j−1)
si−Tj−1

)|FTj−1 ]].

(S46)

Conditioning by Y (j−1), we obtain

Ex[Z1Tj>s
n∏

i=n0+1
fi(Y (j−1)

si−Tj−1
)|FTj−1 , Y

(j−1)] = Ze−
∫ s−Tj−1

0 α(Y (j−1)
u )du

n∏
i=n0+1

fi(Y (j−1)
si−Tj−1

)

and

Ex[Z1Tj>s
n∏

i=n0+1
fi(Y (j−1)

si−Tj−1
)|FTj−1 ] = Ex[Ze−

∫ s−Tj−1
0 α(Y (j−1)

u )du
n∏

i=n0+1
fi(Y (j−1)

si−Tj−1
)|FTj−1 ].

Let us write

U = e−
∫ s−Tj−1

0 α(Y (j−1)
u )du

n∏
i=n0+1

fi(Y (j−1)
si−Tj−1

) = Ex[1Tj>s
n∏

i=n0+1
fi(Y (j−1)

si−Tj−1
)|FTj−1 , Y

(j−1)]. (S47)

Conditional on FTj−1 , the distribution of Y (j−1) is independent of Tj−1, so using the Markov property of
Y (j−1), we then obtain

Ex[Z1Tj>s
n∏

i=n0+1
fi(Y (j−1)

si−Tj−1
)|FTj−1 ]

= Ex[ZU |FTj−1 ]

= Ex[E
Y

(j−1)
s−Tj−1

(∫ t

s
g(Y (j−1)

v−s , t− v,A)α(Y (j−1)
v−s )e

−
∫ v−Tj−1
s−Tj−1

α(Y (j−1)
u−s+Tj−1

)du
dv

)
U |FTj−1 ]

= Ex[E
Y

(j−1)
s−Tj−1

(∫ t−s

0
g(Y (j−1)

v , t− v − s,A)α(Y (j−1)
v )e−

∫ v
0 α(Y (j−1)

u )dudv

)
U |FTj−1 ]

= Ex[H(Y (j−1)
s−Tj−1

)U |FTj−1 ]

= Ex[H(Y (j−1)
s−Tj−1

)1Tj>s
n∏

i=n0+1
fi(Y (j−1)

si−Tj−1
)|FTj−1 ],

where we have used the fact that the distribution of Y (j) does not depend on j and used (S47) back. We
finally obtain from (S46)

Ex[Z1Tj−1≤s<Tj

n∏
i=1

fi(Xsi)]

=
n∑

n0=0
Ex[

n0∏
i=1

fi(Xsi)1Tj−1≤s1Bjn0
Ex[H(Y (j−1)

s−Tj−1
)1Tj>s

n∏
i=n0+1

fi(Y (j−1)
si−Tj−1

)|FTj−1 ]]

= Ex[H(Xs)1Tj−1≤s<Tj

n∏
i=1

fi(Xsi)],
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proving (S45). We then obtain with (S44)

Ex[h(XTj , t− Tj , A)1Tj≤t|F0
s ]1Tj−1≤s<Tj = H(Xs)1Tj−1≤s<Tj Px-a.s.,

and from (S39),

E[1Xt∈A1T (s)≤t|F
0
s ] = H(Xs) = EXs [

∫ t−s

0
g(Yv, t− v − s,A)α(Yv)e−

∫ v
0 α(Yu)dudv] Px-a.s. (S48)

For the second term in (S38),

Ex[1Xt∈A1T (s)>t|F
0
s ] =

∑
j≥1

Ex[1
Y

(j−1)
t−Tj−1

∈A1T (s)>t|F
0
s ]1Tj−1≤s<Tj

=
∑
j≥1

Ex[Px(Tj > t|F0
s ,FTj−1 , Y

(j−1))1
Y

(j−1)
t−Tj−1

∈A|F
0
s ]1Tj−1≤s<Tj

=
∑
j≥1

Ex[e−
∫ t
s
α(Y (j−1)

v−Tj−1
)dv1

Y
(j−1)
t−Tj−1

∈A|F
0
s ]1Tj−1≤s<Tj

with (S43). Using the same arguments as for the first term in (S38), we obtain

Ex[1Xt∈A1T (s)>t|F
0
s ] =

∑
j≥1

EXs [e
−
∫ t−s

0 α(Yv)dv1Yt−s∈A]1Tj−1≤s<Tj Px-a.s.

= EXs [e
−
∫ t−s

0 α(Yv)dv1Yt−s∈A] Px-a.s. (S49)

The two expressions (S48) and (S49) then imply

Px(Xt ∈ A|F0
s ) = EXs [

∫ t−s

0
g(Yv, t− v − s,A)α(Yv)e−

∫ v
0 α(Yu)dudv] + EXs [e

−
∫ t−s

0 α(Yv)dv1Yt−s∈A] Px-a.s.

For s = 0, this leads to

Px(Xt ∈ A|F0
0 ) = E

Y
(0)

0
[
∫ t

0
g(Yv, t− v,A)α(Yv)e−

∫ v
0 α(Yu)dudv] + E

Y
(0)

0
[e−

∫ t
0 α(Yv)dv1Yt∈A] Px-a.s.

Since ((Y (0)
t )t≥0, (Px)x∈E) is a Markov process, Px(Y (0)

0 = x) = 1, so

Px(Xt ∈ A) = Ex[
∫ t

0
g(Yv, t− v,A)α(Yv)e−

∫ v
0 α(Yu)dudv] + Ex[e−

∫ t
0 α(Yv)dv1Yt∈A]

and
Px(Xt ∈ A|F0

s ) = PXs(Xt−s ∈ A) Px-a.s.,

which concludes the proof that ((Xt)t≥0, (Px)x∈E) is a time-homogeneous Markov process with respect to
(Ft)t≥0.

S-6.3 Proof of Proposition S7

To prove that (Xt)t≥0 admits an invariant measure, we can view the process as a classical regenerative
process with regeneration times {t,Xt = ∅}, see for instance (Thorisson, 2000, Chapter 10) for a definition.
Under (H1), it is not difficult to verify that the expected time between two regenerations is finite, which
implies the existence of an invariant measure (Thorisson, 2000, Chapter 10, Theorem 3.1).

It remains to establish the uniform geometric ergodicity (S9). The proof uses a standard coupling ar-
gument as carried out for pure spatial birth-death processes in (Lotwick and Silverman, 1981, Theorem A)
and (Møller, 1989, Theorem 3.1 and Corollary 3.1). Let (X(1)

t )t≥0 and (X(2)
t )t≥0 be two birth-death-move
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processes with the same transition kernel Qt as (Xt)t≥0 and with respective initial distribution φ1 and φ2
on E. Consider the stopping time

τ = inf{t > 0 : (X(1)
t , X

(2)
t ) = (∅,∅)}.

We verify in Lemma S15 in Appendix Appendix S-B that τ < ∞ Pφ1×φ2-almost surely and we get from
Lemma S17 that for any A ∈ E and any t ≥ 0,

Pφ1×φ2(X(1)
t ∈ A, τ ≤ t) = Pφ1×φ2(X(2)

t ∈ A, τ ≤ t).

Therefore by the coupling argument,∣∣∣∣∫
E
Qt(x,A)φ1(dx)−

∫
E
Qt(x,A)φ2(dx)

∣∣∣∣ ≤ 2Pφ1×φ2(τ > t). (S50)

By Lemma S15, we further get
Pφ1×φ2(τ > t) ≤ ae−ct

for some a > 0 and c > 0 that do not depend on φ1 and φ2. This inequality for the choice φ1(.) = 1y∈.
and φ2 = µ∞ implies (S9) when g = 1A, for some A ∈ E . To extend it to any measurable bounded
function g, first consider the case where g takes its values in [0, 1]. Then g can be approximated by the
step function gn(z) = 2−nb2ng(z)c, where b.c denotes the integer part function, so that ‖g− gn‖∞ ≤ 2−n.
Let Aj,n = {j2−n ≤ g(z) < (j + 1)2−n}. Using (S9) for indicator functions, we deduce that for any y ∈ E
and any n∣∣∣∣∫

E
gn(z)Qt(y, dz)−

∫
E
gn(z)µ∞(dz)

∣∣∣∣ = 2−n
2n∑
j=0

j |Qt(y,Aj,n)− µ∞(Aj,n)| ≤ 2nae−ct.

Therefore for any y ∈ E and any n∣∣∣∣∫
E
g(z)Qt(y, dz)−

∫
E
g(z)µ∞(dz)

∣∣∣∣ ≤ 2‖g − gn‖∞ + 2nae−ct ≤ 2−n+1 + 2nae−ct.

Choosing n = bct/(2 log 2)c, we get (S9) (for new constants a > 0 and c > 0) in the case where g takes
its values in [0, 1]. Applying this result to g/‖g‖∞ proves (S9) for positive bounded functions g. The
extension to any measurable bounded function g is obtained by considering the decomposition g = g+−g−
where g+ and g− respectively denote the positive and negative part of g.

S-6.4 Proof of Corollary S8

To prove the first statement of Corollary S8, note that

E
(∫ t

0
g(Xs)ds

)
− t

∫
E
g(z)µ∞(dz) =

∫ t

0

∫
E

(∫
E
g(z)Qs(y, dz)−

∫
E
g(z)µ∞(dz)

)
µ0(dy)ds

where µ0 denotes the distribution of X0. Using Proposition S7, we get∣∣∣∣E(∫ t

0
g(Xs)ds

)
− t

∫
E
g(z)µ∞(dz)

∣∣∣∣ ≤ ∫ t

0
sup
y∈E

∣∣∣∣∫
E
g(z)Qs(y, dz)−

∫
E
g(z)µ∞(dz)

∣∣∣∣ ds
≤ a‖g‖∞

∫ t

0
e−csds

hence the result. Next, in order to prove the second statement, let us write Es for

Es := E[g(Xs)] =
∫
E

∫
E
g(y)Qs(x, dy)µ0(dx).
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For any v ≥ s we have E[g(Xv)|Fs] =
∫
E g(z)Qv−s(Xs, dz), so

V
(∫ t

0
g(Xs)ds

)
= 2

∫ t

s=0

∫ t

v=s
E
[
(g(Xs)− Es)(

∫
E
g(z)Qv−s(Xs, dz)− Ev)

]
dvds

= 2
∫ t

s=0

∫ t−s

v=0

∫∫
E

(g(y)− Es)
(∫

E
g(z)Qv(y, dz)− Ev+s

)
Qs(x, dy)µ0(dx)dvds

= 2
∫ t

s=0

∫∫
E

(g(y)− Es)
[∫ t−s

v=0

(∫
E
g(z)Qv(y, dz)−

∫
z∈E

g(z)µ∞(dz)
)
dv

]
Qs(x, dy)µ0(dx)ds

+ 2
∫ t

s=0

∫∫
E

(g(y)− Es)
[∫ t

v=s

(∫
z∈E

g(z)µ∞(dz)−
∫∫

E
g(z)Qv(u, dz)µ0(du)

)
dv

]
Qs(x, dy)µ0(dx)ds.

Thanks to Proposition S7, each term in the square brackets above is uniformly bounded in s, t and y,
so there exists a positive constant c0 such that

V
(∫ t

0
g(Xs)ds

)
≤ c0‖g‖∞

∫ t

s=0

∫∫
E

(g(y) + Es)Qs(x, dy)µ0(dx)ds = 2c0‖g‖∞
∫ t

s=0
Esds.

S-6.5 Proof of Proposition S10

In this proof we denote by Nβ
t and N δ

t the number of births and of deaths before t. In order to encompass
all cases in the same proof, we consider Nγ

t where γ is either β, δ or α and Nγ
t = Nt when γ = α. We

first show the result for the filtration Ft instead of the filtration Ft+ . The counting process Nγ
t is clearly

adapted to Ft and its Ft-intensity is obtained by λγ(t) = limh→0+ λγh(t), almost surely, where

λγh(t) = 1
h
E
(
Nγ
t+h −N

γ
t

∣∣Ft) .
This makes sense if for instance λγh(t) is uniformly bounded for any t ≥ 0 and any 0 ≤ h ≤ 1 (see formula
(3.5) in Chapter 2 of Brémaud (1981)), which is our case as shown below. It is indeed not difficult to
deduce that under these assumptions, by applications of Fubini and the dominated convergence theorem,

E(Nγ
t+s −N

γ
t

∣∣Ft) = E
(

lim
h→0+

∫ t+s

t

1
h

(Nγ
u+h −N

γ
u )du

∣∣∣Ft)
= lim

h→0+
E
(∫ t+s

t
λγh(u)du

∣∣∣Ft) = E
(∫ t+s

t
λγ(u)du

∣∣∣Ft) ,
which shows that

∫ t
0 λ

γ(u)du is the Ft-compensator of Nγ
t , i.e. N

γ
t −

∫ t
0 λ

γ(u)du is a Ft-martingale.
Let us prove that λγh(t) is uniformly bounded and limh→0+ λγh(t) = γ(Xt). By the Markov property,

for any y ∈ E,

1
h
E
(
Nγ
t+h −N

γ
t

∣∣Xt = y
)

= 1
h
E
(
Nγ
h

∣∣X0 = y
)

= 1
h
P
(
Nγ
h = 1

∣∣X0 = y
)

+ 1
h

∑
j≥2

jP
(
Nγ
h = j

∣∣X0 = y
)
. (S51)

On one hand, for any j ≥ 2,

P
(
Nγ
h = j

∣∣X0 = y
)
≤ P

(
Nh = j

∣∣X0 = y
)
≤ P

(
Nh ≥ j

∣∣X0 = y
)
.

To control this last term, we use the following lemma.

Lemma S12. Let N∗ ∼ P(α∗h) and N∗ ∼ P(α∗h), where P(a) denotes the Poisson distribution with
rate a > 0. Then for any n ∈ N,

P(N∗ ≤ n) ≤ P(Nh ≤ n) ≤ P(N∗ ≤ n).
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Proof. For any t ≥ 0 and any n,

P(Nt ≥ n) = P(Tn ≤ t) = P(0 ≤ Tn − Tn−1 ≤ t− Tn−1)

= E
(
1t≥Tn−1P

(
Tn − Tn−1 ≤ t− Tn−1|Tn−1, XTn−1 , Y

(n−1)
))

= E
(

1t≥Tn−1

(
1− e−

∫ t−Tn−1
0 α(Y (n−1)

u )du
))

.

We deduce that

E
(
1t≥Tn−1

(
1− e−α∗(t−Tn−1)

))
≤ P(Nt ≥ n) ≤ E

(
1t≥Tn−1

(
1− e−α∗(t−Tn−1)

))
.

Let e∗ and e∗ be two random variables independent of Tn−1 distributed according to an exponential
distribution with rate α∗ and α∗, respectively. The bounds above are nothing else than P(e∗ ≤ t− Tn−1)
and P(e∗ ≤ t− Tn−1) so that

P(e∗ ≤ t− Tn−1) ≤ P(Nt ≥ n) ≤ P(e∗ ≤ t− Tn−1). (S52)

We start from the lower bound to prove the first inequality of the lemma. Denote by γj the probability
density function of a Gamma distribution with parameters j and α∗. We have that

P(e∗ ≤ t− Tn−1) =
∫ t

0
P(Tn−1 ≤ t− s)γ1(s)ds,

so for any n,
P(Tn ≤ t) = P(Nt ≥ n) ≥

∫ t

0
P(Tn−1 ≤ t− s)γ1(s)ds.

Iterating this inequality, we obtain∫ t

0
P(Tn−1 ≤ t− s)γ1(s)ds ≥

∫ t

0

∫ t−s

0
P(Tn−2 ≤ t− s− u)γ1(u)duγ1(s)ds

=
∫ t

0
P(Tn−2 ≤ t− z)

(∫ z

0
γ1(z − s)γ1(s)ds

)
dz

=
∫ t

0
P(Tn−2 ≤ t− z)γ2(z)dz

and recursively
P(Nt ≥ n) ≥

∫ t

0
P(Tn−1 ≤ t− s)γ1(s)ds ≥

∫ t

0
γn(z)dz.

This lower bound equals P(N∗ ≥ n) where N∗ ∼ P(α∗t), which proves one inequality in Lemma S12. The
other inequality is obtained similarly by starting from the upper-bound in (S52) and by replacing γj with
a Gamma distribution with parameters j and α∗.

It is easy to verify that this lemma remains true by replacing the probabilities in its statement by
conditional probabilities, whereby P

(
Nh ≥ j

∣∣X0 = y
)
≤ P(N∗ ≥ j) ≤ (α∗h)j/j!. Consequently

1
h

∑
j≥2

jP
(
Nγ
h = j

∣∣X0 = y
)
≤ 1
h

∑
j≥2

j
(α∗h)j

j! ≤ h(α∗)2eα
∗h.

On the other hand,

1
h
P
(
Nγ
h = 1

∣∣X0 = y
)

= 1
h
P
(
Nγ
h = 1, Nh = 1

∣∣X0 = y
)

+ 1
h
P
(
Nγ
h = 1, Nh ≥ 2

∣∣X0 = y
)
.
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The last term is lower than 1
hP
(
Nh ≥ 2

∣∣X0 = y
)
which is less than 1

h(α∗h)2/2 by the same arguments
as above. We shall finally prove that

(
1
hP(Nγ

h = 1, Nh = 1
∣∣X0 = y)

)
h≤1

is uniformly bounded and that
limh→0

1
hP(Nγ

h = 1, Nh = 1
∣∣X0 = y) = γ(y). Let us first consider the case where γ = β and recall that

n(y) is the index n such that y ∈ En. By (S7) along with the continuity of α and (Y (n(y))
u )u≥0,

P
(
Nβ
h = 1, Nh = 1

∣∣X0 = y
)

= P
(
T1 ≤ h,first jump is a birth, T2 > h

∣∣X0 = y
)

=
∫
z∈En(y)+1

∫ h

0
E
[
α(Y (0)

s )K(Y (0)
s , dz)e−

∫ s
0 α(Y (0)

u )due−
∫ h−s

0 α(Y (1)
v )dv∣∣X0 = y

]
ds (S53)

≤ hα∗.

We obtain similarly for γ = δ and γ = α

P
(
N δ
h = 1, Nh = 1

∣∣X0 = y
)

= P
(
T1 ≤ h,first jump is a death, T2 > h

∣∣X0 = y
)

=
∫
z∈En(y)−1

∫ h

0
E
[
α(Y (0)

s )K(Y (0)
s , dz)e−

∫ s
0 α(Y (0)

u )due−
∫ h−s

0 α(Y (1)
v )dv∣∣X0 = y

]
ds

≤ hα∗

and

P
(
Nh = 1

∣∣X0 = y
)

=
∫
z∈E

∫ h

0
E
[
α(Y (0)

s )K(Y (0)
s , dz)e−

∫ s
0 α(Y (0)

u )due−
∫ h−s

0 α(Y (1)
v )dv∣∣X0 = y

]
ds

≤ hα∗.

So
(

1
hP(Nγ

h = 1, Nh = 1
∣∣X0 = y)

)
h≤1

is uniformly bounded whatever γ = β or γ = δ or γ = α.
Let us show that limh→0

1
hP(Nγ

h = 1, Nh = 1
∣∣X0 = y) = γ(y) for γ = β, the other cases γ = δ and

γ = α being treated similarly. Using (S53), the inequalities |1 − e−x| ≤ x for x ≥ 0,
∫ h−s

0 α(Y (1)
v )dv ≤

(h− s)α∗,
∫ s

0 α(Y (0)
u )du ≤ α∗s and

∫
z∈En(y)+1

α(Y (0)
s )K(Y (0)

s , dz) = β(Y (0)
s ), we obtain∣∣∣∣1hP(Nβ

h = 1, Nh = 1
∣∣X0 = y)− β(y)

∣∣∣∣
≤
∫
z∈En(y)+1

1
h

∫ h

0
E
[
α(Y (0)

s )K(Y (0)
s , dz)e−

∫ s
0 α(Y (0)

u )du|1− e−
∫ h−s

0 α(Y (1)
v )dv|

∣∣X0 = y

]
ds

+
∫
z∈En(y)+1

1
h

∫ h

0
E
[
α(Y (0)

s )K(Y (0)
s , dz)|1− e−

∫ s
0 α(Y (0)

u )du|
∣∣X0 = y

]
ds

+ 1
h

∫ h

0
E
[
|β(Y (0)

s )− β(y)|
∣∣X0 = y

]
ds

≤ (α∗)2h

2 + (α∗)2h

2 + 1
h

∫ h

0
E
[
|β(Y (0)

s )− β(y)|
∣∣X0 = y

]
ds,

and the continuity of β and (Y (0)
s )s≥0 entail the result.

This concludes the proof that γ(Xt) is the Ft-intensity of Nγ
t , meaning that Nγ

t −
∫ t
0 γ(Xs)ds is a

martingale with respect to Ft. The extension of this result for the filtration Ft+ is a consequence of Lemma
S14 in Appendix Appendix S-B, since the process Nγ

t −
∫ t
0 γ(Xs)ds is a right-continuous Ft-martingale

satisfying sup0<ε<η |N
γ
t+ε −

∫ t+ε
0 γ(Xs)ds| ≤ Nγ

t+η + α∗(t+ η) and Nγ
t+η ∈ L1 by Lemma S12.

A left-continuous (predictable) version of the intensity is γ(Xt−). Since for any bounded measur-
able function g, the function s 7→ g(Xs−) is predictable with respect to Fs+ , we deduce that Mt =∫ t

0 g(Xs−)[dNγ
s − γ(Xs)ds] is also a Ft+-martingale (see Section 17.2 in Bass (2011)), proving the second
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statement of the lemma. Finally, writing Mt(g) to stress the dependence of Mt on g, we have that for
any bounded measurable function g, E(Mt(g)) = 0 and by (17.8) in Bass (2011),

E(M2
t (g)) = E

(∫ t

0
g2(Xs−)dNγ

s

)
= E

(
Mt(g2)

)
+ E

(∫ t

0
g2(Xs)γ(Xs)ds

)
= E

(∫ t

0
g2(Xs)γ(Xs)ds

)
.

Appendix S-A Technical lemmas for jump-move processes
Recall that for a filtration F = (Ft)t≥0, we define its right-continuous augmented filtration (Ft+) by
Ft+ =

⋂
u>tFu. For a stopping time τ we also define

Fτ = {A ∈ E : A ∩ {τ ≤ t} ∈ Ft, ∀t}

and
Fτ+ = {A ∈ E : A ∩ {τ < t} ∈ Ft, ∀t}.

We set τn =
∑
k≥0

k+1
2n 1 k

2n<τ≤
k+1
2n
, which defines a non-increasing sequence of stopping times that

converges to τ.

Lemma S13. Let F = (Ft)t≥0 be a complete filtration and τ a F-stopping time which is almost surely
finite and satisfies P(τ = t) = 0 for every t.

(i) We have the equality Fτ = Fτ+ . As a consequence

Fτ =
⋂
n≥1
Fτn .

(ii) For every random variable Z ∈ L1(P), we get the following almost sure and L1(P) convergence:

E[Z|Fτ ] = lim
n→+∞

E[Z|Fτn ].

Proof of Lemma S13

(i) Recall that Fτ ⊂ Fτ+ , Fτn ⊂ Fτ+
n

and Fτ+ =
⋂
n≥1Fτ+

n
is always true.

Set A ∈ Fτ+ and t ≥ 0. By definition of Fτ+ , to prove that A ∈ Fτ it is enough to show that
A ∩ {τ = t} ∈ Ft, which follows from P(A ∩ {τ = t}) = 0 and the fact that (Ft)t≥0 is complete.
We get then Fτ =

⋂
n≥1Fτ+

n
. Since Fτn ⊂ Fτ+

n
, then

⋂
n≥1Fτn ⊂

⋂
n≥1Fτ+

n
= Fτ . For the other

inclusion, for every n ≥ 1, Fτ ⊂ Fτn since τ ≤ τn. We therefore obtain Fτ ⊂
⋂
n≥1Fτn .

(ii) Let Z ∈ L1(P). For n ≤ 0, we set Gn = Fτ−n and Yn = E[Z|Gn]. We get then for n < 0, Gn = Fτ−n ⊂
Fτ−n−1 = Gn+1 and

E[Yn+1|Gn] = E[E[Z|Fτ−n−1 ]|Fτ−n ]
= E[Z|Fτ−n ]
= Yn,

so (Yn)n∈−N is a backward martingale indexed by −N. More, E[|Yn|] ≤ E[|Z|] so supn∈−N E[|Yn|] <
+∞. As a consequence, (Yn)n∈−N converges almost surely and in L1(P) to a random variable Z∞
when n→ −∞ (see Le Gall (2016)). Hence lim

n→+∞
E[Z|Fτn ] = Z∞ almost surely and in L1(P). Since

Fτm ⊂ Fτn for m ≥ n, Ym = E[Z|Fτm ] is Fτn-measurable for all m ≥ n so Z∞ is Fτn-measurable for
all n, meaning that it is

⋂
n≥1
Fτn-measurable, which implies that Z∞ is Fτ -measurable by (i).
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Now, for A ∈ Fτ =
⋂
n≥1
Fτn ,

E[Z∞1A] = lim
n→+∞

E[E[Z|Fτn ]1A] by the L1(P)-convergence

= E[Z1A] because A is Fτn-measurable,

that is Z∞ = E[Z|Fτ ] almost surely.

Lemma S14. Let M be a right-continuous F-martingale. Assume that for each t ≥ 0, we may find η > 0
such that sup0<ε<η |Mt+ε| ∈ L1. Then M is a martingale with respect to the filtration (Ft+)t≥0.

Proof of Lemma S14 For every t ≥ 0, Mt ∈ L1 and Mt is Ft-adapted so it is Ft+-adapted. Let s > t
and A ∈ Ft+ . By definition of Ft+ , for all ε > 0, A ∈ Ft+ε and for ε < s− t,

E[Ms1A] = E[E[Ms|Ft+ε]1A]
= E[Mt+ε1A]

because M is a F-martingale. Then

E[Ms1A] = lim
ε→0

E[Mt+ε1A]

= E[Mt1A]

by dominated convergence. This yields E[Ms|Ft+ ] = Mt which concludes the proof.

Appendix S-B Coupling lemmas for birth-death-move processes

Let (X(1)
t )t≥0 and (X(2)

t )t≥0 be two independent copies of the birth-death-move process X, with respective
initial distributions φ1 and φ2, and jumping times (T (1)

j )j≥0 and (T (2)
j )j≥0. We shall write (F (k)

t )t≥0 for
the completed natural filtration of X(k), k = 1, 2, and Gt = σ(F (1)

t ,F (2)
t ) = σ(X(1)

u , X
(2)
v , u ≤ t, v ≤ t)∪N .

Consider
τ = inf{t > 0 : (X(1)

t , X
(2)
t ) = (∅,∅)}.

Lemma S15. Assume (H1). There exist a > 0 and c > 0 (which do not depend on φ1 and φ2) such that
for all t > 0,

Pφ1×φ2(τ > t) ≤ ae−ct.

In particular, τ < +∞ Pφ1×φ2-almost surely.

Proof of Lemma S15 Let us denote by (Y (n)
k,u )u≥0, for k = 1, 2, the Markov process driving the motion

of X(k)
t in En and by (T (k)

j )j≥0 the jump times of X(k)
t . Let t0 > 0, we have

Pφ1×φ2(τ ≤ t0|X(1)
0 , X

(2)
0 )

= 1{(X(1)
0 ,X

(2)
0 )=(∅,∅)} +

∑
(n1,n2)6=(0,0)

Pφ1×φ2(τ ≤ t0|X(1)
0 , X

(2)
0 )1{n(X(1)

0 )=n1,n(X(2)
0 )=n2}

. (S54)
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On the event {n(X(1)
0 ) = n1, n(X(2)

0 ) = n2} with n1, n2 ≥ 1,

Pφ1×φ2(τ ≤ t0|X(1)
0 , X

(2)
0 ) ≥ Pφ1×φ2

( n1⋂
j=1
{T (1)

j − T (1)
j−1 ≤

t0
n1
, X

(1)
T

(1)
j

∈ En1−j}, T
(1)
n1+1 > t0,

n2⋂
j=1
{T (2)

j − T (2)
j−1 ≤

t0
n2
, X

(2)
T

(2)
j

∈ En2−j}, T
(2)
n2+1 > t0|X(1)

0 , X
(2)
0

)

≥ Pφ1

( n1⋂
j=1
{T (1)

j − T (1)
j−1 ≤

t0
n1
, X

(1)
T

(1)
j

∈ En1−j}, T
(1)
n1+1 − T

(1)
n1 > t0|X(1)

0

)

×Pφ2

( n2⋂
j=1
{T (2)

j − T (2)
j−1 ≤

t0
n2
, X

(2)
T

(2)
j

∈ En2−j}, T
(2)
n2+1 − T

(2)
n2 > t0|X(2)

0

)
,

(S55)

where we have used the independence between φ1 and φ2. Each term of this product is treated similarly
and we only detail the first one. On the event n(X(1)

0 ) = n1 with n1 ≥ 1,

Pφ1

( n1⋂
j=1
{T (1)

j − T (1)
j−1 ≤

t0
n1
, X

(1)
T

(1)
j

∈ En1−j}, T
(1)
n1+1 − T

(1)
n1 > t0|X(1)

0

)

=P
(
T

(1)
n1+1 − T

(1)
n1 > t0|X(1)

T
(1)
n1

= ∅
)
Eφ1

[
Pφ1

(
T

(1)
1 ≤ t0

n1
, X

(1)
T

(1)
1
∈ En1−1|X(1)

0 , (Y (n1)
1,u )u≥0

)
|X(1)

0

]
n1∏
j=2

Eφ1

[
Pφ1

(
T

(1)
j − T (1)

j−1 ≤
t0
n1
, X

(1)
T

(1)
j

∈ En1−j |X
(1)
T

(1)
j−1
, (Y (n1−j+1)

1,u )u≥0

) ∣∣∣∣Aj−1, X
(1)
0

]
(S56)

where for j ≥ 1, Aj =
⋂j
i=1{T

(1)
i − T (1)

i−1 ≤
t0
n1
, X

(1)
T

(1)
i

∈ En1−i}. For any j ≥ 2 and any 1 ≤ n ≤ n∗, on the

event n(X(1)
T

(1)
j−1

) = n, by definition of the process (Xt)t≥0,

Pφ1

(
T

(1)
j − T (1)

j−1 ≤
t0
n1
, X

(1)
T

(1)
j

∈ En−1|X(1)
T

(1)
j−1
, (Y (n)

1,u )u≥0

)
= Pφ1

(
T

(1)
1 ≤ t0

n1
, X

(1)
T

(1)
1
∈ En−1|X(1)

0 , (Y (n)
1,u )u≥0

)

=
δ(Y (n)

1,T (1)
1

)

α(Y (n)
1,T (1)

1
)
(1− e−

∫ t0/n1
0 α(Y (n)

1,u )du)

≥ δ∗
α∗

(1− e−α∗t0/n1)

≥ δ∗
α∗

(1− e−α∗t0/n∗),

where δ∗ = min1≤n≤n∗ δn. This inequality is uniform in n. Applying it in (S56) along with the inequality

P
(
T

(1)
n1+1 − T

(1)
n1 > t0|X(1)

T
(1)
n1

= ∅
)

= e−α(∅)t0 ≥ e−α∗t0 ,

we get on the event n(X(1)
0 ) = n1 with n1 ≥ 1 that

Pφ1

( n1⋂
j=1
{T (1)

j − T (1)
j−1 ≤

t0
n1
, X

(1)
T

(1)
j

∈ En1−j}, T
(1)
n1+1 − T

(1)
n1 > t0|X(1)

0

)
≥ e−α∗t0( δ∗

α∗
(1− e−α∗t0/n∗))n1

≥ e−α∗t0( δ∗
α∗

(1− e−α∗t0/n∗))n∗
.
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Coming back to (S55), we deduce that on the event {n(X(1)
0 ) = n1, n(X(2)

0 ) = n2} with n1, n2 ≥ 1

Pφ1×φ2(τ ≤ t0|X(1)
0 , X

(2)
0 ) ≥ ρt0

for some ρt0 > 0 that depends on t0 but not on n1, n2, X(1)
0 and X(2)

0 . By a similar argument we obtain
the same result on the event {n(X(1)

0 ) = n1, n(X(2)
0 ) = n2} with n1 ≥ 1, n2 = 0 or n1 = 0, n2 ≥ 1. We

conclude from (S54) that for any t0 > 0,

Pφ1×φ2(τ > t0) ≤ 1− ρt0

where ρt0 does not depend on φ1 and φ2. By a standard argument, see for instance Lotwick and Silverman
(1981), we then deduce that

Pφ1×φ2(τ > t) ≤ ae−ct

for some a > 0 and c > 0 that do not depend on φ1 and φ2.

Let us now consider for k = 1, 2,

τ
(k)
+ = inf{t > τ : X(k)

t 6= ∅}.

Lemma S16. For every positive t,

Pφ1×φ2(τ (1)
+ > t+ τ |Gτ ) = P(T (1)

1 > t|X(1)
0 = ∅)

Pφ1×φ2(τ (2)
+ > t+ τ |Gτ ) = P(T (2)

1 > t|X(2)
0 = ∅)

thereby we have the following equalities in distribution, denoted by L=,[
(τ (1)

+ − τ)|Gτ
] L= [

(τ (2)
+ − τ)|Gτ

] L= [
T

(1)
1 |(X

(1)
0 = ∅)

] L= [
T

(2)
1 |(X

(2)
0 = ∅)

]
.

Proof of Lemma S16 We only prove the first equality since the second one is obtained similarly. Given
the two first identities, the last statement of the lemma is straightforward. We known by Lemma S15
that τ < +∞, so for any t > 0

Pφ1×φ2(τ (1)
+ > t+ τ |Gτ ) =

∑
j≥1

Pφ1×φ2(τ (1)
+ > t+ τ |Gτ )1

τ=T (1)
j

+ Pφ1×φ2(τ (1)
+ > t+ τ |Gτ )1

τ=T (2)
j

. (S57)

On one hand, for any j ≥ 1, since {τ = T
(1)
j } ∈ Gτ ∩ GT (1)

j

,

Pφ1×φ2(τ (1)
+ > t+ τ |Gτ )1

τ=T (1)
j

= Pφ1×φ2(T (1)
j+1 > t+ T

(1)
j |GT (1)

j

)1
τ=T (1)

j

= Pφ1(T (1)
1 > t|X(1)

0 = X
(1)
T

(1)
j

)1
τ=T (1)

j

by construction of the process X(1), and so

Pφ1×φ2(τ (1)
+ > t+ τ |Gτ )1

τ=T (1)
j

= P(T (1)
1 > t|X(1)

0 = ∅)1
τ=T (1)

j

. (S58)

On the other hand

Pφ1×φ2(τ (1)
+ > t+ τ |Gτ )1

τ=T (2)
j

=
∑
k≥1

Pφ1×φ2(τ (1)
+ > t+ τ |Gτ )1

τ=T (2)
j

1
T

(1)
k−1≤τ<T

(1)
k

=
∑
k≥1

Pφ1×φ2(T (1)
k > t+ T

(2)
j |GT (2)

j

)1
τ=T (2)

j

1
T

(1)
k−1≤τ<T

(1)
k

. (S59)
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Consider now (T (2)
n,j )n≥1 a sequence of stopping times, decreasing to T (2)

j and taking values in { k2n , k ∈
N}. We get from Lemma S13 that

Pφ1×φ2(T (1)
k > t+ T

(2)
j |GT (2)

j

) = lim
n→+∞

Pφ1×φ2(T (1)
k > t+ T

(2)
j |GT (2)

n,j

) (S60)

almost surely. Letting εn = Pφ1×φ2(t+ T
(2)
j < T

(1)
k ≤ t+ T

(2)
n,j |GT (2)

n,j

), we have

Pφ1×φ2(T (1)
k > t+ T

(2)
j |GT (2)

n,j

) = Pφ1×φ2(T (1)
k > t+ T

(2)
n,j |GT (2)

n,j

) + εn

=
∑
l≥0

Pφ1×φ2(T (1)
k > t+ l

2n |G l
2n

)1
T

(2)
n,j= l

2n
+ εn

=
∑
l≥0

Pφ1(T (1)
k > t+ l

2n |F
(1)
l

2n
)1
T

(2)
n,j= l

2n
+ εn. (S61)

Here we have used the fact that the event B = {T (1)
k > t+ l

2n } being independent of F (2)
l

2n
, and F (2)

l
2n

being

independent of F (1)
l

2n
, Pφ1×φ2(B|G l

2n
) = Pφ1×φ2(B|F (1)

l
2n

). Now, on the event {τ = T
(2)
j }∩{T

(1)
k−1 ≤ τ < T

(1)
k },

since l/2n > T
(1)
k−1 and X(1)

T
(1)
k−1

= ∅,

Pφ1(T (1)
k > t+ l

2n |F
(1)
l

2n
) = Pφ1(T (1)

k − T (1)
k−1 > t+ l

2n − T
(1)
k−1|F

(1)
l

2n
) = P(T (1)

1 > t|X(1)
0 = ∅)1

T
(1)
k

>t l2n
,

where the last equality comes from the fact that given X(1)
T

(1)
k−1

= ∅, the distribution of T (1)
k − T (1)

k−1 is an

exponential distribution with rate α(∅) having the memoryless property. We get then

lim
n→+∞

∑
l≤0

Pφ1(T (1)
k > t+ l

2n |F
(1)
l

2n
)1
T

(2)
n,j= l

2n
1
τ=T (2)

j

1
T

(1)
k−1≤τ<T

(1)
k

= P(T (1)
1 > t|X(1)

0 = ∅)1
τ=T (2)

j

1
T

(1)
k−1≤τ<T

(1)
k

.

On the other hand, E[εn] = Pφ1×φ2(t+ T
(2)
j < T

(1)
k ≤ t+ T

(2)
n,j ) tends to 0 by the dominated convergence

theorem, so there exists a subsequent ϕ(n) such that εϕ(n) → 0 almost surely. From (S60), taking the
limit in (S61) for this subsequence, we deduce that

Pφ1×φ2(T (1)
k > t+ T

(2)
j |GT (2)

j

)1
τ=T (2)

j

1
T

(1)
k−1≤τ<T

(1)
k

= P(T 1
(1) > t|X(1)

0 = ∅)1
τ=T (2)

j

1
T

(1)
k−1≤τ<T

(1)
k

which in view of (S59) gives

Pφ1×φ2(τ (1)
+ > t+ τ |Gτ )1

τ=T (2)
j

= P(T (1)
1 > t|X(1)

0 = ∅)1
τ=T (2)

j

.

Combining (S57), (S58) and this last result concludes the proof.

Lemma S17. For every bounded measurable function g and every t ≥ 0,

Eφ1×φ2 [g(X(1)
t+τ )|Gτ ] = E[g(X(1)

t )|X(1)
0 = ∅]

Eφ1×φ2 [g(X(2)
t+τ )|Gτ ] = E[g(X(2)

t )|X(2)
0 = ∅],

thereby
Eφ1×φ2 [g(X(1)

t+τ )|Gτ ] = Eφ1×φ2 [g(X(2)
t+τ )|Gτ ].

In particular, for every A ∈ E and every t ≥ 0,

Pφ1×φ2(X(1)
t ∈ A, τ ≤ t) = Pφ1×φ2(X(2)

t ∈ A, τ ≤ t).
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Proof of Lemma S17 Let g be a bounded measurable function and t ≥ 0. Denote by Pt the transition
function of (Xt)t≥0, i.e. for any s, t ≥ 0, Ptg(Xs) = E(g(Xs+t)|Fs). Note that both processes X(1) and
X(2) have the same transition function Pt. We only prove the first equality of the lemma since the rest
can be verified similarly or is a straightforward consequence.

Eφ1×φ2 [g(X(1)
t+τ )|Gτ ] = Eφ1×φ2 [g(X(1)

t+τ )1
t+τ<T (1)

+
|Gτ ] + Eφ1×φ2 [g(X(1)

t+τ )1
t+τ≥T (1)

+
|Gτ ]

= g(∅)Pφ1×φ2(T (1)
+ > t+ τ |Gτ ) + Eφ1×φ2 [P

t+τ−T (1)
+
g(X(1)

T
(1)
+

)1
t+τ≥T (1)

+
|Gτ ]

= g(∅)Pφ1×φ2(T (1)
+ > t+ τ |Gτ ) +

∫
z∈E1

Eφ1×φ2 [P
t+τ−T (1)

+
g(z)1

t+τ≥T (1)
+
|Gτ ]K(∅, dz).

We get from Lemma S16 that

Eφ1×φ2 [g(X(1)
t+τ )|Gτ ] = g(∅)P(T (1)

1 > t|X(1)
0 = ∅) +

∫
z∈E1

E[P
t−T (1)

1
g(z)1

t≥T (1)
1
|X(1)

0 = ∅]K(∅, dz).

Notice to conclude that

E[g(X(1)
t )|X(1)

0 = ∅] = E[g(X(1)
t )1

t<T
(1)
1
|X(1)

0 = ∅] + E[g(X(1)
t )1

t≥T (1)
1
|X(1)

0 = ∅]

= g(∅)P(T (1)
1 > t|X(1)

0 = ∅) + E[P
t−T (1)

1
g(X(1)

T1
)1
t≥T (1)

1
|X(1)

0 = ∅]

= g(∅)P(T (1)
1 > t|X(1)

0 = ∅) +
∫
z∈E1

E[P
t−T (1)

1
g(z)1

t≥T (1)
1
|X(1)

0 = ∅]K(∅, dz).
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