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RESEARCH ARTICLE
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Abstract

Measles virus (MeV) and all Paramyxoviridae members rely on a complex polymerase

machinery to ensure viral transcription and replication. Their polymerase associates the

phosphoprotein (P) and the L protein that is endowed with all necessary enzymatic activi-

ties. To be processive, the polymerase uses as template a nucleocapsid made of genomic

RNA entirely wrapped into a continuous oligomer of the nucleoprotein (N). The polymerase

enters the nucleocapsid at the 3’end of the genome where are located the promoters for

transcription and replication. Transcription of the six genes occurs sequentially. This implies

ending and re-initiating mRNA synthesis at each intergenic region (IGR). We explored here

to which extent the binding of the X domain of P (XD) to the C-terminal region of the N pro-

tein (NTAIL) is involved in maintaining the P/L complex anchored to the nucleocapsid tem-

plate during the sequential transcription. Amino acid substitutions introduced in the XD-

binding site on NTAIL resulted in a wide range of binding affinities as determined by combin-

ing protein complementation assays in E. coli and human cells and isothermal titration calo-

rimetry. Molecular dynamics simulations revealed that XD binding to NTAIL involves a

complex network of hydrogen bonds, the disruption of which by two individual amino acid

substitutions markedly reduced the binding affinity. Using a newly designed, highly sensitive

dual-luciferase reporter minigenome assay, the efficiency of re-initiation through the five

measles virus IGRs was found to correlate with NTAIL/XD KD. Correlatively, P transcript

accumulation rate and F/N transcript ratios from recombinant viruses expressing N variants

were also found to correlate with the NTAIL to XD binding strength. Altogether, our data sup-

port a key role for XD binding to NTAIL in maintaining proper anchor of the P/L complex

thereby ensuring transcription re-initiation at each intergenic region.
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Author Summary

Three proteins, the polymerase L, the phosphoprotein P and the nucleoprotein N, inter-

play to ensure transcription and replication of measles virus, a member of the Paramyxo-
viridae family. A regular array of nucleoprotein shields the viral genomic RNA. The

resulting nucleocapsid constitutes the template of RNA synthesis used by the polymerase

complex made of L and P, with the latter ensuring L anchoring onto the nucleocapsid. We

herein report a correlation between the binding affinity of the C-terminal X domain of P

(XD) and the intrinsically disordered C-terminal tail of N (NTAIL), the ability to reinitiate

the transcription at the intergenic regions and the accumulation rate of viral transcripts

from recombinant viruses. We therefore propose that the NTAIL/XD interaction contrib-

utes to maintaining the polymerase complex anchored onto the nucleocapsid while end-

ing the upstream transcript and re-initiating the downstream transcript at every

intergenic region. As such, the NTAIL/XD interaction strength must be controlled so as to

keep the viral transcription gradient within an optimal efficiency window. The conserva-

tion of this mode of interaction between the viral P and N proteins in many members of

the Paramyxoviridae family reflects one of the major evolution constraints to which their

polymerase machinery is subjected.

Introduction

Measles virus (MeV), a member of the Morbillivirus genus, belongs to the Paramyxoviridae
family of the Mononegavirales order [1]. These viruses possess a non-segmented RNA genome

of negative polarity that is encapsidated by the nucleoprotein (N) to form a helical nucleocap-

sid. Not only does N protect viral RNA from degradation and/or formation of viral dsRNA,

but it also renders the latter competent for transcription and replication. Indeed, the viral poly-

merase cannot processively transcribe nor replicate RNA unless the viral genome is encapsi-

dated by the N protein within a helical nucleocapsid [2,3]. Transcription and replication are

ensured by the RNA-dependent RNA polymerase complex made of the large protein (L) and

the phosphoprotein (P), with P serving as an essential tethering factor between L and the

nucleocapsid. The complex made of RNA and of the N, P and L proteins constitutes the repli-

cation machinery. In order to perform messenger RNA synthesis, the polymerase has not only

to bind to the 3’ transcription promoter, but also to re-initiate the transcription of downstream

genes upon crossing each intergenic region (IGR). Following polyadenylation, which serves as

gene end (GE) signal, the polymerase proceeds over three nucleotides (3’-GAA-5’ or 3’-GCA-

5’) without transcribing them and then restarts transcription upon recognition of a down-

stream gene start (GS) signal.

Within infected cells, N is found in a soluble, monomeric form (referred to as N0) and in a

nucleocapsid assembled form [4]. Following synthesis, the N protein requires chaperoning by

the P protein so as to be maintained in a soluble and monomeric form. The P N-terminal

region (PNT) binds to the neosynthesized N protein thereby simultaneously preventing its ille-

gitimate self-assembly and yielding a soluble N0P complex the structure of which have been

characterised for MeV [5] as well as for four other members of the Mononegavirales order

[6,7,8,9]. N0P is used as the substrate for the encapsidation of the nascent genomic RNA chain

during replication [10], (see also [4,11,12,13] for reviews on transcription and replication). In

its assembled homopolymeric form or nucleocapsid, N also makes complexes with either iso-

lated P or P bound to L, with all these interactions being essential for RNA synthesis by the

Phosphoprotein Anchoring to Viral Nucleocapsid

PLOS Pathogens | DOI:10.1371/journal.ppat.1006058 December 9, 2016 2 / 39

funders had no role in study design, data collection

and analysis, decision to publish, or preparation of

the manuscript.

Competing Interests: The authors have declared

that no competing interests exist.



viral polymerase [14,15,16]. Throughout the Mononegavirales order, P and P+L binding to the

nucleocapsid is mediated by interaction of the C-terminal region of P with either the C-termi-

nal tail of N (Paramyxoviridae members), or to the N-terminal globular moiety (or core) of N

(see [11,17] for review).

The MeV N protein consists of a structured N-terminal moiety (NCORE, aa 1–400), and a C-

terminal domain (NTAIL, aa 401–525) [18,19] that is intrinsically disordered, i.e. it lacks highly

populated secondary and tertiary structure under physiological conditions of pH and salinity

in the absence of a partner (for a recent review on intrinsically disordered proteins see [20]).

While NCORE contains all the regions necessary for self-assembly and RNA-binding [10,21,22]

and a binding site for an α-MoRE located at the N terminus of the P protein, NTAIL is responsi-

ble for interaction with the C-terminal X domain (XD, aa 459–507) of P [11,18,21,23,24,25,26,

27] (Fig 1A).

Fig 1. Binding affinity of the NTAIL variants as evaluated by gfp- and glu-PCA. (a) Representation of N and P proteins. (b) Relative binding

strength between NTAIL variants and XD as assessed by gfp-PCA. (c) Correlation between binding strengths as inferred from gfp-PCA and as

inferred from glu-PCA. (d) Correlation between binding strengths as obtained from monomeric glu-PCA and from multimeric (i.e. PMD-XD against N)

glu-PCA. Shown are means and standard deviations (SD) from three independent experiments performed in triplicate. The color code used for

symbols is the same in panel b-d. The color code for N variants adopted in panel (b) will be used throughout all figures.

doi:10.1371/journal.ppat.1006058.g001
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NTAIL binding to XD triggers α-helical folding within a molecular recognition element

[28,29] of α-helical nature (α-MoRE, aa 486–502) located within one (Box2, aa 489–506) out

of three conserved NTAIL regions [18,24,27,30,31,32,33,34,35,36,37]. XD-induced α-helical

folding of NTAIL is not a feature unique to MeV, being also conserved within the Paramyxoviri-
dae family [38,39,40,41,42,43]. XD consists of a triple α-helical bundle [27,34,44], and binding

to the α-MoRE leads to a pseudo-four-helix arrangement that mainly relies on hydrophobic

contacts [18,27,44]. The α-MoRE of NTAIL is partly preconfigured as an α-helix prior to bind-

ing to XD [31,32,35,37,45] and adopts an equilibrium between a fully unfolded form and four

partly helical conformers [37]. In spite of this partial pre-configuration, NTAIL folds according

to a “folding after binding mechanism” [45,46]. Previous mutational studies showed that Box2

is poorly evolvable in terms of its binding abilities towards XD, in that amino acid substitu-

tions therein introduced lead to a dramatic drop in the binding strength, as judged from a

protein complementation assay (PCA) based on split-GFP reassembly (gfp-PCA) [47]. In par-

ticular, substitutions within the N-terminal region of Box2 (aa 489–493) and at position 497

were found to lead to the most dramatic drops in the interaction strength [47].

In the context of the viral nucleocapsid, NTAIL points towards the interior of the latter

and then extrafiltrates through the interstitial space between NCORE moieties, with the first

50 residues (aa 401–450) being conformationally restricted due to their location between

successive turns of the nucleocapsid [37]. The NTAIL region spanning residues 451–525 and

encompassing the α-MoRE is, by contrast, exposed at the surface of the viral nucleocapsid

and thus accessible to the viral polymerase. Binding of XD to NTAIL has been proposed to

ensure and/or contribute to the recruitment of the viral P/L polymerase complex onto the

nucleocapsid template. However, its precise function has remained enigmatic so far with

reports of apparent conflicting observations. From the analysis of four NTAIL variants it

was concluded that the accumulation rate of primary transcripts is rather insensitive to a

drop in the apparent XD to NTAIL affinity [26], while an XD variant showing a 1.7 times

stronger interaction with NTAIL was associated with a 1.7-fold reduction in the accumula-

tion rate of viral transcripts [48]. Furthermore, deletions studies of NTAIL have indicated

that the interaction between XD and NTAIL may be dispensable for transcription and repli-

cation [49].

In the present work, we further investigate the molecular mechanisms by which substitu-

tions in critical positions of NTAIL previously identified by a random approach [47] affect the

viral polymerase activity. We did so by combining biochemical studies and molecular dynam-

ics (MD) simulations on one hand with functional studies that made use of minigenomes and

recombinant viruses on the other hand. Results identify positions 491 and 497 as the most crit-

ical in terms of both binding affinities and functional impact. In addition, thanks to the avail-

ability of a newly conceived minigenome made of two luciferase reporter genes, with the

second one being conditionally expressed via RNA edition of its transcript by the viral poly-

merase, we could quantify the efficiency of transcription re-initiation after polymerase scan-

ning through each of the five IGRs of MeV genome and on an elongated un-transcribed IGR

(UTIGR). A low NTAIL-XD affinity was found to be associated to a reduced ability of N to sup-

port expression of luciferase from the second gene. Furthermore, in infected cells, the accumu-

lation rate of primary transcripts and transcript ratios were found to correlate with the

equilibrium dissociation constant (KD) of the NTAIL/XD pair. Altogether obtained data argue

for a key role of the NTAIL/XD interaction in transcription re-initiation at each intergenic

region.
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Results

Binding strengths of NTAIL variants from two protein complementation

assays

In a previous random mutagenesis study that made use of a PCA based on split-GFP re-assem-

bly (gfp-PCA) [47], we identified NTAIL variants that either decrease or increase the interaction

strength towards XD [47]. Variant MX208, which bears the D437V, P485L and L524R substi-

tutions that are all located outside the α-MoRE, is an example of the latter group. We previ-

ously reported the generation and assessment of binding properties by gfp-PCA of six single-

site variants (R489Q, R490S, S491L, A492T, D493G and R497G) bearing each a unique substi-

tution within the α-MoRE [47]. Here, we additionally designed and generated the MXSF vari-

ant, which bears D437V, R439S, P456S and P485L substitutions that are all found in variants

displaying an increased fluorescence [47]. Gfp-PCA in E. coli showed that the binding strength

of these variants towards XD is scattered over a wide range, with the S491L and R497G variants

showing the lowest interaction and with variant MXSF displaying interaction strength only

moderately higher than wt NTAIL (Fig 1B). Incidentally, this latter finding indicates that the

effects of the substitutions are not cumulative.

We then sought at assessing to which extent results afforded by the split-GFP assay in E. coli
cells reflect NTAIL/XD binding occurring in the natural host cells of MeV. To this end, the

interaction between XD and NTAIL variants was measured using the split-luciferase reassembly

assay [50]. This technique is based on the same principle as the split-GFP reassembly assay.

The reporter (i.e. Gaussia princeps luciferase) and the measured parameter (luminescence) are

however different, and the assay is performed in human cells. Moreover, contrary to the split-

GFP reassembly assay where reporter reassembly is irreversible, in the split-luciferase assay

(glu-PCA), association of the two luciferase fragments is reversible. As such, while the mea-

sured parameter in the former assay is dominated by the kon, the measured parameter in the

latter assay does reflect the equilibrium between a kon and a koff and hence a true KD. A signifi-

cant correlation was obtained between the two PCA methods (Fig 1C), a finding that provides

additional support for the significance of the observed differences in binding strength among

variants. Furthermore, a significant correlation was also observed when comparing binding

strengths as obtained using monomeric constructs (i.e. NTAIL/XD) and binding strengths

obtained using their natural multimeric counterparts, i.e. P multimerization domain (PMD)-

XD (P303-507) and full-length mutated N protein constructs (Fig 1D). The rationale for using

P multimeric constructs devoid of the N-terminal region (PNT) was to eliminate the binding

site to NCORE located within PNT and involved in P chaperoning of N protein to form N0P

complexes [5] (see Fig 1A for depicting scheme). Importantly, all N variants accumulated in

cells in similar amounts (S1 Fig) indicating that variations in the level of reconstituted Gaussia

luciferase likely reflects variations in NTAIL to XD binding strength.

Generation, purification and characterization of the single-site Box2

NTAIL variants

In order to characterize Box2 variants (Fig 2A) at the biochemical level, we expressed and

purified six α-MoRE variants of NTAIL as N-terminally hexahistidine tagged proteins. All

NTAIL variants were purified to homogeneity from the soluble fraction of the bacterial lysate

through immobilized metal affinity chromatography (IMAC) followed by size exclusion chro-

matography (SEC) (Fig 2B). The identity of all purified proteins were checked and confirmed

by mass spectrometry. Even if their molecular mass is ~16 kDa, they all migrate on a denatur-

ing gel with an apparent molecular mass of approximately 20 kDa (Fig 2B, inset). This

Phosphoprotein Anchoring to Viral Nucleocapsid
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aberrant electrophoretic migration has been systematically observed for all NTAIL variants

reported so far [26,30,31,32,46] including wt NTAIL [19]. This anomalous migration is

Fig 2. Secondary structure content of NTAIL variants (a) Crystal structure of the chimera between XD (orange) and the α-MoRE of NTAIL (red)

(PDB code 1T6O) [44]. The side chains of residues mutated in the NTAIL variants investigated in this study are shown in sticks with atom type colours.

(b) SEC elution profile of the purified NTAIL variants. The differences in the peak heights reflect differences in the total amounts of protein loaded onto

the SEC column. Inset. Coomassie blue staining of an 18% SDS-PAGE analysis of the purified NTAIL variants. M: molecular mass markers. Color

code is shown above the Coomassie blue staining picture with dotted grey line for wt N. (c) Far-UV CD spectra of the purified NTAIL variants at 0.1 mg/

ml in 10 mM sodium phosphate buffer at pH 7 either in the absence (c) or in the presence of 20% TFE (d). Shown are the average CD spectra as

obtained from three different protein samples. (e) α-helical content of NTAIL variants in the absence (plain bars) or presence (hatched bars) of 20%

TFE, as obtained by deconvoluting CD spectra using the Dichroweb server.

doi:10.1371/journal.ppat.1006058.g002
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frequently observed in IDPs and is due to a high content in acidic residues [51] and/or a large

extension in solution [43].

All NTAIL variants, including wt NTAIL, have the same SEC elution profile (Fig 2B). In par-

ticular, they are all eluted with an apparent molecular mass higher than expected and typical of

a premolten globule (PMG) state [52], as already observed in the case of wt NTAIL [19]. Thus,

the amino acid substitution(s) causes little (if any) effect on the hydrodynamic volume sam-

pled by the protein.

Analysis of the secondary structure content of the NTAIL variants by far-UV circular dichro-

ism (CD) shows they are all disordered, as judged from their markedly negative ellipticity at

200 nm (Fig 2C). In addition, they are all similarly able to gain α-helicity in the presence of

20% 2,2,2 trifluoroethanol (TFE) (Fig 2D), as already observed for wt NTAIL [19]. All variants

have an estimated α-helical content similar (within the error bar) to that of wt NTAIL, with the

only exception of variant R489Q that exhibits a lower α-helicity both in the absence and in the

presence of TFE (Fig 2E). Thus, most of the amino acid substitutions cause little (if any) effect

on the overall secondary structure content and folding abilities of NTAIL.

Assessment of binding affinities of single-site Box2 NTAIL variants

towards XD by ITC

The binding abilities of the NTAIL variants, including wt NTAIL, were assessed using isothermal

titration calorimetry (ITC). To this end, the purified NTAIL proteins were loaded into the sam-

ple cell of an ITC200 microcalorimeter and titrated with wt XD. For each variant, two indepen-

dent experiments were carried out. Fig 3 shows, for each variant, one representative ITC curve

along with the relevant binding parameters. The XD/NTAIL molar ratios achieved at the end of

the titration were 2.0 (wt, R489Q, A492T, D493G), 2.5 (R490S) or 3.0 (R497G) (Fig 3). The

data, following integration and correction for the heats of dilution, were fitted with a standard

model allowing for a set of independent and equivalent binding sites.

Consistent with the unfavorable entropic contribution associated to the disorder-to-order

transition that takes place upon NTAIL binding to XD, whenever binding parameters could be

determined, they revealed a decrease in entropy, with a ΔS ranging from -13 to -29.5 cal mol-1

deg-1 (Fig 3). Binding reactions were all found to be enthalpy-driven, with ΔH values in the

same order of magnitude and ranging from -10.9 to -14.5 kcal/mol (Fig 3). The estimates for

the model parameters of the wt NTAIL/XD pair were found to be in very good agreement with

those recently reported [46]. The estimates for binding parameters of variants R489Q, A492T

and D493G yielded equilibrium dissociation constant (KD) very close to that observed for wt
NTAIL, indicating that these substitutions poorly affect the interaction (Fig 3). On the other

hand, the R490S substitution resulted in a 7-fold decrease in the binding affinity (KD of

20 μM). The decrease in affinity was even further pronounced (KD of 44 μM) in the case of the

R497G variant, although the interaction remained measurable (Fig 3). In the case of the S491L

variant the interaction strength was below the ITC detection limit and thus KD could not be

estimated (Fig 3).

The n values for the A492T/XD and D493G/XD binding pairs were found to deviate from

unit, a behaviour that is not unusual and that has been already observed with single-site trypto-

phan variants [46] and that may arise from relatively poorly defined baselines. In light of all

the numerous previous studies [18,19,27,30,31,32,33,34,35,36,37] showing that NTAIL and XD

form a 1:1 complex, these deviations were not taken to be significant.

We next focused on how binding affinities obtained by ITC correlate with binding

strengths inferred from split-GFP and split-luciferase reassembly assays. In fact, although it

has already been established that the higher the fluorescence the higher the interaction strength

Phosphoprotein Anchoring to Viral Nucleocapsid
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[53], no attempts were done at establishing which type of relationship exists between KD values

and fluorescence or luminescence values. As shown in Fig 4, we found a significant correlation

between fluorescence or luminescence values obtained by gfp-PCA [47] and glu-PCA and the

ln of KD values (p = 0.02 in both cases). Although this finding needs to be confirmed on a

larger set of data points, it lays the basis for the possibility of inferring KD values directly from

fluorescence or luminescence values.

Fig 3. Binding parameters of the NTAIL variants towards XD as obtained by ITC. Data are representative of at least two independent

experiments. The derived equilibrium dissociation constants (KD), the stoichiometry number (n), the binding enthalpy ΔH (kcal mol-1), and the binding

entropy ΔS (cal mol-1 deg-1) are shown. Shown are the curves obtained using the following concentrations of NTAIL in the microcalorimeter cell and of

XD in the microsyringe: wt NTAIL/XD: 50 μM/500 μM; NTAIL R489Q/XD: 50 μM/500 μM; NTAIL R490S/XD: 150 μM/854 μM; NTAIL S491L/XD: 160 μM/

800 μM; NTAIL A492T/XD: 50 μM/500 μM; NTAIL D493G/XD: 25 μM/600 μM; NTAIL R497G/XD: 150 μM/955 μM. Graphs shown at the bottom of each

panel correspond to integrated and corrected ITC data fitted to a single set of sites model. Note that for the binding reactions characterized by KD

values in the tens of micromolar range, it is difficult to obtain the first plateau because the necessary concentrations are too high. Consequently, it

should be kept in mind that the actual errors may be larger than those estimated by the fit.

doi:10.1371/journal.ppat.1006058.g003

Phosphoprotein Anchoring to Viral Nucleocapsid

PLOS Pathogens | DOI:10.1371/journal.ppat.1006058 December 9, 2016 8 / 39



Notably, if the results obtained by gfp-PCA (see Fig 1B) pointed out similarly low interac-

tion strengths for variants S491L and R497G, ITC studies yielded a different profile. Indeed,

while no interaction could be effectively detected for the S491L/XD pair, the KD could be mea-

sured for variant R497G (see Fig 3). Using the empirically determined equation relating lumi-

nescence and KD values (Fig 4), the KD of the S491L/XD pair was estimated to be 85 ± 33 μM,

a value consistent with our inability to detect the interaction by ITC. Indeed, an interaction

characterized by a KD of approximately 100 μM could escape detection unless extremely high

(and hardly achievable) protein concentrations are used (typically 1 mM NTAIL/10 mM XD)

[54].

Altogether, obtained results confirmed that not all Box2 residues are equivalent in terms of

their role in NTAIL/XD complex formation. In particular, while substitutions at positions 489,

490, 492 and 493 have a slight to moderate impact, substitutions at positions 497 and 491 dras-

tically affect complex formation without having a strong impact on the overall α-helicity. The

role of Box2 residues in complex formation follows the order 491>497>490, reflecting either

the orientation of side chains towards the partner (residues 490 and 491) or involvement in

stabilizing interactions with XD residue Tyr480 in spite of solvent exposure (residue 497), as

already proposed (Fig 2A) [47].

Fig 4. Correlation between binding strengths, as inferred from either gfp-PCA of glu-PCA, and binding

affinities derived from ITC. In both cases a statistically significant correlation was observed between fluorescence

or luminescence values and the KD (p = 0.02 in both cases). Shown are the mean values and SD as obtained from

two (ITC) or three (PCAs) independent experiments performed in triplicate.

doi:10.1371/journal.ppat.1006058.g004
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Molecular dynamic simulations of wt, S491L and R497G variants in

complex with XD reveal a crucial hydrogen bonding network

In order to further investigate the mechanisms by which residues Ser491 and Arg497 stabilize

the NTAIL/XD complex, we performed MD simulations in aqueous solvent using the

CHARMM force field [55]. MD simulations were carried out starting from the X-ray structure

of the XD/α-MoRE complex [44] or from the in silico generated XD/α-MoRE S491L and XD/

α-MoRE R497G models. In the case of the S491L variant, the three most favorable orientations

of the side chains were generated. We first assessed the dynamical stability of the complexes.

For this purpose, we analyzed the root-mean square deviation (RMSD) of the Cα atoms with

respect to the initial structure as a function of time for the three complexes (i.e. wt, S491L and

R497G) (S1 Table). The RMSD values showed very little variations between the different con-

structs during the time course of the 50 ns simulations (S1 Table). The average RMSD for XD

and for the α-MoRE were approximately 0.8 and 0.5 Å, respectively, indicating structural sta-

bility of each domain during the simulations (S1 Table). The relative orientation of the α-

MoRE compared to XD was also assessed and revealed slightly higher average RMSD values

for the two variants due to small local rearrangements of the structures to adapt to the substitu-

tions. However, RMSD fluctuations were in the same order of magnitude. Secondary structure

analyses of wt and mutated complexes confirmed that all α-helices are conserved during the

whole trajectories. Overall, the different systems were stable during the whole simulation.

Since the orientation of the side-chain of L491 showed no impact on the behavior of the com-

plex during the MD simulation, only one conformer was selected in the rest of the study.

Although the association between XD and NTAIL is essentially driven by hydrophobic con-

tacts, the two partners also interact through hydrogen bonds that are thus expected to play a

role in the binding affinity. Two intramolecular hydrogen-bond interactions are present in the

crystallographic structure of the complex (Table 1). These interactions involve the side-chain

of NTAIL residue Ser491 and side-chain of Asp493 and main-chain of Lys489 from XD. These

interactions are preserved in the simulations of the wt and R497G complex (Table 1 and S2

Fig). Due to the absence of the polar OH group in leucine, hydrogen bonds involving the OH

group of Ser491 were lost in the simulations of the S491L complex. Three additional hydrogen

bonds that are not present in the X-ray structure were observed in the MD trajectories of the

wt complex (Table 1 and S2 Fig). Two of them involve the side-chain of Asp487 from XD and

side-chains of either Arg490 or Arg497 of NTAIL. Only the former was also observed in the

simulations of both variants (Table 1 and S2 Fig). The third one was formed between the side-

chains of Lys489 from XD and Asp487 from NTAIL and was detected in the simulation of the

three complexes with the two variants exhibiting even a higher frequency (Table 1 and S2

Table 1. Frequency of major intermolecular hydrogen bonds during the 50 ns MD trajectories of XD/α-MoRE complexes (wt and mutated). MD

shows the key role of NTAIL S491 for stable binding to XD.

XD NTAIL Hydrogen bond frequency (%

over 50 ns)1

aa Main/ Side chain atom Acceptor/Donor aa Main/ Side chain atom Acceptor/Donor wt R497G S491L

D487 S A R490 S D 44.2 38.7 37.1

D487 S A R497 S D 12.5

K489 S D D487 S A 12.0 18.8 24.4

K489 M D S491 S A 53.82 28.12

D493 S A S491 S D 41.62 42.12

1 Transiently observed hydrogen bonds during less than 1 ns are not shown
2 Hydrogen bonds found in the X-ray structure (PDB code 1T6O)

doi:10.1371/journal.ppat.1006058.t001

Phosphoprotein Anchoring to Viral Nucleocapsid

PLOS Pathogens | DOI:10.1371/journal.ppat.1006058 December 9, 2016 10 / 39



Fig). In addition, a water-mediated hydrogen bond could be identified between the side-chains

of Tyr480 of XD and Arg497 of NTAIL, 55 and 41 percent of the time in the wt and S491L com-

plex, respectively. This interaction was not maintained with the same water molecule through-

out simulation. However, when a water molecule moved away from this site it was almost

immediately replaced by another water molecule. This interaction could not occur in the

R497G complex and was not compensated by another interaction. The presence of this water-

mediated interaction correlates with the stabilization of the aromatic ring of Tyr480. The side-

chain of Tyr480 was found in almost only one conformation corresponding to a χ2 angle

(CA-CB-CG-CD) of approximately -130˚ in both wt and S491L complexes, whereas in the

R497G complex, the ring oscillates between 2 conformations (50 and -130˚) corresponding to

a 180˚ rotation. Although the position of this water molecule in the crystal structure cannot be

estimated with precision because the molecule is poorly defined in the electron density, the

fact that a water molecule is systematically observed at this position during the simulation

argues for its critical role in stabilizing the Arg497-Tyr480 interaction. That water molecules

can play crucial roles in stabilizing protein-protein interactions has been widely documented

[56].

To further investigate the importance of the effect of the substitutions on the binding affin-

ity, additional MD simulations were carried out using the free energy perturbation (FEP)

method (see details of the method in the Materials and Methods section). The calculations

were based on the thermodynamic cycle shown in S3 Fig which allowed us to estimate the

impact of an amino acid substitution on the binding energy by measuring the ΔΔG between

the wt and mutated complexes at 300K. Replacement of Ser491 of NTAIL by Leu led to an aver-

age binding free energy change ranging from 3.22 to 3.91 kcal.mol-1. These ΔΔG values corre-

spond to a 200-fold to 700-fold reduction in binding affinities for the S491L variant which is

compatible, although a bit more pronounced, with the KD calculated for this variant using the

empirically determined equation between luminescence and KD values (see above and Fig 4).

In a similar manner, substitution of R497 with Gly led to ΔΔG values ranging from 1.29 to 1.85

kcal.mol-1. This corresponds to a 10 to 20-fold reduction of binding affinity which nicely cor-

relates with the KD reduction-fold as measured by ITC.

The dissociation of the XD/NTAIL complex cannot be observed during the time course of

free MD simulations. To obtain more insights into the dissociation process, we therefore per-

formed simulations using adaptive biasing force (ABF), a method that allows overcoming bar-

riers of the free-energy landscape [57]. The center of geometry between the two partners was

selected as ordering parameter and both proteins were allowed to diffuse reversibly along this

reaction coordinate during the different stages of the simulations (no average force was exerted

along the ordering parameter). The free energy profiles of the wt and mutated complexes are

shown Fig 5A. The global minimum corresponds to a distance around 11.3 Å, very close to the

distance observed in the X-ray structure (11.03 Å). Analysis of the wt complex reveals that the

dissociation between the two partners proceeds from the C-terminal part of NTAIL correspond-

ing to the more hydrophobic residues (Fig 5B and S2 Fig). The final step of the dissociation

corresponds to the disruption of hydrogen bonds between Ser491 of NTAIL and Lys489 and

Asp493 of XD. The R497G complex exhibits an energy profile similar to that of the wt complex

with slightly lower energy values indicating a lower resistance against disruption. In the case of

the S49IL complex, the disruption can occur from either end of the α-helix of NTAIL depending

on the trajectory. This behavior can be explained by the loss of hydrogen bonding with Lys489

and Asp493 of XD. As a consequence, the energy profile is profoundly affected and this variant

shows less resistance toward disruption.

Altogether, these data provide a mechanistic basis illuminating the critical role played by

NTAIL residues Ser491 and Arg497 in stabilizing the NTAIL-XD complex.
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Ability of N variants to support re-initiation of transcription at intergenic

regions as a function of NTAIL/XD binding strength

In order to investigate the functional consequences of attenuating the interaction between

NTAIL and XD we tested the ability of each N variant to support the expression of a reporter

gene from a minigenome rescued into a functional nucleocapsid by cotransfecting a plasmid

coding for the minigenome under the T7 promoter together with P and L expression plasmid

Fig 5. Dissociation of wt XD/α-MoRE complex computed with the adaptive bias force (ABF) molecular

dynamics method. (a) Free energy profile for wt complex and the two R497G and S491L variants. (b) Snapshots

of the wt complex illustrating the dissociation through the C-terminal end of the α-MoRE (light blue arrow). XD and

NTAIL are represented in cartoon mode and colored orange and red, respectively. Hydrogen bonds involving S491

of NTAIL are shown as green dashed lines. See also S2 and S3 Figs.

doi:10.1371/journal.ppat.1006058.g005
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[58]. To take into account the transcription re-initiation at IGRs, we conceived and built new

dual-luciferase minigenomes coding for Firefly and Oplophorus gracilirostris (NanoLuc) lucif-

erase as first and second reporter gene respectively separated by each of the five IGRs of MeV

genome (Fig 6A). To this end, the NanoLuc luciferase was chosen because it has a ~150-times

higher specific activity compared to Firefly luciferase [59]. Like many other paramyxoviruses,

MeV polymerase has the ability to edit P mRNA by adding one non-templated G when tran-

scribing the specific sequence termed P editing site (3’-uguggguaauuuuuccc-5’) [12,60]. We

introduced this editing site just downstream the 3’-UAC-5’ START codon of the NanoLuc

gene so as to condition the creation of the NanoLuc ORF and the ensuing translation of Nano-

Luc to the co-transcriptional insertion of one non-templated G by MeV polymerase. If minige-

nome RNA transcripts made by the T7 RNA polymerase are basally translated in spite of the

lack of both cap and polyA signals (S4A Fig), the T7 RNA polymerase does not recognize the

P editing signal [61]. As a result, while the signal to noise ratio is ~24 for Firefly, it reaches

~521 for the edited NanoLuc, i.e. a 20-fold increase of the dynamic range (S4B Fig).

As a measure of the efficacy of each N variant to support the rescue of each minigenome,

Firefly luciferase signals specifically driven by MeV polymerase from the first gene (as obtained

after subtraction of background levels observed in the absence of a functional L, (see S5 Fig))

were compared. They were all found to be of similar magnitude irrespective of the MeV IGR

within the minigenome and of the N variant, thus indicating comparable efficiencies of the res-

cuing step which relies on the random but ordinated encapsidation by the N protein of the

naked RNA minigenome transcribed by the T7 polymerase ([62] see [63] for review) (S5A and

S5B Fig).

We then verified that these newly built dual-luciferase minigenomes harboring individually

one of the five IGR faithfully reproduce the expected re-initiation strength gradient. Indeed,

when normalized to the NanoLuc/Firefly signal ratio observed with a minigenome carrying

the N-P IGR, the ratios observed for the minigenomes harboring the downstream IGRs

decrease with their remoteness from the genome 3’end with P-M being equivalent to N-P,

M-F and F-H being significantly lower and H-L being the lowest of all (Fig 6B, wt N). These

results are in agreement with the transcription gradient observed in MeV infected cells

[12,64,65,66] and with the efficacy of Sendai virus re-initiation at each IGR as determined

using recombinant viruses [67]. Interestingly, this trend was absolutely conserved for every

NTAIL variant upon normalization to the ratio observed with N-P IGR minigenome (Fig 6B)

indicating that the observed re-initiation strength gradient is an intrinsic property of each IGR

region. When NanoLuc/Firefly ratios observed for each N variant were plotted without nor-

malization as a function of NTAIL/XD binding strength for each of the five MeV IGR minige-

nome, the NanoLuc/Firefly signal ratio was found to decrease with decreasing binding

strength, with the correlation being significant at p~0.05 or below for N-P, P-M, M-F and F-H

IGR minigenomes (Fig 6C–6E), and the trend conserved for the minigenomes bearing the

remotest H-L IGR (Fig 6F and 6G). Since in the natural situation MeV polymerase has to

travel through every IGR, we estimated for each individual variant a mean re-initiation rate

through all MeV IGRs by calculating the mean NanoLuc/Firefly ratio of the 5 IGR regions for

each N variant. Remarkably this mean re-initiation rate correlates with the NTAIL/XD binding

strength (Fig 6H, p = 0.021).

Ability of N variants to misrecognize IGR and generate read-through

transcripts

In few percent cases, the viral polymerase fails to recognize an intergenic region. This results

in read-through transcripts. To investigate the possible impact of NTAIL/XD binding on read-
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Fig 6. Ability of N variants to support transcription re-initiation at every MeV intergenic region (IGR) as determined using dual-luciferase

2-gene minigenomes coding for Firefly and NanoLuc luciferases. (a) Schematic structure of the minigenomes encoding the Firefly luciferase

gene at the 3’ end of the genomic sequence just downstream the leader and N gene UTR as a first gene and NanoLuc luciferase as a second

reporter gene. NanoLuc luciferase is conditionally expressed by MeV polymerase mediated-edition of the transcript thanks to an editing site grafted

just after the AUG codon in such a way that, without the non-templated addition of one G, the downstream coding sequence is out of frame because

of the presence of an in-frame stop codon. The two genes are separated by either the N 5’UTR and the P 3’UTR separated by the natural N-P un-
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through generation, a 3-gene minigenome was built as follows: the first gene code for the Fire-

fly luciferase, the second gene codes for an irrelevant inactive protein (here the C-terminal half

of the Gaussia luciferase (Glu2)) followed by a linker that remains in the same coding phase

throughout the second downstream N-P IGR and the third gene which contains the NanoLuc

luciferase coding sequence devoid of a start codon and out of frame by one missing nucleotide

that can be restored by the editing signal. Consequently, among all possible viral transcripts,

only the edited read-through mRNA over gene 2 and gene 3 can give rise to a NanoLuc lucifer-

ase activity (Fig 7A and 7B). Therefore, with the 3-gene minigenome, the NanoLuc/Firefly

ratio is dependent on two IGR-related effects: the re-initiation of the transcription at the first

IGR and the failure to recognize the second. As expected, the NanoLuc/Firefly signal ratios

obtained with this 3-gene minigenome were found to be of a much lower level (i.e. few per-

cent) than those observed with the 2-gene minigenome shown in Fig 6C. We normalized the

NanoLuc/Firefly signal obtained with the 3-gene minigenome by the signal obtained with the

2-gene minigenome in order to cancel out the effect on the re-initiation at the first IGR and to

focus on the generation of read-through transcripts at the second IGR. The resulting ratios are

similar for all the variants, thus indicating they all roughly produce the same amount of read-

though transcripts (Fig 7C). We conclude that the NTAIL/XD binding strength does not signifi-

cantly impact the failure of the viral polymerase to recognize the N-P intergenic region.

Ability of N variants to support re-initiation of transcription during

polymerase scanning over an elongated un-transcribed IGR

Upon crossing an IGR, the polymerase from Mononegavirales having ceased RNA synthesis at

the GE is able to scan forward and backward the genome template until it recognizes the tran-

scription re-initiation site GS of the next downstream gene. This search for next GS had been

initially observed as measurable temporal pause in transcription [68] (see viral transcription

scheme in S6 Fig and [13,69] for reviews). Since the frequency of re-initiation decreases with

the length of the un-transcribed IGR (UTIGR) [70,71] dual-luciferase Firefly/NanoLuc 2-gene

minigenomes with elongated UTIGR based on MeV N-P IGR were also built (see scheme Fig

8A) according to previous work based on the related Sendai virus that has served as the refer-

ence study model for Paramyxoviridae [70]. The Firefly signals specifically driven by MeV

polymerase (as obtained after subtraction of background levels observed in the presence of an

inactive L protein) observed with each combination of minigenome of variable UTIGR length

and N variant were of similar magnitude irrespective of the UTIGR length and of NTAIL vari-

ant (S7A Fig) and did not show any correlation with the NTAIL/XD binding strength (S7B

Fig). These data confirmed that the rescue of the minigenome, is neither dependent on the

sequence of the minigenome nor on the N variant. Incidentally, these experiments also allowed

appreciating the reproducibility of our dual-luciferase minigenome-based experiments, as

judged by comparing S5A and S7A Figs.

transcribed 3’-GAA-5’ triplet that characterizes the N-P IGR region or by P-M, M-F, F-H or H-L IGR regions, i.e. un-transcribed 3’-GAA-5’ (or 3’-GCA-

5’ for H-L) triplet flanked by canonical upstream and downstream gene end and gene start sequences arbitrarily fixed to 15 nt. (b) Homogenous and

comparable decrease of the efficiency of the transcription re-initiation mediated by every MeV IGR from 3’ to 5’ gene position observed with every N

variant when the NanoLuc/Firefly signal ratio is normalized as a function of that observed with the first N-P IGR. MeV IGRs can be grouped into three

subsets of re-initiation efficiency, high for N-P and P-M, medium for M-F and F-H and low for H-L. (c-g) Variation in the efficiency of re-initiation as a

function of the 5 different MeV IGRs as determined from the NanoLuc/Firefly signal ratios (i.e. same data as in (b) but without normalization to the

N-P IGR) and expressed as a function of KD of the NTAIL/XD pair. Note the progressive loss of correlation from N-P to H-L IGRs. (h) Correlation of the

mean re-initiation rate through the five MeV IGRs (estimated as mean NanoLuc/Firefly signal ratio observed over the five IGR regions) with NTAIL/XD

KD. Minigenome data are expressed as the mean +/- SD of at least 3 independent experiments, with each combination being done in triplicate. See

also S5 Fig.

doi:10.1371/journal.ppat.1006058.g006
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As observed in the previous set of experiments, the NanoLuc/Firefly signal ratios obtained

with the N-P minigenome (i.e. UTIGR “+0”) nicely correlate with the NTAIL/XD binding

strengths (Fig 8B, compare also with Fig 6C for data reproducibility). When N variants were

tested with elongated UTIGR minigenomes, the NanoLuc/Firefly signal ratio exponentially

Fig 7. Ability of N variants to misrecognize IGR and generate read-through transcripts. Schematic structures of

2-gene (a) and 3-gene (b) N-P minigenomes. See Fig 6A for detailed description of 2-gene minigenome. The 3-gene

minigenome comprises from its 3’-end the Firefly CDS as a first gene, a second gene encoding the C-terminal domain of

Gaussia luciferase lacking a stop codon and a third gene encoding the NanoLuc CDS devoid of start codon and in frame with

the upstream Gaussia CDS only after the upstream insertion of one additional G by RNA editing. Consequently the

expression of the NanoLuc luciferase (as chimeric Glu2-linker-NanoLuc protein) requires the re-initiation of the transcription

at the IGR separating gene 1 and gene 2, the reading through the IGR separating gene 2 and 3 and the edition of the read-

through transcript. Therefore, if the expression of NanoLuc luciferase from both 2-gene and 3-gene minigenomes relies on

both the accuracy of the re-initiation of the second gene over the same N-P IGR and the editing of the transcript, the

expression of the NanoLuc luciferase from the 3-gene minigenome additionally relies on the efficiency of the read-through

between gene 2 and gene 3. (c) Ratios of NanoLuc signals (normalized by their upstream Firefly signal) observed with each

N variant with 3-gene (numerator) and 2-gene (denominator) minigenome observed with each N variants. Data are

expressed in % of the ratio observed with wt N.

doi:10.1371/journal.ppat.1006058.g007
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declined with UTIGR elongation (Fig 8C, p<0.001 for every N variant). However the declin-

ing rate varied between N variants (compare the slopes in Fig 8C). This allowed us to calculate

Fig 8. Ability of N variants to support transcription re-initiation over untranscribed IGRs (UTIGR) of variable length as determined using

dual-luciferase minigenomes. (a) Principle of the dual-luciferase editing-dependent minigenome assay allowing the expression of the Firefly as the

first gene and the NanoLuc as the second gene, the translation of which relies on the addition of one non-templated G at the editing site (see Fig 6A

for details). The two genes are separated by a modified N-P IGR where the polyadenylation site is ended by a canonical G and is followed by 12, 36,

108 or 324 nucleotides followed in their turn by a modified inactive polyadenylation site and the canonical 3’-GAA-5’ intergenic triplet i.e. 3’-

auauuuuuuG[n]auCauuuuuuGAA-5’ as validated for SeV minigenomes [70] (b) Correlation between NanoLuc/Firefly signal ratios and NTAIL/XD KD

as observed with N-P intergenic minigenome (i.e. UTIGR n = 0). (c) NanoLuc/Firefly signal ratio observed with individual NTAIL variants as a function

of UTIGR length. The correlation is statistically significant at p<0.001 for all N variants. (d) Calculated unpriming rate per un-transcribed intergenic

nucleotide from data shown in (c) and (e) their relationship with the NTAIL to XD binding strength. (f) Correlation between unpriming rate per un-

transcribed intergenic nucleotide and mean re-initiation rate through the five MeV IGR regions (estimated as mean NanoLuc/Firefly signal ratio

observed over the five IGR regions, as also shown in Fig 6H). Minigenome data are mean values and SD from three independent experiments, each

data point being made in triplicates. Statistically significant differences are as determined using the Student’s t or Spearman’ R test. See also S7 Fig.

doi:10.1371/journal.ppat.1006058.g008
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and compare the percentage of unpriming per UTIGR nt (%unpriming/UTIGRnt). The D493G

variant exhibits a significantly lower %unpriming/UTIGRnt compared to wt N, whereas that of

R490S, R497G and S491L variant was significantly higher (Fig 8D). Furthermore, the %unpri-

ming/UTIGRnt of N variants tends to vary according to the log of the NTAIL/XD KD, (Fig 8E,

p = 0.062). Remarkably, the %unpriming/UTIGRnt and mean re-initiation rate through the five

MeV IGR regions significantly correlate to each other (Fig 8F, p = 0.0032). Overall these data

reveal that lowering the NTAIL/XD binding strength significantly increases the unpriming rate

of MeV polymerase during transcription re-initiation and its scanning over un-transcribed

genomic sequences, i.e. over each UTIGR.

Impact of NTAIL amino acid substitutions introduced into recombinant

unigene and biG-biS viruses on virus production

Since even NTAIL variants with the highest KD for XD were able to reconstitute functional

dual-luciferase minigenomes, we sought at evaluating the impact of substitutions in the viral

context by expressing N variants into two types of recombinant viruses, namely unigene and

biG-biS viruses. Unigene viruses possess only one copy of the N gene and thus express solely

the mutated N protein. By contrast, biG-biS viruses contain a duplicated viral gene, here the N

gene, one encoding the wt N protein (wt Flag-N1) and one encoding the mutated N protein

with a HA tag (HA-N2), the expression of which can be independently silenced thanks to the

use of two cell lines expressing shRNA that selectively target one of the two N genes (S8 Fig)

[48]. Unigene viruses harboring NTAIL variants were all rescued. The biG-biS viruses were also

all rescued in cells allowing the selective expression of the wt Flag-N1 gene copy, although the

too low virus production by the R489Q and R490S viruses prevented further analysis. Virus

production by recombinant viruses at 3 d.p.i. were determined for unigene viruses in Vero

cells, while that of biG-biS viruses was measured in three host cells allowing selective expres-

sion of either the wt Flag-N1 gene copy, the HA-N2 gene variant, or both of the N gene copies

simultaneously (Fig 9A). Virus production was found to be very low (at least 2 log reduction

with respect to the wt counterpart) in the case of unigene and biG-biS S491L viruses. Note that

the possibility that the observed differences in virus production of unigene viruses could be

ascribed to a defect in N variant expression (S1 and S9A Figs) or to a significant contamina-

tion by defective interfering (DI) mini-replicons was checked (S9B–S9D Fig) and ruled out.

When plotted against the NTAIL/XD binding strength as determined by glu-PCA, the virus

production of unigene NTAIL variants does not significantly correlate with binding strength

(Fig 9B). However, the virus titer of biG-biS viruses under the selective expression of HA-N2

variant and under the combined expression of both N copies were found to correlate with

NTAIL/XD binding strength (p = 0.04 and p = 0.008, respectively) (Fig 9C and 9D), while no

such a correlation was found upon selective expression of the wt Flag-N1 copy as expected

(Fig 9E). We noticed that the coexpression of N wt with D493G variant appears deleterious for

virus production (Fig 9D). However, in a minigenome assay such a mixture of N was as effi-

cient as N wt alone (S10 Fig), thus ruling out the possibility that NTAIL heterogeneity could

directly impact the polymerase activity. Overall these data indicate that the NTAIL/XD binding

strength may control the virus production to some extent.

Viral transcription gradient correlates with XD-binding affinity of Box2

variants

We then took advantage of unigene viruses expressing the single-site Box2 variants to deter-

mine which activity of the viral polymerase could be affected by a change in the NTAIL/XD

binding affinity. Vero cells were infected with wt, R489G, R490S, A492T, D493G and R497G
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Fig 9. Virus production at 3 d.p.i. and in the context of unigene and biG-biS viruses and relationships with NTAIL/XD interaction strength.

(a) Infectious virus production after infection with recombinant virus coding for NTAIL variant (unigene virus) or biG-biS virus bearing two copies of

the N gene, one coding for wt Flag-N1 and either wt or variant HA-N2 in conditions allowing selective expression of the wt Flag-N1 copy, wt or variant

HA-N2 copy or both of them (data expressed in % of wt, mean ± SD). Although all biG-biS viruses were successfully rescued, R489Q, R490S and

S491L could not be further studied because of a too low virus production. (b-e) Virus titers expressed in % of wt virus (for unigene viruses) or wt

Flag-N1/wt HA-N2 (for biG-biS viruses) were plotted (mean ± SD) against NTAIL/XD binding strength as determined by glu-PCA (mean ± SD). Panel

b shows virus production from unigene N variants. Virus production from biG-biS viruses with (c) selective expression of variant HA-N2 copy, or (d)

simultaneous expression of wt Flag-N1 and variant HA-N2 copies, or (e) selective expression of the wt Flag-N1 copy. Same color codes as in Fig 1B,

see also panel a. Shown are means and SD as obtained from three independent infections. See also S8, S9 and S10 Figs.

doi:10.1371/journal.ppat.1006058.g009
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unigene viruses. Note that the S491L variant was not investigated since it could not be further

amplified to reach a workable titer. RNA synthesis parameters reflecting primary transcription

(i.e. mostly, if not solely, transcription, mediated by the active polymerases brought by infect-

ing virions), secondary transcription and replication were determined by quantification of (+)

and (-) RNA accumulation at different times post-infection as previously reported [48,65].

When RNA synthesis parameters were plotted along with NTAIL/XD KD, it appeared that both

(+) RNA transcript accumulation rate and ratios between P (or F) and N transcripts could be

roughly predicted from the interaction strength between the NTAIL variant and XD as mea-

sured by either method (Fig 10). The correlations were statistically significant between the

accumulation rate of P (+) transcripts and NTAIL/XD KD (Fig 10A) and between the F/N tran-

script ratios measured at 24 h.p.i. and the KD (Fig 10B). In further support of the coherence of

the results, a good correlation was found between the accumulated levels of N and P (+) RNAs

during primary transcription and at 24 h.p.i. (S11A and S11B Fig), and between both N (+)

and P (+) RNA transcripts and (-) genomic RNA (S11C and S11D Fig).

When the F/N mRNA ratios at 24 h.p.i. observed with unigene viruses were plotted against

the calculated mean re-initiation rate of the 5 IGRs and the %unpriming/UTIGRnt a significant

positive and a negative correlation were found, respectively (Fig 11). Altogether, these data

support that the NTAIL/XD binding strength controls, at least in part, the steepness of the viral

transcription gradient.

Discussion

By combining in vitro biophysical and biochemical studies, in silico analyses (i.e. MD simula-

tions) and in cellula polymerase functional investigations using recombinant viruses and dual-

luciferase editing-dependent minigenome assays, we deciphered key molecular parameters

that govern the NTAIL/XD interaction. Specifically, we uncovered a correlation between inter-

action strength and efficiency of transcription re-initiation at intergenic regions.

Fig 10. Relationship of transcripts accumulation rates and transcripts ratios with NTAIL/XD binding affinity. Relationship of (a) accumulation

rate of N (+) or P (+) RNA during primary transcription with NTAIL/XD binding affinity and of (b) P/N or F/N (+) RNA ratios at either 0–8 h.p.i. or at 24 h.

p.i. with NTAIL/XD binding affinity. Data are expressed as % of wt. See also S11 Fig.

doi:10.1371/journal.ppat.1006058.g010
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Impact of preconfiguration of the α-MoRE on the interaction with XD

For most of the NTAIL variants the observed variations in binding affinities cannot be ascribed

to differences in the extent of α-helical sampling of the free form of the α-MoRE, nor to differ-

ences in the ability of the latter to undergo induced α-helical folding. However, the R489Q

substitution represents an exception in this respect: indeed, it has a reduced extent of α-helicity

and a slightly increased KD towards XD. The reduced α-helical content of this variant is in line

with secondary structure predictions, as obtained using the Psipred server (http://bioinf.cs.ucl.

ac.uk/psipred/) [72], that predicts a slightly lower helical propensity. Whether the experimen-

tally observed reduction in affinity towards XD arises from this lower helicity or from other

attributes, including charge-related ones, remains to be established. This variant also displays a

reduced accumulation rate of primary transcripts. The subtle molecular mechanisms underly-

ing the peculiar behavior of this variant remain however to be elucidated.

NTAIL binding to XD involves a hydrogen bonding network including three

α-MoRE and three XD residues

The complex hydrogen bonding revealed by MD simulations of NTAIL/XD complexes allows

the drops in binding affinities experimentally observed for the S491L, R497G and R490S vari-

ants to be rationalized. Interestingly, these substitutions, which have the most dramatic effects

in terms of binding affinities, are also the ones that have the strongest effect on virus replica-

tion, with the S491L substitution being very poorly tolerated even in biG-biS viruses. The poor

ability of the low-affinity S491L variant in mediating efficient virus replication is reminiscent

of the comparable deleterious effect of the F497D XD substitution [48] and of the detrimental

effect of the deletion of the NTAIL region encompassing the α-MoRE [49].

The lower the NTAIL/XD binding strength the lower the efficiency of

transcription re-initiation at intergenic regions

We provide here compelling evidence indicating that the strength of the NTAIL/XD interaction

controls, at least in part, the ability of the P+L polymerase complex to re-initiate at IGRs: data

obtained using our highly sensitive and reproducible dual-luciferase minigenome assay reveal

a significant correlation between the NTAIL/XD binding strength and the efficiency of the

Fig 11. Relationship of F/N mRNA ratio at 24 h.p.i. from unigene viruses with the mean re-initiation rate over the five IGRs (a) and the %

unpriming/UTIGRnt (b) (from data shown in Figs 6, 7 and 9).

doi:10.1371/journal.ppat.1006058.g011
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transcription re-initiation. Since our minigenome assays rely on the edition of the second

reporter gene, we cannot formally exclude that the editing may be also impacted by the NTAIL/

XD binding strength. However, the calculated %unpriming/UTIGRnt only depends on the

decrease of the NanoLuc/Firefly signals ratios with the length of the UTIGR. The observed

effect is therefore independent of any potential effect on the edition (i.e. if N mutations only

had an effect on editing, then this effect should be the same irrespective of the IGR under

study and of its length, which is not the phenotype we observed). Moreover, the correlation in

the viral context between the P/N and F/N mRNA ratio and the KD, supports a role for the

XD/NTAIL interaction strength in the re-initiation at IGRs.

A N protein truncated of its last 86 C-terminal amino acids, i.e. truncated of most of NTAIL

including the XD binding site, had been shown to be active in transcription and replication

both in a minigenome assay and when introduced into a recombinant virus [49]. We con-

firmed that the N1-439 truncated protein is as good as, if not better than, the wt N in transcrib-

ing the Firefly gene from our N-P 2-gene minigenome construct (S12A Fig). However, its

ability to support transcription re-initiation over the N-P junction was significantly reduced,

with the extent of reduction being comparable with that observed with the low affinity R497G

variant (S12B Fig, UTIGR 0 nt), thus confirming the role of NTAIL/XD interaction in tran-

scription re-initiation. This low efficiency of transcription re-initiation may explain the

extreme growth defect of the recombinant virus bearing the truncated N until reversion to a

wt N [49].

Assuming a very slow degradation of viral mRNA [65,66,73], the transcripts accumulation

rate in cells infected with unigene viruses reflects the RNA synthesis rate by the polymerase,

the number of active polymerases (and their recruitment onto the nucleocapsid template), and

the number of polymerases that are recruited per time unit on a given gene. For the same rea-

son, the transcript ratios between the different genes are likely mostly governed by the effi-

ciency with which the polymerase re-initiates the transcription at each IGR. Assuming this

being a conserved feature for every N variant, we can reasonably interpret the inverse correla-

tion we observed between multiple transcript ratios and KD as reflecting a direct control of the

NTAIL/XD binding strength on the efficiency of the re-initiation at each IGR. A lower binding

strength leads to lower levels of downstream transcripts. After completion of the polyadenyla-

tion of the messenger encoded by the upstream gene, the polymerase may remain firmly in

contact with its genomic RNA template embedded into the nucleocapsid only if maintained by

the anchoring of its P subunit via a dynamic binding of its X domain to the TAIL domain of N

subunits located at the IGR (Fig 12). Therefore, a decrease in the XD/NTAIL affinity may favour

the unpriming of the polymerase. Whether unprimed polymerases can detach from the nucle-

ocapsid or stay on the template and move forward to the end of the nucleocapsid remain to be

established. Hence, XD to NTAIL anchoring would tightly control the re-initiation level of the

RNA synthesis by the polymerase in the transcription mode, thus determining the steepness of

the transcription gradient (Fig 12, see also S6B Fig).

The NTAIL/XD affinity affects the processivity of the polymerase both on

the “transcription” and on the “scanning” modes

What could be the functional significance of the relationship between the accumulation rate of

primary N and P transcripts and the XD/NTAIL binding strength? As speculated, the dynamics

of XD/NTAIL binding and release may also affect the polymerase processivity on the nucleocap-

sid [48]. The XD/NTAIL interaction may act as a brake and slows down the polymerase: the

weaker is the interaction, the weaker is the brake. Also, because of the efficient recycling of the

polymerases on the promoter [65], if, in the absence of transcription re-initiation, the
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polymerase detaches from the RNA template, a steeper gradient would release more polymer-

ases available for transcription of the first genes. With weaker NTAIL/XD interactions, the viral

production by unigene viruses tends to be negatively affected although the correlation was not

statistically significant likely because of the small number of available virus variants and the

too high variability of the result due to the multiple intervening parameters (see S6A Fig and

the complete scheme of virus replication dynamics in [65]). However with biG-biS viruses, we

did observe a significant correlation between virus production and NTAIL/XD binding strength

in conditions where the N variant was selectively expressed. This significance may reflect both

the higher number of available virus variants and/or the higher impact of the modulation of

the transcription re-initiation process in viruses possessing an additional transcription unit

(i.e. where the polymerase has to go through one additional IGR). The similar correlation

observed upon the co-expression of both wt Flag-N1 and variant HA-N2 copies may indicate

similar impact on transcription re-initiation because of the tetrameric valence of the P anchor-

ing on (contiguous?) heterogeneous NTAIL appendages. Alternatively, it is possible that the het-

erogeneity of NTAIL within a given nucleocapsid template may have a negative impact on other

mechanisms such as nucleocapsids packaging into particles since NTAIL also recruits the M

protein [74], a key virion assembly factor [75]. The discrepancy we observed between virus

production from biG-biS viruses and minigenome data with mixed NTAILs argues for this later

hypothesis.

Using minigenomes with elongated UTIGR, we were able to measure the unpriming rate of

the polymerase in the “scanning mode” and we show that a decrease in the NTAIL/XD affinity

induces an increase of the unpriming rate. In this situation, without the stabilization and the

Fig 12. Model of transcription re-initiation. (1) The polymerase complex, composed of L and P proteins,

transcribes the genome. (2) After addition of the poly(A) tail and release of the mRNA, the polymerase complex may

re-initiate transcription and transcribe the next gene (a) or stop transcribing (b). Whether the polymerase complex

detaches from the genome template (b.i) or travels on it until reaching the 5’ end of the genome (b.ii) remains to be

determined. The higher is the KD, the less efficient is the re-initiation of transcription, thus leading to a steeper

mRNA gradient.

doi:10.1371/journal.ppat.1006058.g012
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active motion of the polymerase due to the RNA synthesis, the role of the NTAIL/XD interac-

tion in maintaining the polymerase on the nucleocapsid may overcome the “brake” effect.

Alternatively, as suggested by Krumm et al [49], the NTAIL may need to be rearranged by P to

allow an efficient RNA synthesis. In this case, a too low NTAIL/XD affinity may weaken the effi-

ciency of P in rearranging NTAIL and would favor the unpriming of the polymerases. The fact

that the N1-439 variant, that lacks most of NTAIL, has the lowest unpriming rate on UTIGR

supports this second hypothesis (0.6 vs 0.81%unpriming/UTIGRnt for N1-439 and wt N respec-

tively) (S12C Fig).

A mechanism among others to control both scanning and re-initiation by

MeV polymerase

In conclusion, the XD/NTAIL interaction may play a critical role in the polymerase processivity,

in maintaining the polymerase anchored to the nucleocapsid during its scanning upon cross-

ing the intergenic regions, and/or in the transcription re-initiation at each intergenic region.

Since both increasing [48] or decreasing (this study) the XD/NTAIL affinity negatively affect

the viral growth, the wild type XD/NTAIL binding strength seems to have been selected to

mediate an optimal equilibrium between polymerase recruitment, polymerase processivity

and transcription re-initiation efficiency. A corollary of this is that substitutions that strongly

affect affinity towards XD are poorly tolerated. Consistent with this, the substitutions with the

most dramatic impact herein investigated (i.e. R490S, S491L and R497G) do not naturally

occur in any of the 1,218 non-redundant MeV sequences, while those that have a less drastic

impact (i.e. R489Q, A492T and D493G) are found in circulating measles strains [47]. Interest-

ingly, in the case of Ebola virus (EBOV), an additional protein, i.e. VP30, serves as an anti-ter-

minator transcription factor, and mutations that either decrease or increase the binding

affinity between N and VP30, decrease RNA synthesis [76] thus arguing for a similarly tightly

regulated interaction. According to our work, the NTAIL to XD binding strength tightly con-

trols the transcription gradient. However, this does not rule out the possibility that other

mechanisms may be at work in controlling the steepness of the gradient. Indeed, in the brain

of three patients suffering from subacute sclerosis encephalitis (SSPE) or measles inclusion

bodies encephalitis (MIBE) the transcription gradient was found to be steeper than the one

measured in in vitro infected cells [77] although the amino acid sequences of NTAIL and XD

were found to be unvaried [78]. Furthermore, in the absence of the C protein, a steeper tran-

scription gradient is also observed [79]. These two lines of evidence advocate for a multi-

parametric control of the transcription gradient.

The conserved bipartite P to N interaction of Paramyxoviridae members

is also shared by other families of the Mononegavirales order

The major role of the N binding site on the C-terminus of P has been postulated to mediate L

anchoring to the nucleocapsid without understanding the implication of such anchoring on

the polymerase and/or on the nucleocapsid dynamics. The need for an optimized interaction

between the P and N proteins might be one of the major evolution constraints to which the

polymerase machinery of MeV, and possibly of paramyxoviruses in general, is subjected. Our

findings raise also the question as to whether binding of the C-terminus of P to the globular

moiety of N, as observed in other Mononegavirales members, needs to be similarly controlled

reflecting a similar functional role.

The bipartite nature of P to N binding (see scheme Fig 1A) is remarkably conserved

throughout the Mononegavirales order [80]. An α-MoRE located at N-terminus of P binds to

the C-terminal globular domain of the NCORE to form the so-called N0P complex that is used
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by the polymerase as the encapsidation substrate. Solved N0P structures from members of the

Rhabdoviridae family (vesicular stomatitis virus, VSV) [8], Filoviridae family (VP35, of EBOV)

[81,82], Pneumoviridae family (human metapneumovirus, HMPV) [9] and Paramyxoviridae
family (Nipah virus, NiV a Henipavirus member) [7], MeV a Morbillivirus member [5],

mumps virus, MuV a Rubulavirus member [83] revealed a common mechanism whereby the

N terminus of P competes out with N arms that stabilize the oligomeric form of N and directly

or indirectly prevents RNA binding. Structural and functional evidences indicate that, via its

N-terminus, P can transiently uncover the genome at its 3’end from the first N subunits to give

L access to its genomic RNA template (see [83] and [84] for review).

An additional N-binding site is located at the C-terminus of P (or VP35 for EBOV) (see

scheme Fig 1A) [85] and allows binding to the assembled form of N. While this secondary

binding site is required for the polymerase activity in minigenome experiments from several

viruses [3,83,85,86,87], the structures of the reciprocal N-binding and P-binding site on P and

N, respectively, look less conserved. In the case of NiV [42], Hendra virus [88], SeV [38,89]

and MeV [27,30,44,89] the C-terminal domain of P (XD) is structurally conserved and consists

of a bundle of 3 α-helices that are structurally analogous, and that dynamically binds to a α-

MoRE located near the C-terminus of NTAIL ([90,91], see [92] for reviews). This NTAIL-XD

interaction is commonly characterized by a rather low affinity (KD within the 3–50 μM range,

[39,46,89] and this work). In Rubulavirus members, the C-terminal region of P spans in solu-

tion a structural continuum ranging from stable triple α-helical bundles to largely disordered,

with crystal packing stabilizing the folded form [93,94]. In MuV, this triple α-helical bundle

analogous to XD binds directly to the core of N subunits of the nucleocapsid [24] without

excluding a complementary binding to the extremity of NTAIL [83]. By analogy with MuV XD,

MeV XD might also bind to another binding site located on NCORE. This would explain how

transcription and replication can still be observed in the presence of the N1-439 truncated

where interaction of P relies only on NCORE ([49] and this paper). Indeed in other Mononega-
virales members, the C-terminus of P binds to the core of N. In the case of RSV, the minimal

nucleocapsid-binding region of P, which encompasses the last nine P residues, is disordered

[95] and remains predominantly disordered even upon binding to the N-terminal lobe of

NCORE [96].

The C-terminal domain of P from Rabies virus (RABV) [97], Mokola virus [98,99] and

VSV [100] share a fold made of a bundle of α-helices that binds to the core of two adjacent N

proteins of the nucleocapsid [101,102]. The N protein of Rhabdoviridae members, along with

the N protein from RSV lacks the disordered NTAIL domain that characterizes N proteins from

Paramyxoviridae members. In contrast to the XD-NTAIL interaction, the C-terminal domain of

RABV P binds to the nucleocapsid with a high affinity (KD in the nanomolar range) [101]. In

spite of the diversities of both structural features and binding modes within Mononegavirales
members, does the binding of C-terminus of P to the assembled form of N fulfill common

functions, namely ensuring the proper efficiency in polymerase scanning and re-initiation at

intergenic regions? Further works will unveil to which extent our present findings are relevant

for other members of the Paramyxoviridae or other families of the Mononegavirales order.

Materials and Methods

Plasmid construction

The pDEST17O/I vector [103], allowing the bacterial expression of N-terminally hexahistidine

tagged recombinant proteins under the control of the T7 promoter, was used for the expres-

sion of all NTAIL variants. The pDEST17 derivatives encoding single-site NTAIL variants bear-

ing substitutions within Box2 were obtained either by Gateway recombination cloning
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technology (variants R489Q, R490S, S491L and R497G) using the previously described pNGG

derivatives [47] as the donor vectors, or by site-directed mutagenesis (variants A492T and

D493G). In the latter case, we used a pair of complementary mutagenic primers (Operon)

designed to introduce the desired mutation, Turbo-Pfu polymerase (Stratagene), and the

pDEST17O/I construct encoding wt MeV (Edmonston B) NTAIL as template [47]. After diges-

tion with DpnI to remove the methylated DNA template, CaCl2-competent E. coli TAM1 cells

(Active Motif) were transformed with the amplified PCR product.

The pNGG derivative encoding the MXSF NTAIL variant N-terminally fused to the N-termi-

nal fragment of GFP was obtained in four steps using pNGG/NTAIL as template [47,104] and

site-directed mutagenesis PCR. In the first step, the pair of mutagenic primers was designed to

introduce the first amino acid substitution. After PCR and DpnI digestion, CaCl2-competent

E. coli TAM1 cells (Active Motif) were transformed with the amplified PCR product. After

having sequenced the construct to ensure that the desired mutation had been introduced, a

second PCR was carried out using another pair of mutagenic primers designed to introduce

the second substitution. Repeating this procedure four times led to the final construct bearing

the four desired substitutions (i.e. D437V, R439S, P456S and P485L).

The sequences of the coding regions of all constructs generated in this study were checked

by sequencing (GATC Biotech) and found to conform to expectations.

The pDEST17/NTAIL construct encoding wt NTAIL has already been described [47], as is the

pDEST14 construct encoding C-terminally hexahistidine tagged MeV XD [30].

The plasmid p(+)MVNSe previously described in [48] was used as the MeV genome back-

bone. MeV genomic plasmids were built by direct recombination of one or two PCR fragments

according to the InFusion user manual (Clontech). To build biG-biS recombinant viruses, the

N gene was duplicated in N1 and N2 in gene positions 1 and 2, respectively. N1 was tagged with

an N-terminal Flag peptide and three copies of the GFP RNAi target sequence (GAACGGCA

TCAAGGTGAA) in the 3’UTR of its mRNA. N2 was tagged with an N-terminal hemaggluti-

nin (HA) peptide and three copies of the P RNAi target sequence (GGACACCTCTCAAGC

ATCAT) in the 3’UTR. Mutations into the NTAIL domain of N, R489Q, R490S, S491L, A492T,

D493G, R497G, MXSF (D437V/R439S/P456S/P485L) and MX208 (D437V/P485L/L524R),

were introduced by subcloning PCR-amplified fragments from the pDEST17/NTAIL vectors.

Full length wt and mutated N, wt and mutated NTAIL, PPMD-XD and P376-507 fragments were

subcloned downstream Gaussia glu1 and/or glu2 domains by InFusion recombination of

PCR-amplified fragments as previously described [48]. All plasmids and viruses (N1, N2, P, M,

and L gene) were verified by sequencing the subcloned PCR fragments or cDNA obtained by

reverse transcription-PCR (RT-PCR) performed on virus stocks.

Plasmids encoding dual-luciferase editing-dependent 2-gene minigenomes were built by

InFusion subcloning of PCR amplicons encompassing Firefly and NanoLuc coding sequences

flanked by N UTR and L 3’UTR. The two luciferase coding sequences are separated by the N-P

IGR either unmodified or exchanged with P-M, M-F, F-H and H-L IGRs (i.e. untranscribed

3’-GAA-5’ (or 3’-GCA-5’ for H-L) triplet flanked by canonical upstream and downstream

gene end and gene start sequences arbitrarily fixed to 15 nt) or elongated by 12, 36, 108 or 324

nt (see sequences in S2 and S3 Tables) into the p107(+) MeV minigenome construct that

drives the synthesis of (+) genomic strand under the control of the T7 promoter [62]. Accord-

ing to the rule of six that governs the strictly conserved hexameric length of measles virus

genome [62,105], all minigenomes share identical phasing of the last U of the polyadenylation

signal of the firefly gene (phase 6, i.e. the last nucleotide covered by the N subunit) and of the

editing site with the C being in phase 6 as defined in [106]. A 3-gene minigenome coding for

Firefly and chimeric Glu2-linker-NanoLuc luciferase as a results of read-through between

gene 2 and gene 3 and RNA editing was built by modifying the N-P 2-gene minigenome. As a
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second gene, the ORF of the C-terminal domain of Glu (glu2) was inserted downstream to a

START codon but without a STOP codon. This ORF is followed by a second N-P IGR and by

the NanoLuc ORF without its own START codon, in frame “-1nt” to the upstream Glu2 ORF.

Following addition of a G thanks to the presence of the P editing site, the NanoLuc ORF

becomes in frame with the upstream Glu2 ORF. Consequently, the full-length chimeric Glu2-

linker-NanoLuc can be uniquely translated from a read-through transcript over the second

N-P IGR that is also edited (see sequence in S4 Table).

All plasmids will be deposited in the Addgene plasmid repository service except the glu1

and glu2 constructs that Addgene cannot accept. Those constructs are available upon request.

Production and purification of NTAIL and XD variants

The E. coli strain Rosetta [DE3] pLysS (Novagen) was used for the expression of all recombi-

nant proteins. Transformants were selected on ampicillin and chloramphenicol plates. 50 mL

of Luria-Bertani (LB) medium supplemented with 100 μg/mL ampicilin and 34 μg/mL chlor-

amphenicol were seeded with the selected colonies, and grown overnight to saturation. An ali-

quot of the overnight culture was diluted 1/25 in LB medium containing ampicillin and

chloramphenicol and grown at 37˚C. When the optical density at 600 nm (OD600) reached

0.6–0.8, isopropyl ß-D-thiogalactopyranoside (IPTG) was added to a final concentration of

0.2 mM, and the cells were grown at 37˚C for 4 additional hours. The induced cells were har-

vested, washed and collected by centrifugation (5,000 g, 12 min). The resulting pellets were fro-

zen at –80˚C.

All the NTAIL and XD proteins were purified to homogeneity (> 95%) from the soluble frac-

tion of bacterial lysates in two steps: Immobilized Metal Affinity Chromatography (IMAC),

and size exclusion chromatography (SEC). Cellular pellets of bacteria transformed with the dif-

ferent expression plasmids were resuspended in 5 volumes (v/w) of buffer A (50 mM Tris/HCl

pH 8, 300 mM NaCl, 20 mM imidazole, 1 mM phenyl-methyl-sulphonyl-fluoride (PMSF))

supplemented with lysozyme (0.1 mg/mL), DNAse I (10 μg/mL), 20 mM MgSO4 and protease

inhibitor cocktail (Sigma). After a 30-min incubation with gentle agitation, the cells were dis-

rupted by sonication. The lysate was clarified by centrifugation at 20,000 g for 30 min. The

clarified supernatant, as obtained from a one-liter culture, was incubated for 1 h with 5 ml

(50%) Chelating Sepharose Fast Flow Resin preloaded with Ni2+ ions (GE, Healthcare), previ-

ously equilibrated in buffer A. The resin was washed with buffer A supplemented with 1 M

NaCl to remove contaminating DNA, and the proteins were eluted in buffer A containing 1 M

NaCl and 250 mM imidazole. Eluents were analyzed by SDS-PAGE. Fractions containing the

recombinant product were concentrated using centrifugal filtration (Centricon Plus-20, 5000

Da molecular cutoff, Millipore). The proteins were then loaded onto a Superdex 200 (NTAIL)

or Superdex 75 (XD) 16/60 column (GE, Healthcare) and eluted in 10 mM Tris/HCl pH 8, 150

mM NaCl.

Protein concentrations were calculated using the theoretical absorption coefficients at 280

nm as obtained using the program ProtParam at the EXPASY server.

Mass spectrometry

Mass analysis of the purified mutated NTAIL proteins was performed using an Autoflex II

ToF/ToF (Bruker Daltonics). Spectra were acquired in a linear mode. 15 pmol of samples

were mixed with an equal volume (0.7 μL) of sinapinic acid matrix solution, spotted on the

target and dried at room temperature.

The identity of the purified NTAIL proteins was confirmed by mass spectral analysis of tryp-

tic fragments obtained by digesting (0.25 μg trypsin) 1 μg of purified recombinant protein
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isolated onto SDS-PAGE. The tryptic peptides were analyzed as described above and peptide

fingerprints were obtained and compared with in-silico protein digest (Biotools, Bruker Dal-

tonics). The mass standards were either autolytic peptides or peptide standards (Bruker

Daltonics).

Far-UV circular dichroism (CD)

The CD spectra of NTAIL proteins were recorded on a Jasco 810 dichrograph using 1-mm thick

quartz cells in 10 mM sodium phosphate pH 7 at 20˚C. CD spectra were measured between 190

and 260 nm, at 0.2 nm/min and are averages of three acquisitions. Mean ellipticity values per resi-

due ([Θ]) were calculated as [Θ] = 3300 m ΔA/(l c n), where l (path length) = 0.1 cm, n = number

of residues, m = molecular mass in daltons and c = protein concentration expressed in mg/mL.

Number of residues (n) is 147, while m is 16 310 Da. Protein concentrations of 0.1 mg/mL were

used when recording spectra. Structural variations of NTAIL proteins were measured as a function

of changes in the initial far-UV CD spectrum following addition of 20% 2,2,2 trifluoroethanol

(TFE) (Sigma-Aldrich).

The experimental data in the 190–260 nm range were analyzed using the DICHROWEB

website which was supported by grants to the BBSRC Centre for Protein and Membrane Struc-

ture and Dynamics [107,108]. The CDSSTR deconvolution method was used to estimate the

content in α-helical and disordered structure using the reference protein set 7.

Isothermal titration calorimetry

ITC experiments were carried out on an ITC200 isothermal titration calorimeter (Microcal) at

20˚ C. Protein pairs used in the binding analyses were dialyzed against the same buffer (10

mM Tris/HCl pH 8, 150 mM NaCl) to minimize undesirable buffer-related effects. The dialysis

buffer was used in all preliminary equilibration and washing steps.

The concentrations of purified wt and mutated NTAIL proteins in the microcalorimeter cell

(0.2 mL) ranged from 25 μM to 180 μM. XD was added from a computer-controlled 40-μL

microsyringe via a total of 19 injections of 2 μL each at intervals of 180 s. Its concentration in

the microsyringe ranged from 300 μM to 960 μM.

A theoretical titration curve was fitted to the experimental data using the ORIGIN software

(Microcal). This software uses the relationship between the heat generated by each injection

and ΔH˚ (enthalpy change in kcal mole-1), KA (association binding constant in M-1), n (num-

ber of binding sites per monomer), total protein concentration and free and total ligand con-

centrations. The variation in the entropy (ΔS˚ in cal mol-1 deg-1) of each binding reaction was

inferred from the variation in the free energy (ΔG˚), where this latter was calculated from the

following relation: ΔG˚ = -RT ln 1/KA.

Molecular dynamics simulations

All MD simulations were performed in explicit solvent with periodic conditions with

CHARMM and NAMD software packages and CHARMM force field version 27 with CMAP

corrections. The initial coordinates of the XD/α-MoRE complex were taken from the crystal

structure (PDB code 1T6O) [44]. The two XD/α-MoRE mutated models bearing either the

S491L or the R497G NTAIL substitution, were built with VMD plugin ‘mutator’ starting from

the X-ray structure of the wt complex (PDB code 1T6O). In the case of the S491L variant, the

three most favourable orientations of the leucine side chain were generated with Sybyl. Non-

protein derivatives were discarded. Orientation of the side chains of Asn, Gln, and His residues

were checked using in-house VMD plugin and the WHAT IF web interface (http://swift.cmbi.

kun.nl/). Residue His498 of XD was assigned HSD type and all other titratable groups were
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assigned standard protonation state at pH 7.0. Coordinates of missing hydrogen atoms were

added using the hbuild algorithm in CHARMM. To improve conformational sampling, three

independent simulations were carried out using different initial velocities. The system was sol-

vated with a pre-equilibrated solvation box (edge length around 60 Å) consisting of TIP3P

water molecules. Crystallographic water molecules were included in the initial model. Chloride

and sodium ions were added to achieve neutralization of the whole system. Periodic boundary

conditions were applied. Unfavorable contacts were removed by a short energy minimization

with conjugate gradient and ABNR. Electrostatic interactions were treated using the particle-

mesh Ewald summation method, and we used the switch function for the van der Waals

energy interactions with cuton, cutoff and cutnb values of 10, 12 and 14 Å respectively. Vibra-

tion of the bonds containing hydrogen atoms were constrained with the Shake algorithm and

a 1-fs integration step was used. The system was heated gradually to 300K, followed by an

equilibration step (500 ps). During these two early steps, harmonic constraints were applied to

protein heavy atoms. The constraint harmonic constant (k) was equal to 1 and 0.1 kcal/mol/Å2

for the backbone and side chains, respectively, and was removed after 250 ps equilibration.

The production phase of 50 ns was performed without any constraints. Snapshots of the coor-

dinates were saved every 0.5 ps. Trajectories were analyzed using a combination of in-house

and VMD scripts.

Analysis of molecular dynamics

Overall<RMSD> variations were computed with VMD after superimposition of the Cα
atoms of each conformation generated onto the initial structure (last structure of the equilibra-

tion step). Flexible N- and C-terminal residues were not included in the calculation. Three

types of RMSD were computed as it follows. For each frame, the XD protein was superimposed

onto the initial XD model and RMSD was computed over XD Cα atoms only. For each frame

the α–MoRE was superimposed onto the corresponding region of the initial structure and

RMSD was computed over NTAIL Cα atoms only. For each frame, the XD protein was super-

imposed onto the initial XD protein and RMSD was computed over NTAIL Cα atoms only.

Free energy perturbation

Free-energy perturbation (FEP) module implemented in NAMD was used to perform alchem-

ical transformation of Ser491 to Leu and Arg497 to Gly. Free energies differences resulting

from the Ser to Leu or Arg to Gly substitution were computed using the thermodynamic cycle

shown in S3 Fig. The free form of the α–MoRE in solution was taken from the XD/NTAIL

complex.

Free energy profile

The free energy profile for the dissociation of the XD/α-MoRE complex (wt and mutated

forms) was computed using the adaptive biasing force (ABF) method, implemented in NAMD

[109]. This method relies upon the integration of the average force acting on a selected reac-

tion coordinate (here, the center of mass between the two partners). A biasing force is applied

to the system in such a way that no average force acts along the reaction coordinate thus allow-

ing overcoming free energy barriers. For a complete description of the method please refer to

http://www.edam.uhp-nancy.fr/ABF/theory.html and references therein shown.

The distance separating the centers of mass of the two proteins was selected as reaction

coordinate. The distance was calculated on the Cα atoms not taking into account the three

atoms at each end (N-term and C-term end) of each protein partner due to their high flexibil-

ity. This distance is about 11 Å in the associated form and the partners are considered
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dissociated after a 10 Å increase in this distance. The reaction coordinate was subdivided into

sections of 0.5 Å and each one was successively explored during 5 ns. Bin width was kept at

0.02 Å, the number of samples prior to force application was 500 and the wall force constant is

100 kcal.mol-1.Å2. Once a section is sampled, the conformation in which COM distance is the

nearest to the upper boundary is selected as the starting point of the following 0.5 Å section. A

post-processing step merges the sampling counts and the PMF of each part and generates the

whole profile of PMF along the dissociation process. The trajectories were generated using the

same protocol as described for free MD.

Cell lines and viruses

Cells were cultured in DMEM medium (Life Technologies) supplemented with 10% of heat-

inactivated (30 min at 56˚C) fetal bovine serum, 1% L-glutamine, gentamicin (10 μg/ml) at

37˚C and 5% CO2. Medium of 293-3-46 helper cells was supplemented with G418 at 1.2 mg/

ml. Vero (si2) and Vero-SLAM (si1) cells stably expressing shRNA targeting the P and GFP

mRNAs, respectively, were previously described [48]. To rescue recombinant viruses, the

helper cell line 293-3-46 stably expressing T7 polymerase, MeV N, and P was transfected by

using the ProFection kit with two plasmids coding for the MeV genome and MeV-L protein

(pEMC-La) [110]. Three days after transfection, the cells were overlaid on either Vero (single

N gene virus) or Vero-si2 cells (bi-N virus). Upon appearance, isolated syncytia were picked

and individually propagated on relevant Vero (from CelluloNet BioBank BB-0033-00072, SFR

BioSciences, Lyon France) (single N virus) or Vero-si2 (bi-N virus) cells. Virus stock was pro-

duced after a second passage at a multiplicity of infection (MOI) of 0.03 in the relevant cell

line. This stock was checked to rule out mycoplasma contamination, has its N1, N2, P, M, and

L genes sequenced, and was titrated on the relevant host cell before use.

Split-luciferase reassembly assay

Gaussia princeps luciferase-based complementation assay and data analysis (normalized lumi-

nescent ratio, NLR) were performed according to [50]. Human 293T cells (from CelluloNet

BioBank BB-0033-00072, SFR BioSciences, Lyon France) were cultured in Dulbecco’s Medium

Eagle’s Modified (DMEM) (Life Technologies) supplemented with 10% of heat inactivated (30

min at 56˚C) fetal bovine serum, 1% L-Glutamine and 10 μg/ml gentamycin at 37˚C and 5%

CO2. Cells were transfected using the jetPRIME reagent (Polyplus transfection). NLR was cal-

culated by dividing the luciferase value of the two chimeric partners by the sum of the lucifer-

ase value of every chimeric partner mixed with the other “empty” glu domain. Results were

expressed as fold increase with respect to the reference NTAIL/XD, which was set to 1.

Analysis of viral protein accumulation and virus replication

Parental Vero, si1 and si2 cells were infected at MOI 1 with recombinant viruses with or with-

out addition of 10 μg/ml of fusion inhibitor peptide z-fFG to prevent syncytium formation.

Virus production was measured after freeze-thaw cycles of infected cells using a 50% tissue

culture infective dose (TCID50) titration assay. Contamination of virus stock with internal

deletion and copyback defective interfering (DI) minigenomes were assessed according to the

method of [111].

Detection of the expression of viral N, Flag-N1, HA-N2, P and cellular GAPDH proteins

was performed by Western blotting. Infected cells were lysed in NP40 buffer (20 mM Tris/HCl

pH 8, 150 mM NaCl, 0.6% NP-40, 2 mM EDTA, protease cocktail inhibitor Complete 1 x

(Roche)) for 20 minutes on ice. The proteins were then separated from the cell debris by cen-

trifugation at 15,000 g during 10 minutes. The proteins were denatured by the addition of
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Laemmli 1 x loading buffer before analysis by SDS-PAGE and immunoblotting using anti-N

(cl25 antibody), anti-Flag (Sigma), anti-HA (Sigma), anti-P (49.21 antibody) and anti-

GAPDH (Mab374, Chemicon) monoclonal antibodies. Western blotting was revealed by

chemiluminescence as detailed previously [48].

Quantification of the MeV genome and mRNA contents of infected cells was performed by

reverse transcription-quantitative PCR essentially as described previously [65], using the fol-

lowing primers. To quantify mRNA, sense N primer (5’-AAGAGATGGTAAGGAGGT-3’),

antisense N primer (5’-ATGATACTTGGGCTTGTC-3’), sense P primer (5’-TGGACGGACC

AGTTCCAGA-3’), antisense P primer (5’-GGCTCCTTTGATATCATCAAG-3’), sense F

primer (5’-GCTCAGATAACAGCCGGCATT-3’), antisense F primer (5’-AGCTTCTGGCCG

ATTA-3’) were used. Negative-strand genome was reverse transcribed using sense 5’-tagged N

primer (5’-gcagggcaatctcacaatcaggAAGAGATGGTAAGGAGGT-3’), and the cDNA was PCR

quantified using sense tag primer (5’-gcagggcaatctcacaatcagg-3’) and antisense N primer. For

the genome the results were expressed as copy number/μg RNA, and for transcripts the results

were expressed either as the number of polymerized nucleotides/genome copy or as the viral

transcript/μg RNA after normalization for the genome copy contents of each sample.

Minigenome assay

The assay was performed essentially as described in [62,112] with minor modifications. 2.104

BSRT7 cells that constitutively express the T7 phage DNA-dependent RNA polymerase [113]

were seeded in 96-well plates and transfected the day after with 66 ng of pEMC-N (either wt or

mutated) 44 ng of pEMC-(Flag/L+P) (a home-made T7-driven bicistronic construct) [58] and

90 ng of plasmid encoding for the different minigenomes mixed with the transfection reagent

as indicated in the manufacturer protocol (jetPRIME Polyplus-transfection). Two days after

transfection, Firefly and NanoLuc activity were measured using the Nano-Glo Dual-Luciferase

Reporter Assay (Promega). The background luciferase activity from of both luciferases

observed in the absence of active L protein was subtracted from the signal measured in the

presence of L, and data obtained from three independent experiments were normalized to

each other to level the mean signal observed for all combinations tested at the same time. The

percentage of unpriming per nucleotide of the un-transcribed intergenic (UTIGR) region (%

unpriming/UTIGRnt) was calculated as follow. The luciferase signals ratios were plotted in rela-

tion to the length of the UTIGR region and the equation of the exponential regression curve

was calculated (y = b�ea). The %unpriming/UTIGRnt = 1-ea.

Supporting Information

S1 Fig. Protein expression of glu1-N variants 293T cells were transfected one day before

with each construct and lysed in 0.6% NP40and 6M Urea buffer. Extracts were electropho-

resed on a 12% bis-acrylamide gel and proteins were electro-transferred and proteins detected

with antibodies cl25 anti-N and anti-GAPDH monoclonal antibodies.

(PDF)

S2 Fig. Hydrophobic residue contacts and major hydrogen bonds across the NTAIL/XD

protein-protein interface during the time course of molecular dynamics trajectories. (a)

Wild type NTAIL/XD complex. (b). S491L NTAIL variant. (c). R497G NTAIL variant. Hydrogen

bonds summarized in Table 1 are highlighted as grey dotted lines. Numbers indicate the occur-

rence of each hydrogen bond during the simulations as a percentage of time. XD and NTAIL

residues are labeled in pink and green, respectively. This figure was generated with LigPlot

+ program for automatic generation of 2D protein-ligand and protein-protein interaction
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diagrams (http://www.ebi.ac.uk/thornton-srv/software/LigPlus/) [114].

(PDF)

S3 Fig. Thermodynamic cycle used in FEP to calculate the relative binding energies result-

ing from Ser to Leu or Arg to Gly substitutions.

(PDF)

S4 Fig. Improved signal ratio of edited NanoLuc gene over Firefly gene upon transcription

by P+L MeV polymerase with (a) raw data and (b) improved dynamic range. Data were

obtained using dual-luciferase minigenome with Firefly and edited NanoLuc gene separated

by canonical N-P IGRs in the presence of wt, N, P and L or a truncated inactive L (Lko) as a

negative control to measure the translation background from the minigenome transcribed by

the T7 polymerase. The level of the background RLU signal is shown by the grey zone in (a)

(PDF)

S5 Fig. Homogenous Firefly signals observed when assessing the ability of NTAIL variants

to support gene reporter expression from dual-luciferase minigenomes with each MeV

IGR. (a) Firefly signals observed for each N variant/minigenome combination ranked by N

variant (top right) with mean value for all variants (top left) and by minigenome (bottom). (b)

Absence of correlation between Firefly signals observed with each NTAIL variant and binding

strength to XD.

(PDF)

S6 Fig. (a) Parameters known to affect MeV transcription rate of each gene and transcription

gradient (see also Plumet et al [65]. (b) RNA synthesis parameters that are affected by the affin-

ity between NTAIL and XD according to Brunel et al [48] for RNA synthesis rate and according

to this work for the efficiency in scanning and/or re-initiation.

(PDF)

S7 Fig. Homogenous Firefly signals observed when assessing the ability of NTAIL variants

to support gene reporter expression from dual-luciferase minigenomes with elongated

UTIGR. (a) Firefly signals observed for each N variant/minigenome combination ranked by N

variant (top right) with mean value for all variants (top left) and by minigenome (bottom). (b)

Absence of correlation between Firefly signals observed with each NTAIL variant and binding

strength to XD.

(PDF)

S8 Fig. Principle of biG-biS MeV viruses selective expression of the duplicated N1 and N2

gene according to the Vero cell host (see [48] for details).

(PDF)

S9 Fig. Characterization of recombinant unigene MeV expressing NTAIL variants (a) West-

ern blot analysis of N and P expression in Vero cells infected by recombinant unigene viruses.

(b-d) lack of detectable contamination by internally deleted (b) or copyback (c) DIs and (d)

genome of each recombinant virus as detected by RT-PCR (see [48] for method).

(PDF)

S10 Fig. Ability of equal mixture of wt N and D493G variant to support reporter genes

from N-P IGR 2-gene minigenome. Minigenome data are expressed as the mean +/- SD of 2

independent experiments, with each combination being done in triplicate. See Fig 6A for

minigenome structure.

(PDF)
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S11 Fig. Characterization of recombinant unigene MeV expressing NTAIL variants. Correla-

tion between viral RNA measurements in cells infected by the unigene viruses with accumula-

tion rate of N (+) as a function of accumulation rate of P(+) RNA during primary transcription

at early times post-infection (see [65] for temporal windows) (a), N(+) RNA as function of P(+)

RNA levels at 24 h.p.i. (b), N(+) (c) and P(+) (d) RNA levels as function of genomic (-) RNA

levels measured at 24 h.p.i.

(PDF)

S12 Fig. Ability of truncated N1-439 in comparison with wt N and R497G variant to sup-

port transcription and re-initiation over elongated UTIGR (a) Firefly signals from dual-

luciferase minigenomes with elongated UTIGR. (b) Re-initiation efficiency at the second gene

with statistical significance when compared to wt N efficiency, � p<0.05, �� p<0.02 & below,

ns p = 0.38.

(PDF)

S1 Table. Average and standard deviation of root mean square deviation (RMSD) over CA

atoms during the whole 50 ns trajectories (values are in Angstrom). The values are the result

of at least 2 trajectories. a XD domain of all MD structures was superimposed on the initial XD

domain and RMSD values were computed for the XD domain. b NTAIL α-helix of all MD

structures was superimposed on the initial NTAIL helix and RMSD values were computed for

NTAIL atoms. c XD domain of all MD structures was superimposed on the initial XD domain

and RMSD values were computed for the NTAIL helix.

(PDF)

S2 Table. DNA (+) sequence of the Firefly/NanoLuc 2-gene minigenome with conditional

expression of NanoLuc to RNA edition. Firefly and NanoLuc luciferase ORFs are in capital

letters. The P editing site in underlined in yellow.

(PDF)

S3 Table. DNA (+) sequences of elongated N-P IGR added in minigenomes.

(PDF)

S4 Table. DNA (+) sequence of the 3-gene minigenome used for the measurement of read-

through transcripts. Coding sequences are in capital letter.

(PDF)
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