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may come    

Limiting absorption principle for discrete Schrödinger operators with a Wigner-von Neumann potential and a slowly decaying potential

Introduction

The limiting absorption principle (LAP) is an important resolvent estimate in the spectral and scattering theory of quantum mechanical Hamiltonians, in particular it implies that the part of the continuous spectrum where it holds is actually purely absolutely continuous. The LAP also provides boundary values for the resolvent that are useful for scattering theory. For Schrödinger operators on R d , the LAP was derived for a large class of short and long range potentials, see e.g. [A], [PSS], [ABG], as well as for decaying oscillatory potentials such as the Wigner-von Neumann potential, see e.g. [DMR], [START_REF] Rejto | A limiting absorption principle for Schrödinger operators with generalized Von Neumann-Wigner potentials I. Construction of approximate phase[END_REF], [START_REF] Rejto | A limiting absorption principle for Schrödinger operators with generalized Von Neumann-Wigner potentials II. The proof[END_REF]. Schrödinger operators with Wigner-von Neumann potentials [NW] are of interest because when appropriately calibrated they may produce eigenvalues embedded in the absolutely continuous spectrum of the Hamiltonian, and are linked with the phenomenon of resonance. The Wigner-von Neumann type potentials are still very much an active area of research. For the multi-dimensional case, see e.g. [FS], [START_REF] Golénia | Weighted Mourre's commutator theory, application to Schrödinger operators with oscillating potential[END_REF], [J], [JM], [START_REF] Martin | On the limiting absorption principle for a new class of Schrödinger Hamiltonians[END_REF], [START_REF] Martin | A new class of Schrödinger operators without positive eigenvalues[END_REF], [START_REF] Martin | On the limiting absorption principle at zero energy for a class of possibly non self-adjoint Schrödinger operators[END_REF] and [START_REF] Mandich | The limiting absorption principle for the discrete Wigner-von Neumann operator[END_REF]; for the one-dimensional case, see e.g. [START_REF] Liu | Criteria for embedded eigenvalues for discrete Schrödinger Operators[END_REF], [L1], [L2], [L3], [Sim], [JS], [KN], [NS] and [KS].

Regarding the LAP for Schrödinger operators, historically a lot of effort was put into lessening the decay assumptions on the short/long range perturbations. In this regard a breakthrough was made in 1981 by E. Mourre, see [START_REF] Mourre | Absence of singular continuous spectrum for certain self-adjoint operators[END_REF] and [START_REF] Mourre | Opérateurs conjugués et propriétés de propagation[END_REF]. Very roughly speaking, assuming the short range perturbation satisfies V sr pxq " Op|x| ´2q and the long range perturbation satisfies x ¨∇V lr pxq " Op|x| ´1q as |x| Ñ `8, as well as several other technicalities, Mourre's theory implied the following LAP for the Schrödinger operator H " ´∆ `Vsr `Vlr on R d over some open real interval I: for every fixed s ą 1{2, (1.1) sup zPI ˘}xAy ´spH ´zq ´1xAy ´s} ă 8, I ˘:" tz P C : Repzq P I, ˘Impzq ą 0u. Here xxy :" a 1 `|x| 2 and A is some self-adjoint operator. The theory was improved and by the end of the 20 th century the book [ABG] presented a more sophisticated but optimal abstract framework to treat the short/long range potentials. This framework now goes by the name of classical Mourre theory. The Wigner-von Neumann potential is not in the scope of this framework because its decay is at best Op|x| ´1q, see e.g. [START_REF] Golénia | Weighted Mourre's commutator theory, application to Schrödinger operators with oscillating potential[END_REF]Proposition 5.4] for the continuous case and [START_REF] Mandich | The limiting absorption principle for the discrete Wigner-von Neumann operator[END_REF]Proposition 4.2] for the discrete case.

The beginning of the 21 st century sees the emergence of new approaches to Mourre's commutator method with [G] and [START_REF] Golénia | A new look at Mourre's commutator theory[END_REF], and the so-called weighted Mourre theory, see [START_REF] Golénia | Weighted Mourre's commutator theory, application to Schrödinger operators with oscillating potential[END_REF], or the local Putnam-Lavine theory, see [J]. The classical theory revolves around the Mourre estimate

(1.2) E I pHqrH, iAs ˝EI pHq ě γE I pHq `K,

where E I pHq is the spectral projection of H onto the interval I, rH, iAs ˝is the realization of the formal commutator between H and iA, K is a compact operator, and γ ą 0. On the other hand the more recent theories are centered around an estimate of the type

(1.

3) E I pHqrH, iϕpAqs ˝EI pHq ě E I pHqxAy ´s pγ `Kq xAy ´sE I pHq, s ą 1{2,

where ϕ is the real-valued function

(1.4) ϕptq :"

ż t ´8xxy 
´2s dx, t P R.

Key underlying ideas behind this choice are that 1) ϕ is bounded for s ą 1{2 and, 2) ϕ 1 pAq " xAy ´2s , i.e. the derivative of ϕ yields the appropriate weights for the LAP as in (1.1).

In [START_REF] Golénia | Weighted Mourre's commutator theory, application to Schrödinger operators with oscillating potential[END_REF] ideas of weighted Mourre theory are used to derive the LAP for the continuous Schrödinger operator H " ´∆ `Vsr `Vlr `W on R d , where W pxq " w sinpk|x|q{|x|, w, k P R, is the Wigner-von Neumann potential, and the short/long range potentials respectively satisfy V sr pxq " Op|x| ´1´ε q and x ¨∇V lr pxq " Op|x| ´εq as |x| Ñ `8 for some ε ą 0. The cost of including the W was that the decay assumptions for V sr and V lr are suboptimal as per [START_REF] Amrein | C0-groups, commutator methods and spectral theory of N -body hamiltonians[END_REF]Chapter 7]. Article [START_REF] Mandich | The limiting absorption principle for the discrete Wigner-von Neumann operator[END_REF] was an application of the ideas of [START_REF] Golénia | Weighted Mourre's commutator theory, application to Schrödinger operators with oscillating potential[END_REF] to corresponding (albeit non-radial) discrete Schrödinger operators on Z d , see Theorem 1.6 below for a statement.

This article is a sequel to [START_REF] Mandich | The limiting absorption principle for the discrete Wigner-von Neumann operator[END_REF]. The aim is to follow the weighted Mourre theory as in [START_REF] Golénia | Weighted Mourre's commutator theory, application to Schrödinger operators with oscillating potential[END_REF] and [START_REF] Mandich | The limiting absorption principle for the discrete Wigner-von Neumann operator[END_REF], but with a new bounded function ϕ in (1.3) which involves logarithmic terms. To write down this function we need some notation. Denote lnp¨q the Napierian logarithm. Let ln 0 pxq :" 1, ln 1 pxq :" lnp1 `xq, and for integer k ě 2, ln k pxq :" ln p1 `ln k´1 pxqq. Thus k is the number of times the function lnp1 `xq is composed with itself. For simplicity we choose the domains ln k : r1, `8q Ñ `8. Also denote ln p k pxq :" pln k pxqq p , p P R. We choose ϕ to be (1.5) ϕptq :"

ż t ´8xxy ´1 ln ´2p m`1 pxxyq m ź k"0 ln ´1 k pxxyqdx, t P R,
for some m P N and p ą 1{2. Note that ϕ as in (1.5) is an increasing function that is asymptotically equal to a constant minus a Opln 1´2p m`1 ptqq term for t Ñ `8, hence a bounded function. More notation is needed to present our results. The position space is the lattice Z d for integer d ě 1. For n " pn 1 , ..., n d q P Z d , set |n| 2 :" n 2 1 `... `n2 d . Consider the Hilbert space H :" ℓ 2 pZ d q. Let S i be the shift operator to the right on the i th coordinate : pS i ψqpnq :" ψpn 1 , ..., n i ´1, ..., n d q, @ n P Z d , ψ " pψpnqq nPZ d P H, and 1 ď i ď d.

The shifts to the left on the i th coordinate are S i " S ´1 i . The discrete Schrödinger operator (1.6) H :" ∆ `V `W acts on H, where ∆ is the discrete Laplacian operator defined by

(1.7) ∆ :"

d ÿ i"1 2 ´Si ´Si " d ÿ i"1 ∆ i ,
W is a Wigner-von Neumann potential, parametrized by w P R, k P p0, 2πqztπu and defined by

(1.8) pW ψqpnq :" w ¨sinpkpn 1 `... `nd qq|n| ´1ψpnq, for all n P Z d , n ‰ 0, and ψ P H, pW ψqp0q :" 0, and V is a multiplication operator by a bounded real-valued sequence pV pnqq nPZ d such that pV ψqpnq :" V pnqψpnq. We will also consider the oscillating potential W 2 given by (1.9) pW 2 ψqpnq :" w ¨p´1q n 1 `...`n d ¨|n| ´1ψpnq, for all n P Z d , n ‰ 0, and pW 2 ψqp0q :" 0.

In this case let H 2 :" ∆ `V `W2 . Denote τ i V , τ i V the operators of multiplication acting by pτ i V qψpnq :" V pn 1 , ..., n i ´1, ...n d qψpnq, pτ i V qψpnq :" V pn 1 , ..., n i `1, ...n d qψpnq.

Hypothesis (H) : Assume there are m P N and 0 ď r ă q such that :

V pnq " O ˜ln ´q m`1 p|n|q m ź k"0 ln ´r k p|n|q ¸, as |n| Ñ `8, and (1.10)

n i pV ´τi V qpnq " O ˜ln ´q m`1 p|n|q m ź k"0
ln ´r k p|n|q ¸, as |n| Ñ `8, @ 1 ď i ď d.

(1.11) Remark 1.1. If hypothesis (H) holds for some m P N and 0 ď r ă q, then it holds for any integer m 1 ě m and 0 ď r 1 ă q 1 , with r 1 ď r and q 1 ď q.

Under hypothesis (H), V pnq " op1q as |n| Ñ `8. Thus V `W is a compact perturbation of ∆ and so σ ess pHq " σp∆q. A Fourier transformation calculation shows that the spectrum of ∆ is purely absolutely continuous and σp∆q " r0, 4ds. The formulation of the LAP requires a conjugate self-adjoint operator. Let N i be the position operator on the i th coordinate defined by pN i ψqpnq :" n i ψpnq, DomrN i s :"

" ψ P ℓ 2 pZ d q : ÿ nPZ d |n i ψpnq| 2 ă 8 * .
The conjugate operator to H is the generator of dilations denoted A and it is the closure of (1.12)

A 0 :" i d ÿ i"1 2 ´1pS i `Si q ´pS i ´Si qN i " i 2 d ÿ i"1 pS i ´Si qN i `Ni pS i ´Si q
with domain the compactly supported sequences. A is self-adjoint, see e.g. [GGo]. Let

(1.13) µpHq :" p0, 4qztE ˘pkqu for d " 1, µpHq :" p0, Epkqq Y p4d ´Epkq, 4dq for d ě 2.

Here k is the angular frequency of W , E ˘pkq :" 2 ˘2 cos pk{2q, Epkq :" 2E ´pkq for k P p0, πq and Epkq :" 2E `pkq for k P pπ, 2πq. We have a similar result for H 2 . Set µpH 2 q :" r0, 4dsz pt0, 4, ..., 4d ´4, 4du Y t2duq.

Proposition 1.2. Let d ě 1 and V satisfy hypothesis (H) for some m P N and 0 ď r ă q. If E P µpH 2 q, then there is an open interval I of E that contains at most finitely many eigenvalues of H 2 (including multiplicities). The corresponding eigenfunctions, if any, decay sub-exponentially.

In dimension 1 the point spectrum of H 2 is void in p0, 4qzt2u.

Denote P K :" 1 ´P , where P is the projection onto the pure point spectral subspace of H. We introduce the LAP weights with logarithmic terms :

(1.14) W ´p M `1pxq :" xxy ´1 2 w ´p,´1 2 M pxq, w α,β M pxq :" ln α M `1 pxxyq M ź k"0 ln β k pxxyq , α, β P R.
Let J ˘:" tz P C : Repzq P J, ˘Impzq ą 0u. The main result of this article is :

Theorem 1.3. Let d ě 1 and V satisfy hypothesis (H) for some m P N and 2 " r ă q. If E P µpHq, then there is an open interval I of E such that for any compact interval J Ă I, any integer M ě m, and any p ą 1{2,

(1.15) sup zPJ ˘› › ›W ´p M `1 pAq pH ´zq ´1P K W ´p M `1 pAq › › › ă 8.
The following local decay estimate also holds for all ψ P H, M ě m and p ą 1{2 :

(1.16) ż R › › ›W ´p M `1 pAq e ´itH P K E J pHqψ › › › 2 dt ă 8.
By Lemma 4.11 the above estimates also hold for xN y " p1

`|N 1 | 2 `... `|N d | 2 q 1{2 instead of xAy.
Finally, the spectrum of H is purely absolutely continuous on J whenever P " 0 on J.

With the obvious substitutions, the statement and conclusion of Theorem 1.3 also hold for the Hamiltonian H 2 " ∆ `V `W2 .

Remark 1.2. If W " 0 or W 2 " 0, then the conclusion of Theorem 1.3, i.e. the existence of a neighborhood where the LAP holds, is valid for a larger set of energies, precisely E P r0, 4dszt0, 4, ..., 4d ´4, 4du.

Example 1.4. Suppose V pnq " O `|n| ´1 ln ´q |n| ˘as |n| Ñ `8 for some q ą 2. Then hypothesis (H) holds with m " 0 and r " 2. The LAP in Theorem 1.3 holds with the weights W ´p M `1 pAq for any M ě 0 and p ą 1{2, so in particular for W ´p 1 pAq " xAy ´1 2 ln ´pp1 `xAyq, p ą 1{2.

Example 1.5. An interesting 1-dimensional example is H 2 " ∆ `V `W2 where V pnq " 2p´1q n ¨pn lnpnqq ´1 and W 2 pnq " p´1q n ¨n´1 , n P N. It is due to C. Remling [R]. Although the example is on the half-line the arguments presented here apply with minor considerations. So in particular the spectrum of this H 2 is purely a.c. on p´2, 2qzt0u (in the notation of [R]).

For comparison, the statement of the principal result of [START_REF] Mandich | The limiting absorption principle for the discrete Wigner-von Neumann operator[END_REF] is added below, taking into account the technical improvement in [START_REF] Mandich | Sub-exponential decay of eigenfunctions for some discrete Schrödinger operators[END_REF]Theorem 1.8] :

Theorem 1.6. [START_REF] Mandich | The limiting absorption principle for the discrete Wigner-von Neumann operator[END_REF] Let d ě 1 and V satisfy V pnq " Op|n| ´εq and n i pV ´τi V qpnq " Op|n| ´εq for some ε ą 0, and @1 ď i ď d. If E P µpHq, then there exists an open interval I containing E such that for any compact interval J Ă I and any s ą 1{2, sup zPJ ˘}xAy ´spH ´zq ´1P K xAy ´s} ă 8. Thus, Theorem 1.3 improves Theorem 1.6 by weakening the decay assumptions on V , as well as improving the LAP weights. The article [START_REF] Mandich | The limiting absorption principle for the discrete Wigner-von Neumann operator[END_REF] considers a second Wigner-von Neumann potential, namely W 1 pnq " ś d i"1 sinpk i n i q{n i . Although W 1 could have been included in this article and similar results would have been derived, we did not do so to keep the size of the article reasonable. Another obvious comment is that we do not know how to effectively use commutator methods to study spectral properties of the discrete Hamiltonian H (with W ‰ 0) on r0, 4dszµpHq, see the comments that follow [START_REF] Mandich | The limiting absorption principle for the discrete Wigner-von Neumann operator[END_REF]Proposition 4.5]. For the continuous Schrödinger operators on R d , with W ‰ 0, a similar limitation exists, see [START_REF] Golénia | Weighted Mourre's commutator theory, application to Schrödinger operators with oscillating potential[END_REF] and [JM], in that the LAP was established only on p0, k 2 {4q for d ě 2. But interestingly, an argument was recently found to justify a LAP on p0, `8qztk 2 {4u when the Wigner-von Neumann potential is radial, i.e. W pxq " q sinpk|x|q{|x|, see [J] and [START_REF] Mbarek | Etudes théorème d'absorption limite pour des opérateurs de Schrödinger et Dirac avec un potentiel oscillant[END_REF]Section 3.5].

Fix d " 1 to discuss Theorem 1.3 in relation to other one-dimensional results in the literature. In [Sim], the perturbation consists of a Wigner-von Neumann potential plus a V P ℓ 1 pZq, and it is proved that the spectrum of H is purely absolutely continuous on p0, 4qztE ˘pkqu. Note that our assumption (1.11), with 2 " r ă q, implies pV ´τ V q P ℓ 1 pZq but not necessarily V P ℓ 1 pZq, (although the weaker assumption 1 " r ă q is sufficient to have pV ´τ V q P ℓ 1 pZq). Another recent result is [START_REF] Liu | Absence of singular continuous spectrum for perturbed discrete Schrödinger operators[END_REF], where it is shown that if the perturbation is Op|n| ´1q, then H does not have singular continuous spectrum. Although this criteria applies to the Wigner-von Neumann potential, it does not apply to all potentials V in the scope of this article, since for example hypothesis (H) allows for V pnq " ln ´qp1 `xnyq, q ą 2. Now suppose the absence of oscillations, i.e. W " 0 and W 2 " 0. Because pV ´τ V q P ℓ 1 pZq, V is of bounded variation, and so the spectra of H and H 2 are purely a.c. on p0, 4q, by a result due to B. Simon in [Si].

Consider now d ě 1 to discuss Theorem 1.3 in relation to the framework of Mourre theory as exposed in [ABG]. First, it is important to cite [BSa], where the details of this framework are worked out for the multi-dimensional discrete Schrödinger operators on Z d . From this perspective, this article is an attempt to bridge the gap between [START_REF] Mandich | The limiting absorption principle for the discrete Wigner-von Neumann operator[END_REF] and [BSa].

Recall the regularity classes C 1,1 pAq Ă C 1 u pAq Ă C 1 pAq that structure the classical Mourre theory, see Section 2.1. In [START_REF] Amrein | C0-groups, commutator methods and spectral theory of N -body hamiltonians[END_REF]Chapter 7], it is shown that C 1,1 pAq is an optimal class in that if the Hamiltonian H P C 1,1 pAq then a LAP holds for H, whereas there is an example where Let us discuss the assumptions on the short/long range perturbations V sr , V lr . The criteria in the classical theory (see [START_REF] Boutet De Monvel | On the spectral properties of discrete Schrödinger operators: the multi-dimensional case[END_REF]Theorem 2.1], also [START_REF] Amrein | C0-groups, commutator methods and spectral theory of N -body hamiltonians[END_REF]Theorem 7.6.8]) are :

H P C 1 u pAq but H R C 1,
(1.17)

ż 8 1 sup κă|n|ă2κ |V sr pnq|dκ ă 8, @ 1 ď i ď d,

and

(1.18) V lr pnq " op1q as |n| Ñ `8 and 

ż 8 1 sup κă|n|ă2κ |pV lr ´τi V lr qpnq|dκ ă 8, @ 1 ď i ď d.
If V satsifies V pnq " Opgpnqq pV ´τi V qpnq " Opgpnqq, @i V pnq " ř d i"1 lnp2`|n i |q ln σ p1`xnyq then : (1.10) holds
yes, @m P N no yes, @σ ą 3 with 2 " r ă q then : (1.11) holds yes, @m P N yes, @m P N yes, @σ ą 2 with 2 " r ă q then : (1.17) holds yes, @m P N no no, @d ľ 1 and 1 " r ă q then : (1.18) holds yes, @m P N yes, @m P N yes, f or d " 1, σ ą 1; and 1 " r ă q and 1 " r ă q no, @d ľ 2 Table 1. Examples.

The last column in Table 1 shows that it is possible to concoct a non-radial potential V that verifies the hypothesis of Theorem 1.3 but neither (1.17) nor (1.18). It is an open problem for us to verify if this potential is of class C 1,1 pAq. If the potential V is radial the first two lines of Table 1 suggest that our assumptions on V may be slightly suboptimal, at least in the absence of oscillations, i.e. W " 0, because Theorem 1.3 requires r " 2, rather than r " 1.

To the best of our understanding, our requirement of "an entire extra logarithm" (r " 1 vs. r " 2) is due to a technical limitation in the construction of the almost analytical extension of the function ϕ, see (1.5), which is employed to apply the Helffer-Sjöstrand formula and associated functional calculus. Indeed, although ϕ 1 ptq " xty ´1w ´2p,´1 m ptq the extension only verifies |B φ{Bz| ď cxRepzqy ´1´ℓ |Impzq| ℓ , ℓ P N. Clearly all logarithmic decay is lost in the process of extending to the complex plane.

Let us briefly discuss the LAP weights. Let T be a self-adjoint operator on H, E Σ pT q its spectral projection on a set Σ Ă R. Let s, p, p 1 P R, M P N. Let Σ j " tx P R : 2 j´1 ď |x| ď 2 j u, j ě 1, and Σ 0 :" tx P R : |x| ď 1u. Define the Banach spaces

L 2
s,p,p 1 ,M pT q :" ! ψ P H : }xT y s w p,p 1 M pT qψ} ă 8

) , and

BpT q :" ! ψ P H :

8 ÿ j"0 ? 2 j }E Σ j pT qψ} ă 8
) .

The norms on these spaces are respectively }ψ} L 2 s,p,p 1 ,M pT q :" }xT y s w p,p 1 M pT qψ} and }ψ} BpT q :"

8 ÿ j"0 ? 2 j }E Σ j pT qψ}.
The dual of L 2 s,p,p 1 ,M pT q with respect to the inner product on H is pL 2 s,p,p 1 ,M pT qq ˚" L 2 ´s,´p,´p 1 ,M pT q and the dual B ˚pT q of BpT q is the Banach space obtained by completing H in the norm }ψ} B ˚pT q :" sup jPN ?

2 ´j }E Σ j pT qψ}.

We refer to [JP] and the references therein for these definitions. Write L 2 s pT q :" L 2 s,0,0,0 pT q. For any s, p ą 1{2 and M P N, the following strict inclusions hold :

L 2
s pT q Ĺ L 2 1{2,p,1{2,M pT q Ĺ BpT q Ĺ L 2 1{2 pT q, and L 2 ´1{2 pT q Ĺ B ˚pT q Ĺ L 2 ´1{2,´p,´1{2,M pT q Ĺ L 2 ´spT q. Also clear is that L 2 1{2,p,1{2,M pT q Ă L 2 1{2,p 1 ,1{2,M 1 pT q whenever p 1 ď p and M 1 ě M . Let EpHq be the set of eigenvalues and thresholds of H. By threshold we mean a real number E for which no Mourre estimate holds for H wrt. A, regardless of the interval I, I Q E. Classical Mourre theory says that under appropriate conditions for V , and W " 0, then the LAP (1.19) sup ηą0 }pH ´λ ´iηq ´1ψ} K ˚ď cpλq}ψ} K holds for some appropriate pair of Banach spaces pK, K ˚q, some cpλq ą 0 and all λ P RzEpHq. Also, cpλq can be chosen uniform in λ over fixed compact subsets of RzEpHq. On the one hand, the spaces pK, K ˚q " pBpAq, B ˚pAqq are optimal in a certain sense, see [JP], [AH] and the discussion at the beginning of [START_REF] Amrein | C0-groups, commutator methods and spectral theory of N -body hamiltonians[END_REF]Chapter 7], but these are not Besov spaces. On the other hand, the Besov spaces pK, K ˚q " pH 1{2,1 , H ´1{2,8 q which appear in [ABG] and [BSa] are not as optimal as pBpAq, B ˚pAqq, but are optimal in the scale of Besov spaces and allow for a larger class of potentials V . Note that our new result Theorem 1.3 implies (1.19) for K " L 2 1{2,p,1{2,M pAq, any p ą 1{2, M ě m, while Theorem 1.6 implies (1.19) for K " L 2 s pAq, any s ą 1{2.

Finally, a few comments about the proof of Theorem 1.3. In essence it is the same as in [START_REF] Golénia | Weighted Mourre's commutator theory, application to Schrödinger operators with oscillating potential[END_REF], or [START_REF] Mandich | The limiting absorption principle for the discrete Wigner-von Neumann operator[END_REF]. The difference lies in the function ϕ given by (1.5) rather than (1.4). But in order to formulate meaningful conditions on V (hypothesis (H)) this translates into a problem of bounding functions of the generator of dilations A by functions of the operator of position |N | involving logarithmic terms. More specifically, while the proof of Theorem 1.6 required only xAy ε xN y ´ε P BpHq, the space of bounded operators on H, the proof of Theorem 1.3 requires w α,β M pAq ¨w´α,´β M pN q P BpHq for some appropriate α, β ě 0, which is equivalent to w 2α,2β M pAq ď w ´2α,´2β M pN q in the sense of forms. To achieve this we make a detour via the polylogarithm functions Li σ pzq (specifically the ones of order 2 ă σ ď 3 are used). The reason for doing this is that higher powers of the logarithm are not Nevanlinna functions, but the functions Li σ pzq, Repσq ą 0, are Nevanlinna functions which continue analytically across p´1, `8q from C `to C ´, and are thus operator monotone functions, see Section 8.

The plan of the article is as follows. In Section 2, we recall definitions and results of classical and weighted Mourre theory. In Section 3 we derive the classical Mourre estimate for the Hamiltonians H and H 2 and prove Propositions 1.1 and 1.2. In Section 4 we derive operator norm bounds involving logarithms of self-adjoint operators. In Section 5 we prove key Lemmas that are needed for the proof of Theorem 1.3. In Section 6 we prove Theorem 1.3. In appendix A (Section 7) we review Loewner's theorem which makes the connection between Nevanlinna functions and operator monotone functions, and prove an extension of Loewner's theorem that is suitable for semi-bounded self-adjoint operators. In appendix B (Section 8) we briefly review polylogarithms and explain that the ones of positive order are Nevanlinna functions. In appendix C (Section 9) we mention the basic tools we use from the kit of almost analytic extensions and Helffer-Sjöstrand functional calculus. Acknowledgements : It is a pleasure to thank Thierry Jecko for fruitful conversations on the topic, generous advice to improve the results in various ways, and especially giving us the permission to publish his Proposition 4.4 which conveniently generalizes self-adjoint operator norm estimates to sub-multiplicative functions. We are grateful to the two anonymous referees for a careful reading of the manuscript leading to many improvements, and especially Proposition 4.4.

Basics of the abstract classical and weighted Mourre theories

2.1. Operator Regularity. We consider two self-adjoint operators T and A acting in some complex Hilbert space H, and for the purpose of this brief overview T will be bounded. Given k P N, we say that T is of class C k pAq, and write Proposition 2.1. [ABG, Lemma 6.2.9] Let T P BpHq. The following are equivalent:

T P C k pAq, if the map (2.1) R Q t Þ Ñ e itA T
(1) T P C 1 pAq.

(2) The form rT, As extends to a bounded form on H ˆH defining a bounded operator denoted by ad 1 A pT q :" rT, As ˝.

(3) T preserves DomrAs and the operator T A´AT , defined on DomrAs, extends to a bounded operator.

Consequently, T P C k pAq if and only if the iterated commutators ad p A pT q :" rad p´1 A pT q, As are bounded for 1 ď p ď k. We say that T P C k u pAq if the map (2.1) has the C k pRq regularity with BpHq endowed with the norm operator topology. We say that T P C 1,1 pAq if

ż 1 0
}rT, e itA s ˝, e itA s ˝}t ´2dt ă 8.

It turns out that C 2 pAq Ă C 1,1 pAq Ă C 1 u pAq Ă C 1 pAq. 2.
2. The Mourre estimate. Let I be an open interval and assume T P C 1 pAq. We say that the Mourre estimate holds for T on I if there is γ ą 0 and a compact operator K such that (2.2) E I pT qrT, iAs ˝EI pT q ě γE I pT q `K in the form sense on DomrAs ˆDomrAs. We say that the strict Mourre estimate holds for T on I if (2.2) holds with K " 0. Assuming the estimate holds over I, T has at most finitely many eigenvalues in I, and they are of finite multiplicity, while if the strict estimate holds T has no eigenvalues in I. This is a direct consequence of the Virial Theorem, see [START_REF] Amrein | C0-groups, commutator methods and spectral theory of N -body hamiltonians[END_REF]Proposition 7.2.10]. Let IpE; εq be the open interval of radius ε ą 0 centered at E P R. One considers the function

̺ A T : R Þ Ñ R: ̺ A T : E Þ Ñ sup γ P R :
Dε ą 0 such that E IpE;εq pT qrT, iAs ˝EIpE;εq pT q ě γ ¨EIpE;εq pT q

( .

It is known for example that ̺ A

T is lower semicontinuous and ̺ A T pEq ă 8 if and only if E P σpT q. For more properties of this function, see [START_REF] Amrein | C0-groups, commutator methods and spectral theory of N -body hamiltonians[END_REF]chapter 7].

2.3. The weighted Mourre estimate & LAP. Let T be self-adjoint in a Hilbert space H. Denote P K :" 1 ´P , where P is the projection onto the pure point spectral subspace of T . In [START_REF] Golénia | Weighted Mourre's commutator theory, application to Schrödinger operators with oscillating potential[END_REF] it is explained in a more general setting that a projected weighted estimate of the form (2.3)

P K E I pT qrT, iBs ˝EI pT qP K ě cP K E I pT qC 2 E I pT qP K ,
where c ą 0, B, C are any linear operators satisfying CBC ´1 P BpHq, and C self-adjoint and injective, will imply a LAP of the form (2.4) sup zPI ˘}C pT ´zq ´1P K C} ă 8. The proof is by contradiction and therefore does not provide a description of the continuity properties of the LAP resolvent. Nonetheless, the resolvent estimate (2.4) implies the absence of s.c. spectrum for T in I, and if B is T -bounded then (2.3) also gives the time decay estimate

(2.5) ż R }Ce itT E I pT qP K ψ} 2 dt ă 8, ψ P H.

Verifying the classical Mourre estimate

In this Section we derive the Mourre estimate described in the previous Section for T " H given by (1.6). But first we must discuss operator regularity.

3.1. Verifying the operator regularity. We use freely Proposition 2.1. Let (3.1)

Θp∆q :" tt 0 , t 1 , ..., t d u, where t k " 4k, k " 0, 1, ..., d.

Recall that our choice of conjugate operator A is the closure of (1.12). This choice is justified by the fact that the commutator between ∆ and A is :

(3.2) r∆, iAs ˝" d ÿ k"1 ∆ k p4 ´∆k q.
In particular ∆ P C 1 pAq, and since σp∆ k q " r0, 4s, @k " 1, ..., d, the strict Mourre estimate holds for ∆ and A over any interval I Ť σp∆qzΘp∆q " r0, 4dszΘp∆q. For this reason, we refer to Θp∆q as the thresholds of ∆ (they are also thresholds for H and H 2 ). In fact, one can be more specific and prove that if E P σ k p∆q :" rt k´1 , t k s, for some k " 1, ..., d, then ̺ A ∆ pEq " ´pE ´tk´1 qpE ´tk q. This can be proved by induction on d and using the nifty result [START_REF] Amrein | C0-groups, commutator methods and spectral theory of N -body hamiltonians[END_REF]Theorem 8.3.6]. One can further show that for all k " 1, ..., d, r∆, iAs ˝decomposes into the sum of a non-negative operator and a non-negative remainder b k p∆q, namely r∆, iAs ˝" ´p∆ ´tk´1 qp∆ ´tk q `bk p∆q,

where b k p∆q :" ´8pk ´1q∆ `16kpk ´1q `ÿ 1ďi,jďd i‰j ∆ i ∆ j .
A somewhat surprising direct calculation based on functional calculus may show that no strict positivity can be extracted from b k p∆q by localizing in energy. Finally, it is not hard to prove that ∆ P C 2 pAq, or C 8 pAq for that matter. Moving on to the commutator between the potential V and A, we have:

(3.3) rV, iAs ˝" d ÿ i"1 p2 ´1 ´Ni qpV ´τi V qS i `p2 ´1 `Ni qpV ´τ i V qS i .
It is readily seen that the assumption (1.11), for some m P N, 0 ď r ă q, implies that rV, iAs ˝is a compact operator. In particular V P C 1 pAq. Regarding the commutator between the Wigner-von Neumann potential W and A, we have rW, iAs ˝" K W `BW where

K W :" 2 ´1W d ÿ i"1 pS i `Si q `2´1 d ÿ i"1 pS i `Si qW, (3.4) B W :" d ÿ i"1 U i W pS i ´Si q ´d ÿ i"1 pS i ´Si q W U i , (3.5)
W is the operator p W ψqpnq :" w ¨sinpkpn 1 `... `nd qqψpnq and U i is the operator pU i ψqpnq :"

n i |n| ´1ψpnq, for n ‰ 0, pU i ψqp0q :" 0. Note that K W is compact and B W is bounded. Thus W P C 1 pAq. However, W R C 1 u pAq, see [Ma1, Proposition 4.2].
Finally, regarding the commutator between the oscillating potential W 2 and A, we have rW 2 , iAs ˝" K W 2 `BW 2 where For each E P µpHq there exists ε " εpEq ą 0 such that for all θ P C 8 c pRq supported on I :" pE ´ε, E `εq, θp∆q W θp∆q " 0. In particular, θp∆qB W θp∆q is a compact operator.

K W 2 :" 2 ´1W 2 d ÿ i"1 pS i `Si q `2´1 d ÿ i"1 pS i `Si qW 2 , (3.6) B W 2 :" d ÿ i"1 U i σpS i ´Si q ´d ÿ i"1 pS i ´Si qσU i , (3.7) σ is the operator pσψqpnq :" w ¨p´1q n 1 `...`n d ψpnq. Again, K W 2 is compact and B W 2 is bounded. Thus W 2 P C 1 pAq.
Putting together everything discussed in this Section we get the Mourre estimate for H: Proposition 3.3. Let d ě 1, H " ∆ `V `W and µpHq be as defined (1.13). Suppose that V satisfies (1.11) for some m P N and any r, q P r0, 8q, not both zero. Then H P C 1 pAq, and for any I Ť µpHq, there are γ ą 0 and compact K such that the Mourre estimate E I pHqrH, iAs ˝EI pHq ě γE I pHq `K holds. In particular the conclusion of Proposition 1.1 holds on the interval I.

Proposition 3.3 is basically a reformulation of Proposition 1.1. The proof is easy and goes along the lines of [START_REF] Mandich | The limiting absorption principle for the discrete Wigner-von Neumann operator[END_REF]Proposition 3.5]. The decay of the eigenfunctions is a consequence of [Ma2, Theorem 1.5], while the absence of eigenvalues is a consequence of [START_REF] Mandich | Sub-exponential decay of eigenfunctions for some discrete Schrödinger operators[END_REF]Theorem 1.2]. Note that if H " ∆ `V , with V as in Proposition 3.3 and W " 0, then the above shows that we have a Mourre estimate for H on any I Ť r0, 4dszΘp∆q.

3.3.

Establishing the Mourre estimate for H 2 wrt. A. The following Lemma applies to all dimensions (d ě 1).

Lemma 3.4. For each E P r0, 4dszt2du there exists ε " εpEq ą 0 such that for all θ P C 8 c pRq supported on I :" pE ´ε, E `εq, θp∆qσθp∆q " 0. In particular, θp∆qB W 2 θp∆q is a compact operator.

Proof. The relation ∆σ " σp4d ´∆q holds. This entails θp∆qσθp∆q " σθp∆qθp4d ´∆q for all θ P C 8 c pRq. Also, θp∆qθp4d ´∆q " 0 whenever supppθq Ť r0, 2dq or Ť p2d, 4ds. So it suffices to take ε sufficiently small. The compactness of θp∆qB W 2 θp∆q is then a consequence, together with the fact that rU i , ∆s is compact.

Putting together everything discussed above we get the Mourre estimate for H 2 :

Proposition 3.5. Let d ě 1, H 2 " ∆ `V `W2 and µpH 2 q :" r0, 4dsz pΘp∆q Y t2duq. Suppose that V satisfies (1.11) for some m P N and any r, q P r0, 8q, not both zero. Then H 2 P C 1 pAq, and for any I Ť µpH 2 q, there are γ ą 0 and compact K such that the Mourre estimate E I pH 2 qrH 2 , iAs ˝EI pH 2 q ě γE I pH 2 q `K holds. In particular the conclusion of Proposition 1.2 holds on the interval I.

Proposition 3.5 is basically a reformulation of Proposition 1.2. All the comments done after Proposition 3.3 apply here to H 2 as well.

4. Operator norm bounds for functions of self-adjoint operators 4.1. Weighted resolvent bounds with logarithmic terms. Let Q be a self-adjoint operator in a Hilbert space H, z P C. The estimate }pQ ´zq ´1} ď |Impzq| ´1 is widely known. The aim of this sub-section is to obtain bounds of the form }f pQqpQ ´zq ´1} ď f pRepzqq|Impzq| ´1 for some specific classes of functions f : R `Þ Ñ R `containing logarithmic terms. In what follows we state results for a general self-adjoint operator Q. The results of this sub-section are later applied in 2 ways : 1) in the next 2 sub-sections (which are still in a general framework), and 2) in the proof of Theorem 1.3 (our Schrödinger problem). In the latter application, Lemma 4.3 is applied with Q " A, the discrete version of the generator of dilations, s " 1{2, and p k both positive and negative for 0 ď k ď m `1.

The next Lemma has already been proved, e.g. [START_REF] Dereziński | Scattering theory of classical and quantum N-particle systems[END_REF][START_REF] Gérard | A proof of the abstract limiting absorption principle by energy estimates[END_REF][START_REF] Golénia | Weighted Mourre's commutator theory, application to Schrödinger operators with oscillating potential[END_REF]. We propose a proof by contradiction which lends itself reasonably well to other types of functions. Lemmas 4.2 and 4.3 extend Lemma 4.1 by including logarithmic functions. Finally, Proposition 4.4 is a very nice generalization of Lemmas 4.2 and 4.3 to a wider class of sub-multiplicative functions. The proof is entirely due to Thierry Jecko and we are indebted to him for allowing us to publish it. Lemma 4.1. Let Q be a self-adjoint operator. Let Ω :" tpx, yq P R 2 : 0 ă |y| ď cxxyu, for some c ą 0. Then for every 0 ď s ď 1 there exists C ą 0 such that for all z " x `iy P Ω : y 2 pt ´xq 2 `y2 , defined on px, y, tq P Ω ˆRzΛ,

(4.
where Ω " tpx, yq P R 2 : |y| ď cxxyu and Λ :" tpx, y, tq P Ω ˆR : y " 0, x " tu. To prove the Lemma, it is enough to show that f s is uniformly bounded on the entire region Ω ˆR. Suppose that there is a sequence px n , y n , t n q P Ω ˆR such that f s px n , y n , t n q Ñ `8. Since we have 0 ď y 2 pt ´xq 2 `y2 ď 1, @px, y, tq P R ˆR˚ˆR , (4.2) and since s ą 0, we infer that xt n y{xx n y Ñ 8, as n Ñ 8. In particular, since s ĺ 1, we have pxt n y{xx n yq s ď xt n y{xx n y for n large enough and |t n | Ñ 8, as n Ñ 8. Next, we have: y 2 pt ´xq 2 `y2 , defined on px, y, tq P Ω ˆRzΛ,

0 ď f s px n ,
where Ω " tpx, yq P R 2 : |y| ď cxxyu and Λ :" tpx, y, tq P Ω ˆR : y " 0, x " tu. We aim at proving that g s is uniformly bounded on the entire region Ω ˆR. Suppose that there is a sequence px n , y n , t n q P Ω ˆR such that g s px n , y n , t n q Ñ `8. Recalling (4.2), since s ą 0, up to a subsequence, we infer that either 1q ln 2p p1 `xt n yq ln 2p p1 `xx n yq Ñ 8,

or 2q xt n y xx n y Ñ 8,
as n Ñ 8. We start with case 2). Given α ą 0, there are C α , C 1 α ą 0 such that @a, b P R we have

0 ď ln p1 `xayq ln p1 `xbyq " ln ´1`xay 1`xby lnp1 `xbyq `1 ď 1 lnp2q ln ˆ1 `xay 1 `xby ˙`1 (4.5) ď C α ˆ1 `xay 1 `xby ˙α ď C 1 α ˆxay xby ˙α .
Recalling s P p0, 1q and by considering the cases p ą 0 and p ă 0 separately, by choosing α small enough, there is a finite constant C such that

0 ď g s px n , y n , t n q ď Cf 1 px n , y n , t n q,
where f s is the function in Lemma 4.1. Repeating (4.3), we obtain a contradiction. We turn to the case 1). If p ą 0, (4.5) ensures that 1`xtny 1`xxny Ñ 8, as n Ñ 8. Hence the case 2) holds which in turn gives a contradiction.

Suppose now that 1) holds and p ă 0. Unlike before, we obtain this time that xxny xtny Ñ 8, as n Ñ 8. Using (4.2) and (4.5), there is C, s 1 ą 0 such that

0 ď g s px n , y n , t n q ď C ˆxt n y xx n y ˙s1 Ñ 0,
as n Ñ 8. This is a contradiction.

Lemma 4.3. Let Q and Ω be as in Lemma 4.1. For every 0 ă s ă 1 and tp 0 , ..., p m , p m`1 u Ă R there exists C ą 0 such that for all z " x `iy P Ω :

(4.6) › › ›xQy s pQ ´zq ´1 ln p m`1 m`1 pxQyq m ź k"0 ln p k k pxQyq › › › ď Cxxy s |y| ´1 ln p m`1 m`1 pxxyq m ź k"0 ln p k k pxxyq .
Proof. Thanks to (4.5), the proof is analogous to that of Lemma 4.2. We now display Thierry Jecko's more general result. Let I " r1, `8q. We assume 3 things: ' A1: Let ψ d : I Þ Ñ R `zt0u be a continuous and decreasing (non-increasing) function such that for all ε ą 0, the function

I Q x Þ Ñ pψ d pxq `1{ψ d pxqqx ´ε is bounded. ' A2: Let ψ u : I Þ Ñ R `zt0u
be a continuous and increasing (non-decreasing) function such that for all ε ą 0, the function

I Q x Þ Ñ pψ u pxq `1{ψ u pxqqx ´ε is bounded. ' A3: ψ u is sub-multiplicative,
that is, there is M ą 0 such that for all px, yq P I 2 , ψ u pxyq ĺ M ψ u pxqψ u pyq. Now let s P p0, 1q and define f : I Þ Ñ R `zt0u by f pxq :" x 2s ψ u pxqψ d pxq.

Proposition 4.4. Let Q and Ω be as in Lemma 4.1. In addition to the assumptions A1, A2 and A3 concerning ψ d and ψ u , suppose there is R 0 ľ 1 such that f is increasing on rR 0 , `8q. Then there is C ą 0 such that } a f pxQyqpQ ´zq ´1} ĺ C a f pxxyq|y| ´1 uniformly in z " x `iy P Ω.

Remark 4.1. Letting ψ u pxq " ś m`1 k"0,p k ą0 ln 2p k k pxq and ψ d pxq " ś m`1 k"0,p k ă0 ln 2p k k pxq immediately yields Lemma 4.3. On a side note, to satisfy the assumption A3 it is probably also necessary to have a larger constant in the Napierian logarithm, i.e. instead of ln 1 p1 `xq :" lnp1 `xq and ln k pxq :" lnp1 `ln k´1 pxqq one should take ln 1 pµ `xq :" lnpµ `xq and ln k pxq :" lnpµ `ln k´1 pxqq with µ " 0. Such adjustment is inconsequential in this article.

Proof. First we choose an analytic extension of f such that c ĺ 1{4 in the definition of Ω in Lemma 9.1.

In this proof C ą 0 denotes a generic constant that does not depend on x, y and t. Let Ω R :" tpx, yq P R 2 : 0 ă |y| ď cxxy ĺ Ru. Let f u pxq :" x 2s ψ u pxq. Then f u is sub-multiplicative, increasing on I and x Þ Ñ x ´2f u pxq is bounded by A2. For y ‰ 0, let gptq :" f pxtyq pt ´xq 2 `y2 , and hptq :" f pxtyq pt ´xq 2 y ´2 `1 .

Of course, gptq " hptqy ´2. To prove the proposition, it is enough by functional calculus to prove that there is C ą 0 such that for all px, yq P Ω, sup tPR gptq ĺ Cf pxxyqy ´2, or equivalently, (4.7) sup tPR hptq ĺ Cf pxxyq.

First we note that assumptions A1 and A2 imply that f pxq " x 2s ψ u pxqψ d pxq ľ C ε x 2s x ´2ε for any ε ą 0 and so lim f pxq " `8 as x Ñ `8. In turn, this implies (together with the fact that f is continuous) that there is R 1 ľ R 0 such that max 1ĺx 1 ĺR 0 f px 1 q ĺ f pxq for all x ľ R 1 .

In Part 1, the estimate (4.7) is proved for px, yq P Ω R for any finite R (with the constant C depending on R). In Part 2, the estimate (4.7) is proved for px, yq P ΩzΩ 2R 1 .

PART 1: Let R ą 1 and px, yq P Ω R be arbitrarily given. For |t| ľ 4R, |t ´x| ľ |t|{2 and pt ´xq 2 y ´2 `1 ľ t 2 {p4y 2 q `1 ľ t 2 {p4y 2 q. So

hptq ĺ f pxtyq t 2 4y 2 ĺ 4R 2 f pxtyq xty 2 xty 2 t 2 ĺ 4R 2 › › › › f pxtyq xty 2 › › › › 8 › › › › xty 2 t 2 › › › › 8 ĺ C,
where C grows with R. By continuity of the function h one gets hptq ĺ C uniformly in t P R.

Finally, 1{f being uniformly bounded by assumption,

sup tPR hptq ĺ C › › › 1 f pxxyq › › › 8 ¨f pxxyq.
PART 2: Let px, yq P Ω with |x| ľ 2R 1 .

' Case 1: For t P R satisfying |t´x| ĺ |x|{2, one has xty 2 " 1`t 2 ĺ 1`2pt´xq 2 `2x 2 ĺ 4xxy 2 , and so xty ĺ 2xxy. Also, |t| ľ |x|´|x´t| ľ |x|{2 ľ R 1 . Since 2xxy ľ xty ľ R 1 and f is increasing on rR 0 , 8q, it follows that hptq ĺ f pxtyq ĺ f p2xxyq " f u p2xxyqψ d p2xxyq ĺ Cf u pxxyqψ d pxxyq " Cf pxxyq.

We used that ψ d is decreasing and ψ u is sub-multiplicative in the last inequality.

' Case 2: For t P R satisfying |t ´x| ľ |x|{2, one has

xty 2 ĺ 1 `2pt ´xq 2 `2x 2 ĺ 1 `2pt ´xq 2 `8pt ´xq 2 ĺ 16xt ´xy 2 .
One further subdivides into 2 subcases.

' Subcase 2.1: If |t| ĺ |x|, then xxy ľ maxp2R 1 , xtyq. So, hptq ĺ f pxtyq ĺ max xt 1 yĺR 0 f pxt 1 yq `max R 0 ĺxt 1 yĺxxy f pxt 1 yq ĺ 2f pxxyq,
where we used the assumption about R 1 and that f is increasing on rR 0 , 8q. 

0 ď T ď S ñ T α ď S α , for all 0 ď α ď 1,
The aim of this sub-section is to extend this transitive property to a family of (poly)logarithmic functions. In what follows we consider general positive self-adjoint operators T, S and derive results in greater generality. Concerning the detailed application we make of it, notably for the proof of Theorem 1.3, please see sub-section 4.4. In this sub-section we now always suppose 1 ď T ď S and hence DomrS 1{2 s Ă DomrT 1{2 s. By the Heinz inequality, T 2α ď S 2α , 0 ď α ď 1{2. But this is equivalent to saying that }T α ψ} ď }S α ψ} for all ψ P DomrS α s. Since S α is bijective, it follows that }T α S ´αψ} ď }ψ}, for all ψ P H. Thus T α S ´α is an element of BpHq. In what follows this small argument is used repeatedly. The Helffer-Sjöstrand formula is also used, see Appendix 9. Let Φ n , n P N ˚, be the polylogarithmic functions from (8.3). Denote Φ α n pxq :" pΦ n pxqq α . Lemma 4.5. For all 0 ď α ď 1{2, Φ α n pT q ¨Φ´α n pSq P BpHq, n P N ˚.

Proof.

As discussed in Section 8 the Φ n , n P N ˚, are Nevanlinna functions that continue analytically across p´1, `8q from C `to C ´. Since 1 ď T ď S, Theorem 7.3 implies Φ n pT q ď Φ n pSq. By the Heinz inequality, Φ 2α n pT q ď Φ 2α n pSq, 0 ď α ď 1{2. The result follows. Lemma 4.6. For all k P N and 0 ď α ď 1{2, Φ α n pln k pT qq ¨Φ´α n pln k pSqq P BpHq, n P N ˚.

Proof. Φ n pln k pxqq belongs to P p´1, `8q because it is the composition of functions all belonging to P p´1, `8q. Also, 1 ď T ď S. By Loewner's Theorem, Φ n pln k pT qq ď Φ n pln k pSqq. The result follows from the Heinz inequality. Lemma 4.7. For all 0 ď p, ln p p1 `T q ¨ln ´pp1 `Sq P BpHq.

Remark 4.2. For 0 ď p ď 1{2, the result follows from well-known results on the logarithm, see e.g. [RS1, Exercise 51 of Chapter VIII]. For p ą 1{2 we don't know how prove the result without the use of the polylogarithmic functions.

Proof. Write p " nα, where n P N ˚and 0 ď α ď 1{2. Then ln nα p1 `T q ln ´nα p1 `Sq equals ln nα p1 `T qΦ ´α n pT q bounded by (8.4)

Φ α n pT qΦ ´α n pSq bounded by Lemma 4.5 Φ α n pSq ln ´nα pSq bounded by (8.4)

.

The next lemma extends the previous to iterated logarithms. Lemma 4.8. For all k P N and 0 ď p, ln p k pT q ¨ln ´p k pSq P BpHq. Proof. The statement is trivial for k " 0 and k " 1 is Lemma 4.7. Now let k ě 1. Write p " nα, where n P N ˚and 0 ď α ď 1{2. .

The next Lemma extends the previous to products of iterated logarithms. We require extra technical regularity or a much more specific assumption. Lemma 4.9. Let tp 0 , ..., p m , p m`1 u Ă r0, `8q and m P N be given. Suppose either ' (a) ś m`1 k"0 ln ´pk k pSq P C 1 pT q, or ' (b) T " xQy for some self-adjoint operator Q and ś m`1 k"0 ln ´pk

k pSq P C 1 pQq. Then m`1 ź k"0 ln p k k pT q ¨m`1 ź k"0 ln ´pk k pSq P BpHq.
Proof. By induction on m. The base case m " 0 is Lemma 4.7 (recall that ln 1 pxq :" lnp1 `xq).

For the inductive step, m Ñ m `1, we have

ln p m`2 m`2 pT q m`1 ź k"0 ln p k k pT q ¨ln ´pm`2 m`2 pSq m`1 ź k"0 ln ´pk k pSq .
After commuting ln p m`2 m`2 pT q with ś m`1 k"0 ln ´pk k pSq this operator is equal to : It is enough to show that the latter term with the under bracket is a bounded operator. If we are assuming paq then the term is developed as follows :

m`1 ź k"0 ln p k k pT q m`1 ź k"0
i 2π ż C B f Bz m`1 ź k"0 ln p k k pT q pz ´T q ´1" T, m`1 ź k"0 ln ´pk k pSq ı ˝pz ´T q ´1dz ^dz,
where f pxq " ln p m`2 m`2 pxq P S ε pRq, @ε ą 0, see (9.1). By the assumption paq the commutator in the middle of the integral P BpHq. To keep things simple, one can use Lemma 4.1 to get

› › › m`1 ź k"0 ln p k k pT q pz ´T q ´1› › › ď c › › xT y δ pz ´T q ´1› › ď cxxy δ |y| ´1
for some δ ą 0 and c ą 0. Thus the latter integral converges in norm to a bounded operator. If we are assuming pbq however, then the term is developed as follows :

i 2π ż C B h Bz m`1 ź k"0 ln p k k pxQyq pz ´Qq ´1" Q, m`1 ź k"0 ln ´pk k pSq ı ˝pz ´Qq ´1dz ^dz,
where hpxq " ln p m`2 m`2 pxxyq P S ε pRq, @ε ą 0. By the assumption pbq the commutator in the middle of the integral P BpHq. The rest is as before.

4.3.

From a LAP in T to a LAP in S. In this sub-section we continue assuming T, S are arbitrary self-adjoint operators satisfying 1 ď T ď S. Suppose we have a LAP of the form (1.15) and a local decay estimate (1.16) where the weights are in T . Here we derive estimates that allow to pass to those same estimates with weights in S instead. We state results in greater generality. Concerning the detailed application we make of it please see sub-section 4.4.

The next Lemma extends Lemma 4.7.

Lemma 4.10. Fix σ P r0, 1{2s and suppose either ' (a) S ´σ P C 1 pT q, or ' (b) T " xQy for some self-adjoint operator Q and S ´σ P C 1 pQq.

Then for all 0 ď p, T σ ln p p1 `T q ¨S´σ ln ´pp1 `Sq P BpHq.

Proof. The case σ " 0 is covered by Lemma 4.7 so we assume σ P p0, 1{2s. Since T σ S ´σ P BpHq and ln p p1 `T q ln ´pp1 `Sq P BpHq, it is enough to prove that T σ rln p p1 `T q, S ´σ s ˝P BpHq.

As in the proof of Lemma 4.9 we proceed slightly differently depending on whether paq or pbq is assumed. Let us treat the case paq only. The formal commutator T σ rln p p1 `T q, S ´σ s is equal to

i 2π ż C B f Bz T σ pz ´T q ´1rT , S ´σ s ˝pz ´T q ´1dz ^dz,
where f pxq " ln p p1 `xq P S ε pRq, @ε ą 0. By assumption rT, S ´σ s ˝P BpHq. Applying Lemma 4.1 shows that this integral converges in norm to a bounded operator. The next Lemma extends Lemma 4.9. Proof. By induction on m. The base case m " 0 is Lemma 4.10. The inductive step is handled in the same way as in Lemma 4.9. One commutes ln p m`2 m`2 pT q with S ´σ ś m`1 k"0 ln ´pk k pSq. One applies the inductive hypothesis to the first term, and for the second term (the one with the commutator) it is enough to show that

T σ m`1 ź k"0 ln p k k pT q " ln p m`2 m`2 pT q , S ´σ m`1 ź k"0 ln ´pk k pSq ı ˝P BpHq.
To this end one performs a similar integral expansion as in the proof of Lemma 4.9, with the same functions, f pxq " ln

p m`2 m`2 pxq or hpxq " ln p m`2
m`2 pxxyq depending on whether paq or pbq is assumed. Then, to keep things simple, one can use the fact that there are δ ą 0 and c ą 0 (by Lemma 4.1) such that

› › ›T σ m`1 ź k"0 ln p k k pT q pz ´T q ´1› › › ď c › › xT y σ`δ pz ´T q ´1› › ď cxxy σ`δ |y| ´1.
One sees that the integral converges in norm to a bounded operator.

4.4. The 2 previous sub-sections in application. We are now in a position to explain how the results of the preceding 2 sub-sections are applied in the proof of Theorem 1.3. Let A and N be respectively the discrete generator of dilations and the position operator. xAy and xN y are unbounded self-adjoint operators. The unboundedness is seen directly from the graph norm and using an appropriate sequence of unit vectors.

The goal is to apply the results of sub-sections 4.2 and 4.3, chiefly Lemmas 4.9 and 4.11, to pT, Sq " pxAy, xN yq. However, this cannot be done as such. Instead what we do is to first establish the inequality 1 ď xAy ď ? c d xN y, see Lemma 4.13 below. We then apply Lemmas 4.9 and 4.11 to pT, Sq " pxAy, ? c d xN yq. Only then do we see that their conclusions remain valid for pT, Sq " pxAy, xN yq.

For our Schrödinger problem, in application we shall need the conclusion of Lemma 4.9 to hold for pT, Sq " pxAy, xN yq, p k " 1 for 0 ď k ď m and p m`1 ą 1, see for example Lemma 5.3. To pass from a LAP with weights in xAy to weights in xN y, we shall also need the conclusion of Lemma 4.11 to hold for pT, Sq " pxAy, xN yq, σ " 1{2, p k " 1{2 for 0 ď k ď m and p m`1 ą 1{2.

In the 2 previous sub-sections we have kept the options open for 2 assumptions : paq or pbq, cf. Lemmas 4.9 and 4.11. In application we choose pbq, i.e. we set T " xQy where Q " A, the generator of dilations. Thus we must verify the regularity criteria : Lemma 4.12. Let σ P r0, 1{2s, tp 0 , ..., p m , p m`1 u Ă r0, `8q and m P N be arbitrary. Then xN y ´σ ś m`1 k"0 ln ´pk k pxN yq P C 1 pAq.

Proof. This is a simple application of Proposition 2.1, (3.3) and the mean value theorem. Finally, we must give the key inequality that allows to apply Lemmas 4.9 and 4.11 to pT, Sq " pxAy, ? c d xN yq :

Lemma 4.13. Let c d :" maxpd 3 `d2 `1, 4pd `1qq. @ 0 ď α ď 1, pA 2 `1q α ď pc d q α pN 2 `1q α .
Proof. The result is not new but we repeat the proof for convenience. Let ψ P DomrN 2 s Ă DomrA 2 s. First we calculate for α " 1 :

@ ψ, pA 2 `1qψ D " }ψ} 2 `}Aψ} 2 ď }ψ} 2 `" d ÿ j"1 }ψ} `2}N j ψ}  2 ď }ψ} 2 `"d 2 }ψ} 2 `d ÿ j"1 4}N j ψ} 2  pd `1q ď c d " }ψ} 2 `d ÿ j"1 }N j ψ} 2  " c d @ ψ, pN 2 `1qψ D .
Pass to exponent α by invoking the Heinz inequality (4.8).

Preliminary lemmas for the Proof of Theorem 1.3

Let P denote the orthogonal projection onto the pure point spectral subspace of H. A denotes the discrete generator of dilations (1.12). Please note that throughout all this Section we state the results for the Hamiltonian H, but they also apply to H 2 with the same proof (just exchange W with W 2 and W with σ).

Proposition 5.1. [GJ1] @u, v P DomrAs, the rank one operator |uyxv| : ψ Ñ xv, ψyu P C 1 pAq.

Lemma 5.2. Assume V satisfies (1.10) and (1.11) for some m P N, and r, q P r0, `8q not both zero. Then for any open interval I Ă µpHq and any η P C 8 c pRq with supppηq Ă I, P E I pHq and P K ηpHq P C 1 pAq.

Proof. I Ă µpHq so the Mourre estimate holds for H and A on I. In particular the point spectrum of H is finite on I, see [START_REF] Amrein | C0-groups, commutator methods and spectral theory of N -body hamiltonians[END_REF]Corollary 7.2.11]. Therefore P E I pHq is a finite rank operator. By [START_REF] Mandich | Sub-exponential decay of eigenfunctions for some discrete Schrödinger operators[END_REF]Theorem 1.5], the eigenfunctions of H, if any, belong to the domain of A. We may therefore apply Proposition 5.1 to get P E I pHq P C 1 pAq. As for P K ηpHq it is equal to ηpHq ´P E I pHqηpHq, and so belongs to C 1 pAq.

Lemma 5.3. Assume V satisfies (1.10) for some q ą r " 2, m P N. Let η P C 8 c pRq be supported on an open interval I. Then @ 0 ď p ă q{4, M ě m, (5.1) pηpHq ´ηp∆qqw 2p,1 M pAq,

(5.2) w 2p,1 M pAqpηpHq ´ηp∆qqw 2p,1 M pAq are compact operators.

Proof. We prove the first one and leave the second one for the reader. By Proposition 9.3,

∆ P C 1 pw 2p,1
M pAqq, since w 2p,1 M pxq P S ε pRq, @ε ą 0, and ∆ P C 1 pAq. Thus r∆, w 2p,1 M pAqs ˝P BpHq. By the Helffer-Sjöstrand formula and the resolvent identity, pηpHq ´ηp∆qqw 2p,1 M pAq equals i 2π

ż C B η Bz pz ´Hq ´1pV `W qpz ´∆q ´1w 2p,1 M pAqdz ^dz " i 2π ż C B η Bz pz ´Hq ´1pV `W qw 2p,1 M pAqpz ´∆q ´1dz ^dz `i 2π ż C B η Bz pz ´Hq ´1pV `W qrpz ´∆q ´1, w 2p,1 M pAqs ˝dz ^dz " i 2π ż C B η Bz pz ´Hq ´1 ¨V w 2p,1 M pN q compact by (1.10) `W w 2p,1 M pN q compact ‹ 'w ´2p,´1 M pN qw 2p,1 M pAq bounded by Lemma 4.9 pz ´∆q ´1dz ^dz `i 2π ż C B η Bz
pz ´Hq ´1 pV `W q compact pz ´∆q ´1r∆, w 2p,1 M pAqs ˝pz ´∆q ´1dz ^dz.

The integrands of the last two integrals are compact operators. With the support of η bounded, the integrals converge in norm, and so the compactness is preserved in the limit.

Lemma 5.4. Let R ą 1 and recall that w α,β M pA{Rq is given by (1.14). Consider K0 " ηp∆qrV, iAs ˝ηp∆q `pηpHq ´ηp∆qqrH, iAs ˝ηp∆q `ηpHqrH, iAs ˝pηpH q ´ηp∆qq, and K 0 :" K0 `ηp∆qrW, iAs ˝ηp∆q " K0 `ηp∆qK W ηp∆q `ηp∆qB W ηp∆q, where η P C 8 c pRq is supported on an open interval I Ť r0, 4dszΘp∆q. Assume V satisfies assumptions (1.10) and (1.11) for some q ą r " 2, m P N. Then for all 1{2 ă p ă q{4, M ě m, w 2p,1 M pA{Rq K0 w 2p,1 M pA{Rq is a compact operator whose norm is uniformly bounded w.r.t. R. Furthermore, if I Ă µpHq, then further shrinking the size of the interval I also allows w 2p,1 M pA{Rq K 0 w 2p,1 M pA{Rq to be a compact operator whose norm is uniformly bounded w.r.t. R. Proof. Write w 2p,1 M pA{Rq K0 w 2p,1 M pA{Rq as

w 2p,1 M ˆA R ˙w´2p,´1 M pAq bounded uniformly in R K w ´2p,´1 M pAqw 2p,1 M ˆA R ḃounded uniformly in R , K :" w 2p,1 M pAq K0 w 2p,1 M pAq.
Thus we want to show that K is a compact operator. K is the sum of the following 3 terms : K1 :" w 2p,1 M pAqηp∆qrV, iAs ˝ηp∆qw 2p,1 M pAq, K2 :" w 2p,1 M pAqpηpHq ´ηp∆qqrH, iAs ˝ηp∆qw 2p,1 M pAq, K3 :" w 2p,1 M pAqηpHqrH, iAs ˝pηpH q ´ηp∆qqw 2p,1 M pAq. Each of these terms are compact, as explained below. ' For K1 : we want to commute w 2p,1 M pAq with ηp∆q. Since ηp∆q P C 1 pAq and w 2p,1 M pxq P S ε pRq, @ε ą 0, rw 2p,1 M pAq, ηp∆qs ˝P BpHq by Proposition 9.3. Also, w 2p,1 M pAqw ´2p,´1 M pN q P BpHq by Lemma 4.9, and w 2p,1 M pN qrV, iAs ˝w2p,1 M pN q is a compact operator, by the assumption (1.11) (1{2 ă p ă q{4). Thus K1 is a compact operator. ' For K2 : Write it as w 2p,1 M pAqpηpHq ´ηp∆qqr∆, iAs ˝ηp∆qw 2p,1 M pAq `w2p,1 M pAqpηpHq ´ηp∆qqrV, iAs ˝ηp∆qw 2p,1 M pAq. For the first term commute r∆, iAs ˝ηp∆q with w 2p,1 M pAq and then apply (5.2). For the second term commute ηp∆q with w 2p,1 M pAq and then apply (5.1) and assumption (1.10). We leave the details to the reader. ' For K3 : same idea as for K2 .

Now the second part of the statement where we assume I Ă µpHq. Recall K W and B W are given by (3.4) and (3.5). It is enough to show that

K4 :" w 2p,1 M pAqηp∆qK W ηp∆qw 2p,1 M pAq and K5 :" w 2p,1 M pAqηp∆qB W ηp∆qw 2p,1 M pAq are compact. For K4 , commute w 2p,1
M pAq with ηp∆q and use the fact that w 2p,1

M pAqK W w 2p,1 M pAq is compact. For K5 , it is enough to prove that w 2p,1 M pAqηp∆qU i W pS i ´Si qηp∆qw 2p,1
M pAq is compact. By Lemma 3.1 and Proposition 3.2, ηp∆q W ηp∆q " 0 if the the support of η is sufficiently small. So it is enough to prove that w 2p,1 M pAqrηp∆q, U i s ˝W pS i ´Si qηp∆qw 2p,1 M pAq is compact. This can be gleaned from the following grouping w 2p,1 M pAqw ´2p,´1 M pN q bounded by Lemma 4.9

w 2p,1 M pN qrηp∆q, U i s ˝w2p,1 M pN q compact w ´2p,´1 M pN q W pS i ´Si qηp∆qw 2p,1 M pAq
bounded by Lemma 4.9

.

6. Proof of Theorem 1.3

We are now ready to prove the projected weighted Mourre estimate (2.3), which in turn will imply the LAP (2.4). The proof makes use of almost analytic extensions of C 8 pRq bounded functions and the class of functions S ρ pRq with ρ " 0, see Appendix 9. We also mention that the proof is essentially the same as that of [START_REF] Golénia | Weighted Mourre's commutator theory, application to Schrödinger operators with oscillating potential[END_REF]Theorem 4.15] (see also [START_REF] Mandich | The limiting absorption principle for the discrete Wigner-von Neumann operator[END_REF]Theorem 5.4]), but we display it in detail for the reader's convenience. Please note that throughout all this Section we work with the Hamiltonian H, but the same developments work for H 2 . Proof of Theorem 1.3. E P µpHq so let I Ă µpHq be an open interval containing E such that the Mourre estimate holds over I. By Lemma 5.2, P E I pHq and P K ηpHq are of class C 1 pAq, for any η P C 8 c pRq with supppηq Ă I. Let θ, η, χ P C 8 c pRq be bump functions such that ηθ " θ, χη " η and supppχq Ă I, see Figure 1. Initially J, θ and η are chosen and fixed so that one may apply Lemma 3.1 and Proposition 3.2. As for χ and I they are chosen to fulfill the conditions drawn in Figure 1. Later in the proof we will shrink the interval I around E (and thereby possibly J as well).

We aim to derive (2.3) on I for B " ϕpA{Rq, C " a ϕ 1 pA{Rq, some R ą 1 and ϕ given by (6.1)

ϕ : R Þ Ñ R, ϕ : t Þ Ñ ż t ´8 dx xxyw 2p,1 M pxq , t P R, p ą 1{2.
Note that ϕ P S 0 pRq, so that ϕpA{Rq P BpHq for all R ą 1. Please note that it is sufficient to obtain the LAP (1.15) for all 1{2 ă p ĺ p 0 , for some p 0 ą 1{2, and only M " m, because then the extension to all p ą 1{2 and M ľ m is automatic. Consider the bounded operator

F :" P K θpHqrH, iϕpA{Rqs ˝θpH qP K " i 2π 1 R ż C B φ Bz pzqP K θpHqpz ´A{Rq ´1rH, iAs ˝pz ´A{Rq ´1θpH qP K dz ^dz.
To save room, henceforth we drop the element dz ^dz. By Lemma 5.2 P K ηpHq P C 1 pAq, so rP K ηpHq, pz ´A{Rq ´1s ˝" pz ´A{Rq ´1rP K ηpHq, A{Rs ˝pz ´A{Rq ´1.

Next to P K θpHq we introduce P K ηpHq and commute it with pz ´A{Rq ´1. We get :

F " i 2π 1 R ż C B φ Bz pzqP K θpHqpz ´A{Rq ´1P K ηpHqrH, iAs ˝ηpH q P K pz ´A{Rq ´1θpH qP K `P K θpHq A A R E ´1 2 w ´p,´1 2 M ˆA R ˙¨B 1 R 2 ¨w´p,´1 2 M ˆA R ˙A A R E ´1 2 θpHqP K ,
where B 1 P BpHq is uniformly bounded in R. We refer to [START_REF] Mandich | The limiting absorption principle for the discrete Wigner-von Neumann operator[END_REF]Proof of Theorem 5.4] for extra details. Next to each ηpHq we insert χpHq, and then decompose ηpHqrH, iAs ˝ηpH q as follows :

ηpHqrH, iAs ˝ηpH q " ηp∆qr∆, iAs ˝ηp∆q `K0 , where K 0 " ηp∆qrV `W, iAs ˝ηp∆q `pηpHq ´ηp∆qqrH, iAs ˝ηp∆q `ηpHqrH, iAs ˝pηpH q ´ηp∆qq.

Note that K 0 is the compact operator that appears in Lemma 5.4. We also let M 0 :" P K χpHqηp∆qr∆, iAs ˝ηp∆qχpH qP K .

Thus :

F " i 2π 1 R ż C B φ Bz pzqP K θpHqpz ´A{Rq ´1M 0 pz ´A{Rq ´1θpH qP K `i 2π 1 R ż C B φ Bz pzqP K θpHqpz ´A{Rq ´1P K χpHqK 0 χpHqP K pz ´A{Rq ´1θpH qP K (6.2) `P K θpHq A A R E ´1 2 w ´p,´1 2 M ˆA R ˙¨B 1 R 2 ¨w´p,´1 2 M ˆA R ˙A A R E ´1 2 θpHqP K .
We write the second term in (6.2) as

R ´1xA{Ry ´1{2 w ´p,´1{2 M pA{RqKw ´p,´1{2 M pA{RqxA{Ry ´1{2
where

K :" i 2π ż C B φ Bz pzq A A R E 1 2 w p, 1 2 M ˆA R ˙pz´A{Rq ´1P K χpHqK 0 χpHqP K pz´A{Rq ´1w p, 1 2 M ˆA R ˙A A R E 1 2 . CLAIM.
K is a compact operator for 1{2 ă p ă q{4, where q is the exponent that appears in (1.10) and (1.11) -Hypothesis (H). Also the norm of K goes to zero as the support of χ gets tighter around E, and this uniformly in R. PROOF OF CLAIM. Write K as

K " i 2π ż C B φ Bz pzq A A R E 1 2 w ´p,´1 2 M ˆA R ˙pz ´A{Rq ´1 bounded by Lemma 4.3 ą w 2p,1 M ˆA R ˙P K χpHqK 0 χpHqP K pz ´A{Rq ´1w p, 1 2 M ˆA R ˙A A R E 1 2
bounded by Lemma 4.3

. Now we want to commute w 2p,1 M `A R ˘with P K χpHq. Since P K χpHq P C 1 pAq and w 2p,1 M pxq P S ε pRq, @ε ą 0,

w 2p,1 M ˆA R ˙"w 2p,1 M ˆA R ˙, P K χpHq ı ˝P BpHq by Proposition 9.3. So K " K 1 `K2 , where K 1 " i 2π ż C B φ Bz pzq A A R E 1 2 w ´p,´1 2 M ˆA R ˙pz ´A{Rq ´1 bounded by Lemma 4.3 ą P K χpHqw 2p,1 M ˆA R ˙K0 χpHqP K pz ´A{Rq ´1w p, 1 2 M ˆA R ˙A A R E 1 2 bounded by Lemma 4.3
and

K 2 " i 2π ż C B φ Bz pzq A A R E 1 2 w ´3p,´3 2 M ˆA R ˙pz ´A{Rq ´1 bounded by Lemma 4.3 ą w 2p,1 M ˆA R ˙"w 2p,1 M ˆA R ˙, P K χpHq ı bounded uniformly in R by Proposition 9.3 K 0 χpHqP K pz ´A{Rq ´1w p, 1 2 M ˆA R ˙A A R E 1 2
bounded by Lemma 4.3

.

By Lemma 4.3, there is C ą 0 such that › › › A A R E 1 2 w ´3p,´3 2 M ˆA R ˙pz ´A{Rq ´1› › › ď Cw ´3p,´3 2 M pxqxxy 1 2 |y| ´1, and › › › A A R E 1 2 w p, 1 2 M ˆA R ˙pz ´A{Rq ´1› › › ď Cw p, 1 2 M pxqxxy 1 2 |y| ´1.
Now apply Lemma 4.3 and (9.2) with ρ " 0 and ℓ " 2. Note that }K 2 } is bounded above by a multiple of }K 0 χpHqP K } times

ż Ω xxy ρ´1´ℓ |y| ℓ ¨w´3p,´3 2 M pxqxxy 1 2 |y| ´1 ¨wp, 1 2 M pxqxxy 1 2 |y| ´1 dxdy " ż Ω dxdy xxy 2 w 2p,1
M pxq ă 8, thanks to p ą 1{2. Because K 0 is compact, it follows that K 2 is a compact operator and }K 2 } goes to zero as the support of χ gets tighter around E. We repeat a similar operation for K 1 :

write w p, 1 2 M `A R ˘" w 2p,1 M `A R ˘w´p,´1 2 M `A R ˘and commute w 2p,1 M `A R ˘with χpHqP K . Doing this gives K 1 " i 2π ż C B φ Bz pzq A A R E 1 2 w ´p,´1 2 M ˆA R ˙pz ´A{Rq ´1 bounded by Lemma 4.3 ą P K χpHq w 2p,1 M ˆA R ˙K0 w 2p,1 M ˆA R ċompact by Lemma 5.4 χpHqP K pz ´A{Rq ´1w ´p,´1 2 M ˆA R ˙A A R E 1 2 bounded by Lemma 4.3 `K3 compact .
One shows that }K 1 } ď c}P K χpHqw 2p,1 M pA{Rq K 0 w 2p,1 M pA{Rq } for some constant c ą 0 and goes to zero as the support of χ gets tighter around E, notably because w 2p,1 M pA{Rq K 0 w 2p,1 M pA{Rq is compact by Lemma 5.4. As for K 3 , it is compact and satisfies }K 3 } ď c}P K χpHqw 2p,1 M pA{Rq K 0 } for some constant c ą 0. All in all, we see that K is a compact operator such that }K} goes to zero as the support of χ gets tighter around E, uniformly in R. This proves the claim.

We now proceed with the proof of the Theorem. Thanks to the claim we have :

F " i 2π 1 R ż C B φ Bz pzqP K θpHqpz ´A{Rq ´1M 0 pz ´A{Rq ´1θpH qP K `P K θpHq A A R E ´1 2 w ´p,´1 2 M ˆA R ˙ˆB 1 R 2 `K R ˙w´p,´1 2 M ˆA R ˙A A R E ´1 2 θpHqP K .
The next thing to do is to commute pz ´A{Rq ´1 with M 0 :

F " i 2π 1 R ż C B φ Bz pzqP K θpHqpz ´A{Rq ´2M 0 θpHqP K `i 2π 1 R ż C B φ Bz pzqP K θpHqpz ´A{Rq ´1rM 0 , pz ´A{Rq ´1s ˝θpH qP K `P K θpHq A A R E ´1 2 w ´p,´1 2 M ˆA R ˙ˆB 1 R 2 `K R ˙w´p,´1 2 M ˆA R ˙A A R E ´1 2 θpHqP K .
We apply (9.3) to the first integral (which converges in norm), while for the second integral we use the fact that M 0 P C 1 pAq to conclude that there exists a B 2 P BpHq whose norm is uniformly bounded in R such that

F " R ´1P K θpHqϕ 1 pA{RqM 0 θpHqP K `P K θpHq A A R E ´1 2 w ´p,´1 2 M ˆA R ˙ˆB 2 R 2 `K R ˙w´p,´1 2 M ˆA R ˙A A R E ´1 2 θpHqP K .
Now ϕ 1 pA{Rq " xA{Ry ´1w ´2p,´1 M pA{Rq. By Proposition 9.3,

rxA{Ry ´1 2 w ´p,´1 2 M pA{Rq, M 0 s ˝xA{Ry 1 2 w p, 1 2 M pA{Rq " R ´1B 1
for some B 1 P BpHq whose norm is uniformly bounded in R. Thus there is B 3 P BpHq with norm uniform in R such that

F " R ´1P K θpHq A A R E ´1 2 w ´p,´1 2 M ˆA R ˙M0 w ´p,´1 2 M ˆA R ˙A A R E ´1 2 θpHqP K `P K θpHq A A R E ´1 2 w ´p,´1 2 M ˆA R ˙ˆB 3 R 2 `K R ˙w´p,´1 2 M ˆA R ˙A A R E ´1 2 θpHqP K ě γR ´1P K θpHq A A R E ´1 2 w ´p,´1 2 M ˆA R ˙P K χpHqη 2 p∆qχpHqP K w ´p,´1 2 M ˆA R ˙A A R E ´1 2 θpHqP K `P K θpHq A A R E ´1 2 w ´p,´1 2 M ˆA R ˙ˆB 3 R 2 `K R ˙w´p,´1 2 M ˆA R ˙A A R E ´1 2 θpHqP K
where γ ą 0 comes from applying the Mourre estimate for ∆ and A. Let K :" γP K χpHqpη 2 p∆q ´η2 pHqqχpHqP K .

Note that K is compact with } K} vanishing as the support of χ gets tighter around E. Thus

F ě γR ´1P K θpHq A A R E ´1 2 w ´p,´1 2 M ˆA R ˙P K χpHqη 2 pHqχpHqP K w ´p,´1 2 M ˆA R ˙A A R E ´1 2 θpHqP K `P K θpHq A A R E ´1 2 w ´p,´1 2 M ˆA R ˙˜B 3 R 2 `K `K R ¸w´p,´1 2 M ˆA R ˙A A R E ´1 2 θpHqP K .
Finally, we commute P K χpHqη 2 pHqχpHqP K " P K η 2 pHqP K with w ´p,´1 2 M pA{RqxA{Ry ´1 2 , and see that

γrP K η 2 pHqP K , w ´p,´1 2 M pA{RqxA{Ry ´1 2 s ˝wp, 1 2 M pA{RqxA{Ry 1 2 " R ´1B 2
for some B 2 P BpHq whose norm is uniformly bounded in R. Thus there is B 4 P BpHq with norm uniform in R such that

F ě γR ´1P K θpHq A A R E ´1w ´2p,´1 M ˆA R ˙θpHqP K `P K θpHq A A R E ´1 2 w ´p,´1 2 M ˆA R ˙˜B 4 R 2 `K `K R ¸w´p,´1 2 M ˆA R ˙A A R E ´1 2 θpHqP K .
To conclude, we shrink the support of χ to ensure that }K `K} ă γ{3 and choose R ą 1 so that }B 4 }{R ă γ{3. Then K `K ě ´γ{3 and B 4 {R ě ´γ{3, so (6.3)

F " P K θpHq " H, iϕ ˆA R ˙ı˝θ pHqP K ě γ 3R P K θpHq A A R E ´1w ´2p,´1 M ˆA R ˙θpHqP K .
Let We revisit Loewner's theorem on matrix operator monotone functions, see e.g. [L], [Do], [START_REF] Simon | Loewner's theorem on monotone matrix functions[END_REF] and [Ha]. This wonderful theorem makes a striking connection between the operator monotone functions and the Nevanlinna functions.

Let C `(resp. C ´) denote the complex numbers with strictly positive (resp. negative) imaginary part Notation. Let pa, bq be an open interval (finite or infinite). Denote P pa, bq the set of Nevanlinna functions that continue analytically across pa, bq into C ´and where the continuation is by reflection.

Functions in P pa, bq are real-valued on pa, bq and their measure satisfies µ ppa, bqq " 0, see [START_REF] Donoghue | Monotone matrix functions and analytic continuation[END_REF]Lemma 2,Chapter II]. Functions in P pa, bq are strictly increasing on pa, bq, unless they are constant. Indeed, if f is not a constant function β and µ cannot be simulaneously zero and so f 1 pxq " β `żR dµpλq pλ ´xq 2 ą 0, x P pa, bq.

Let M n pCq be the set of n ˆn matrices with entries in C, and consider a function f : pa, bq Þ Ñ R. Definition. f is matrix monotone of order n in pa, bq if f pT q ď f pSq holds whenever T, S in M n pCq are hermitian matrices with spectrum in pa, bq and T ď S.

In 1934 Karl Loewner proved the following remarkable theorem that characterizes the matrix monotone functions : Theorem 7.1. [L] Let f : pa, bq Þ Ñ R, where pa, bq is a finite or infinite open interval. Then f is matrix operator monotone of order n in pa, bq for all n P N if and only if f admits an analytic continuation that belongs to P pa, bq.

Loewner's theorem is a truly wonderful result and has been reproved in several different ways, see e.g. [Do, Theorem I of Chapter VII and Chapter IX for the converse], [START_REF] Simon | Loewner's theorem on monotone matrix functions[END_REF] or [Ha] and references therein for a concise historical exposition. For the purpose of this article, we need a version of Loewner's theorem that applies to unbounded self-adjoint operators. In B. Simon's book [Si2, Chapter 2] it is explicitly discussed how Loewner's theorem extends to unbounded operators. We propose below yet another proof of the extension to the semi-bounded operators (which is the case for xAy and xN y). For self-adjoint operators T , S which are bounded from below, the inequality T ď S means Domr|S| 1{2 s Ă Domr|T | 1{2 s and xψ, T ψy ď xψ, Sψy for all ψ P Domr|S| 1{2 s.

Definition. f is operator monotone in pa, bq Ă R if f pT q ď f pSq holds whenever T, S (possibly unbounded) are self-adjoint operators in H with spectrum contained in pa, bq and T ď S.

Assuming f P P pa, bq, let µ be the measure associated to f , see (7.1), and denote the supremum of the support of µ by Σ µ . In what follows the discussion is for general self-adjoint T, S, but one should keep in mind that the results are applied to T " xAy and S " ? c d xN y, cf. Lemma 4.13.

We start with a Lemma :

Lemma 7.2. Let f belong to P pa, `8q. Then

(1) Σ µ ď a, (2) given T a self-adjoint operator with infpσpT qq ą a ą 0, we have f pT q bounded from below and DomrT s Ď Domr|f pT q|s with equality if and only if β ą 0.

Proof. For (1), we start by noting that f belongs to P pa, `8q so f admits an integral representation as in (7.1). Thus Σ µ ď a holds thanks to the Stieltjes inversion formula and the fact that f is real-valued on pa, `8q. For (2), adding a constant to f does not alter the assumptions of the Lemma and leads to the same conclusion, so we may assume f pinfpσpT qqq ą 0, where infpσpT qq ą a (recall f is non-decreasing on pa, `8q). We start by showing that lim f pxq{x " β, as x Ñ `8, or equivalently

lim xÑ`8 ż Σµ ´8 1 `λx xpλ ´xqpλ 2 `1q
dµpλq " 0.

We wish to exchange the order of the limit and integration. We have (7.2) ˇˇp1 `λxqx ´1pλ ´xq ´1ˇď 1, @pλ, xq P p´8, 0s ˆr1, `8q Y r0, as ˆra `aa 2 `1, `8q.

We may apply the dominated convergence theorem, and the above limit follows. This limit implies that f pxq{x is a bounded function on pa, `8q and hence DomrT s Ă Domr|f pT q|s. For the reverse inclusion, x{f pxq is a well defined bounded function on pinfpσpT qq, `8q iff β ą 0.

We are now ready to prove the extension of Theorem 7.1 to semi-bounded operators :

Theorem 7.3. Let f : pa, bq Þ Ñ R, where 0 ă a ă b ď `8. Then f is operator monotone in pa, bq if and only if f admits an analytic continuation that belongs to P pa, bq.

Proof. If f is operator monotone in pa, bq, then in particular it is matrix operator monotone of order n in pa, bq for all n P N, and so f admits an analytic continuation that belongs to P pa, bq by Loewner's theorem. This direction is in fact the hard direction in Loewner's theroem, but the extension is trivial! For the converse, we suppose that f admits an analytic continuation that belongs to P pa, bq. Consider the two separate cases b ă `8 and b " `8. If b ă `8, then f is matrix operator monotone of order n in pa, bq for all n P N by Loewner's theorem. But, since the interval pa, bq is finite, this is equivalent to being operator monotone in pa, bq, see e.g. [START_REF] Bendat | Monotone and convex operator functions[END_REF]Lemma 2.2] Note that tg r u rPR `is of a sequence of functions of the real variable x that converges pointwise to gpxq as r Ñ `8 for all x P pa, `8q. Moreover, since for every fixed r, g 1 r pxq ě 0, all functions in the sequence are increasing in the variable x. We need a Lemma. Lemma 7.4. For every fixed ε ą 0, the sub-sequence tg r pxqu rą1{ε has the property that g r pxq Õ gpxq for every x ą maxpΣ µ `ε, aq.

Proof. Clearly g r pxq Ñ gpxq as r Ñ `8 for all x P pa, `8q. What needs to be shown is that the sequence g r pxq is increasing pointwise. Let ε ą 0 be given and fix x ą maxpΣ µ `ε, aq. Recall a is assumed to be strictly positive. The integrand in (7.3) is equal to 1 `λx pλ ´xqpλ 2 `1q .

On the one hand, x ą Σ µ `ε implies that pλ ´xq is negative for all λ P supp µ. On the other hand, the assumption x ą a ą 0 implies that p1 `λxq is negative for all λ ă ´1{x. Thus, for all x ą maxpΣ µ `ε, aq and for all λ ă ´1{a, the integrand in (7.3) is strictly positive. Thus, as r increases above 1{a, the value of the integral in (7.3) strictly increases. This completes the proof of the Lemma. Next we choose in Lemma 7.4 ε small enough so that maxpΣ µ `ε, aq ă infpσpT qq ď infpσpSqq.

We obtain g r pxq Õ gpxq (for r ą 1{ε) as r goes to infinity. In turn, the monotone convergence theorem for forms, e.g. [START_REF] Kato | Perturbation theory for linear operators[END_REF]Theorem VIII.3.11 This gives the result.

To close this Section, we have a remark about results in the literature on order relations for general self-adjoint operators. In [O], Olson introduced the spectral order for self-adjoint operators : T ĺ S if and only if E p´8,ts pT q ě E p´8,ts pSq for all t P R. Here E p´8,ts pT q and E p´8,ts pSq are the spectral resolutions of the identity for T and S. He showed that T n ď S n for every n P N is equivalent to T ĺ S, see also [START_REF] Uchiyama | Commutativity of selfadjoint operators[END_REF]Proposition 5]. Furthermore, it is shown in [FK] that this order relation is equivalent to f pT q ď f pSq for any continuous monotone nondecreasing function f defined on an interval which contains σpT q Y σpSq. For the purpose of this article, we do not know if xAy n ď p ? c d xN yq n holds @n P N but if it does it would considerably simplify this article. To check this inequality by brute force seems to be unbearable.

Appendix B. Polylogarithms of positive order are Nevanlinna functions

That logarithm with the standard branch cut is a Nevanlinna function follows from the identity lnpzq " lnprq `iθ, where z " re iθ , r ą 0, and θ P p´π, πq. The integral representation of the logarithm is lnpzq " ż 0 ´8 ˆ1 λ ´z ´λ λ 2 `1 ˙dλ. The composition of Nevanlinna functions produces another Nevanlinna function. So for example ln p pzq is Nevanlinna for 0 ď p ď 1. What about higher powers of the logarithm ? Certainly the square and cube of the logarithm are not Nevannlina functions. Indeed writing ln 2 pzq " ln 2 prq ´θ2 `i2θ lnprq, and ln 3 pzq " ln 3 prq ´3θ 2 lnprq `iθp3 ln 2 prq ´θ2 q reveals that these functions do not map C `to C `. In spite of this there are functions that are Nevanlinna and are "almost" equal to the logarithms. To motivate the idea, we note that the Stieltjes inversion formula gives `δ Im `ln 3 pλ `iεq ˘dλ " # 0 λ 1 ě 0, ş λ 2 λ 1 `3 ln 2 p|λ|q ´π2 ˘dλ λ 2 ď 0 when applied to ln 3 pzq. This suggests to calculate the Nevanlinna functions corresponding to the measures dµpλq " 1 tλă´1u lnp´λqdλ and dµpλq " 1 tλă´1u ln 2 p´λqdλ.

We introduce polylogarithms. We refer to [Le] and [PBM] for formulas and a detailed exposition. The polylogarithm of order σ P C is defined by the power series Li σ pzq :"

8 ÿ k"1 z k k σ .
The definition is valid for complex |z| ă 1 and is extended to the complex plane by analytic continuation. For the purpose of this article, we are interested in the polylogarithms with σ ą 2, or σ " 3 if we want to simplify by taking the smallest integer above 2. The standard branch cut is r1, `8q for Li 1 pzq and p1, `8q for Li 2 pzq and Li 3 pzq. The polylogarithm of order 1 can be written in terms of a logarithm as Li 1 pzq " ´lnp1 ´zq. The polylogarithm of order 2 is called the dilogarithm or Spence function while the polylogarithm of order 3 is called the trilogarithm. On p. 494 of [PBM] the following integral representation is given without proof : This means that Li σ`1 pzq is a Nevanlinna function for Repσq ą ´1. Although not difficult to prove, it is not clear where a proof of (8.1) can be found in the literature. Thus we prove it :

Proposition 8.1. (8.1) is true.

Proof.

Let λ ě 1. Writing 1{pλpλ ´zqq as a power series in z we have 1{pλpλ ´zqq " ř 8 k"0 λ ´k´2 z k for |z| ă 1. Then the rhs of (8.1) is equal to z Γpσ `1q

ż 8 1 8 ÿ k"0 ln σ pλq λ k`2 z k dλ " 8 ÿ k"1 z k Γpσ `1q ż 8 1 ln σ pλq λ k`1 dλ " 8 ÿ k"1 z k k σ`1 , Repσq ą ´1.
To evaluate the last integral the change of variable k lnpλq " t was performed, followed by the definition of the Gamma function. Thus the rhs of (8.1) is equal to Li σ`1 pzq for |z| ă 1 and Repσq ą ´1. The result follows by the uniqueness of the analytic continuation.

While we're at it we note that Li 0 pzq " z{p1 ´zq is also a Nevanlinna function. Definition. For σ P C, (8.3) Φ σ pzq :" ´Li σ p´zq, z P Czp´8, ´1s.

Clearly (8.2) implies that the Φ σ are Nevanlinna for Repσq ą ´1 with integral representations given by : Φ σ`1 pzq " 1 Γpσ `1q ż 8 1 ln σ pλq λpλ 2 `1q dλ `1 Γpσ `1q ż ´1 ´8 ˆ1 λ ´z ´λ λ 2 `1 ˙ln σ p´λqdλ, for |argp1 `zq| ă π. Finally, the other reason we resort to polylogarithms is because they decay at the same rate as the logarithms, at least for positive integer order (this follows directly from the inversion/reflection formula [START_REF] Lewin | Polylogarithms and associated functions[END_REF](6) We refer to [D], [DG], [START_REF] Golénia | A new look at Mourre's commutator theory[END_REF], [START_REF] Golénia | Weighted Mourre's commutator theory, application to Schrödinger operators with oscillating potential[END_REF], [MS] for more details. Let ρ P R and denote by S ρ pRq the class of functions ϕ in C 8 pRq such that (9.1) |ϕ pkq pxq| ď C k xxy ρ´k , for all k P N.

Lemma 9.1. [D] and [DG] Let ϕ P S ρ pRq, ρ P R. Then for every N P Z `and every c ą 0, there exists a smooth function φN : C Ñ C, called an almost analytic extension of ϕ, satisfying:

φN px `i0q " ϕpxq, @x P R;

supp p φN q Ă Ω :" tx `iy : |y| ď cxxyu;

φN px `iyq " 0, @y P R whenever ϕpxq " 0;

(9.2) @ℓ P N X r0, N s, ˇˇˇˇB φN Bz px `iyq ˇˇˇˇď c ℓ xxy ρ´1´ℓ |y| ℓ for some constants c ℓ ą 0.

Now let Q be a self-adjoint operator.

Lemma 9.2. Let ρ ă 0 and ϕ P S ρ pRq. Then for all k P N and N P N:

(9.3) ϕ pkq pQq " ipk!q 2π ż C B φN Bz pzqpz ´Qq ´1´k dz ^dz where the integral exists in the norm topology. For ρ ě 0, the following limit exists:

(9.4) ϕ pkq pQqf " lim RÑ8 ipk!q 2π ż C Bp φ θ R q N Bz pzqpz ´Qq ´1´k f dz ^dz, for all f P DomrxQy ρ s.

In particular, if ϕ P S ρ pRq with 0 ď ρ ă k and ϕ pkq is a bounded function, then ϕ pkq pQq is a bounded operator and (9.3) holds (with the integral converging in norm). 

  e ´itA P BpHq has the usual C k pRq regularity with BpHq endowed with the strong operator topology. The form rT, As is defined on DomrAs ˆDomrAs by xψ, rT, Asφy :" xT ψ, Aφy ´xAψ, T φy. Recall the following convenient result:

Lemma 4. 11 .

 11 Let σ P r0, 1{2s, tp 0 , ..., p m , p m`1 u Ă r0, `8q and m P N be given. Suppose either ' (a) S ´σ ś m`1 k"0 ln ´pk k pSq P C 1 pT q, or ' (b) T " xQy for some self-adjoint operator Q and S ´σ ś

1 0Figure 1 .

 11 Figure 1. From left to right : E J pxq, θpxq, ηpxq, χpxq, E I pxq.

  . A Nevanlinna function (also known as Herglotz, Pick or R function) is an analytic function on C `that maps C `to C `. A function f : C `Þ Ñ C is Nevanlinna if and only if it admits a representation (7.1) f pzq " α `βz `żR ˆ1 λ ´z ´λ λ 2 `1 ˙dµpλq, z P C ẁhere α P R, β ě 0, and µ is a positive Borel measure on R satisfying ş R pλ 2 `1q ´1dµpλq ă 8. We refer to [Do, Theorem 1 of Chapter II] for a proof of this wonderful result. The integral representation is unique. The measure µ is recovered from f by the Stieltjes inversion formula µ ppλ 1 , λ 2 sq " lim Im pf pλ `iεqq dλ.Standard examples of Nevanlinna functions given in the literature include z p for 0 ď p ď 1, ´zp for ´1 ď p ď 0, and the logarithm lnpzq with the branch cut p´8, 0s.

  Im `ln 2 pλ `iεq ˘dλ "

  ă π, Repσq ą ´1, or for z " 1, Repσq ą 0. Here Γ is the Gamma function. σ pλqdλ.

  Proposition 9.3.[START_REF] Golénia | A new look at Mourre's commutator theory[END_REF] Let T be a bounded self-adjoint operator satisfying T P C 1 pQq. Then :(9.5) rT, pz ´Qq ´1s ˝" pz ´Qq ´1rT , Qs ˝pz ´Qq ´1, and for any ϕ P S ρ pRq with ρ ă 1, T P C 1 pϕpQqq and (9.6) rT, ϕpQqs ˝" i 2π ż C B φN Bz pz ´Qq ´1rT , Qs ˝pz ´Qq ´1dz ^dz.

  1 pAq and no LAP holds. In[START_REF] Mandich | The limiting absorption principle for the discrete Wigner-von Neumann operator[END_REF] Proposition 4.2] it is proved that the Wigner von-Neumann potential W , and thereby H, are not even of class C 1 u pAq. An analogous argument also gives W 2 , H 2 R C 1 u pAq, provided w ‰ 0. Thus our Hamiltonian does not fall under the framework of classical Mourre theory.

Table 1 contrasts these criteria with our hypothesis in Theorem 1.3. In this Table gpnq :" Op|n| ´1w ´q,´r m pnqq as |n| Ñ `8.

 1 

  Establishing the Mourre estimate for H wrt. A. The following Lemma applies to the one-dimensional Laplacian (d " 1).The following Lemma applies to the multi-dimensional Laplacian (d ě 2).

	An analogous proof to that given in [Ma1, Proposition 4.2] and [Ma1, Proposition 3.3] reveals that W 2 R C 1 u pAq. # 3.2. Proposition 3.2. [Ma1, Proposition 4.5] Let (3.8) Epkq :" 4 ´4 cospk{2q for k P p0, πq 4 `4 cospk{2q for k P pπ, 2πq and µpHq :" p0, Epkqq Y p4d ´Epkq, 4dq.

Lemma 3.1.

[START_REF] Mandich | The limiting absorption principle for the discrete Wigner-von Neumann operator[END_REF] Lemma 3.4] 

Recall that E ˘pkq :" 2 ˘2 cospk{2q. Let E P r0, 4sztE ˘pkqu. Then there exists ε " εpEq ą 0 such that for all θ P C 8 c pRq supported on I " pE ´ε, E `εq, θp∆q W θp∆q " 0. Thus θp∆qB W θp∆q is a compact operator.

  1) }xQy s pQ ´zq ´1} ď Cxxy s |y| ´1. Suppose that s ą 0. By the spectral theorem, }xQy s pQ ´zq ´1} 2 ď sup tPR xty 2s `pt ´xq 2 `y2 ˘´1 .

	Let	
	f s px, y, tq :"	xty 2s xxy 2s

Proof. If s " 0 one can take C " 1.

  Lemma 4.2. Let Q and Ω be as in Lemma 4.1. For every 0 ă s ă 1 and p P R there exists C ą 0 such that for all z " x `iy P Ω :

	(4.3)		y n , t n q ď	xt n y 2 xx n y 2	xtny 2 xxny 2 ´tn xtny	y 2 n xxny 2 ´xn xtny ¯2	`y2 n xxny 2	ď	xtny ´tn	xtny ´xn c	¯2 .
	We infer:									
					lim sup				
	(4.4)	› › ln p p1 `xQyq xQy s pQ ´zq				
		› › ln p p1 `xQyq xQy s pQ ´zq ´1› › 2 ď sup tPR	ln 2p p1 `xtyq xty 2s `pt ´xq 2 `y2 ˘´1 .
	Therefore, we consider the function					
	g s px, y, tq :"	ln 2p p1 `xtyq ln 2p p1 `xxyq	xty 2s xxy 2s				

nÑ8 f s px n , y n , t n q ď c, which is a contradiction. ´1› › ď C ln p p1 `xxyq xxy s |y| ´1.

Proof. The case p " 0 is covered by the previous lemma. By the spectral theorem,

'

  Subcase 2.2: If |t| ľ |x|, then 2R 1 ĺ |x| ĺ xxy ĺ xty ĺ 4xt ´xy. So f pxtyq ĺ f p4xt ´xyq. This leads to hptq ĺ f p4xt ´xyq{p1 `pt ´xq 2 y ´2q. Next, since c ĺ 1{4 and R 1 ľ 1, one has Finally, since we have xt ´xy ĺ xpt ´xq{yy ¨xyy, 1 `pt ´xq 2 y ´2 " xpt ´xq{yy 2 , and xyy ĺ xxy, we conclude: hptq ĺ C f u pxpt ´xq{yyq xpt ´xq{yy 2 f u pxxyqψ d pxxyq ĺ C Cf pxxyq. 4.2. A Heinz inequality for logarithmic functions. Let T, S be arbitrary self-adjoint and bounded from below in a Hilbert space H. The notation T ď S means that Domr|S| 1{2 s Ă Domr|T | 1{2 s and xψ, T ψy ď xψ, Sψy for all ψ P Domr|S| 1{2 s.

	› › › ›	f u pxpt ´xq{yyq xpt ´xq{yy 2	› › › ›
		The Heinz inequality, cf. [Ka1, H],
	states		
	(4.8)		
	|y| ĺ |y|{p4cq ĺ xxy{4 ĺ |x|{2 ĺ |t ´x| and then	xt ´xy xyy	P I.

Since ψ d is decreasing, xxy ĺ 4xt ´xy, ψ d is decreasing, and f u is sub-multiplicative, we have:

hptq ĺ f u p4xt ´xyqψ d p4xt ´xyq 1 `pt ´xq 2 y ´2 ĺ C f u pxt ´xyqψ d pxxyq 1 `pt

´xq 2 y ´2 ĺ Cf u ˆxt ´xy xyy ˙fu pxyyqψ d pxxyq 1 `pt ´xq 2 y ´2 . 8 f u pxxyqψ d pxxyq ĺ

  Then ln nα k pT q ln ´nα

k pSq equals ln nα k pT qΦ ´α n pln k´1 pT qq bounded by (8.4) Φ α n pln k´1 pT qqΦ ´α n pln k´1 pSqq bounded by Lemma 4.6 Φ α n pln k´1 pSqq ln ´nα k pSq bounded by (8.4)

  J 1 be any open interval with J 1 Ť I. Applying E J 1 pHq on both sides of this inequality yields the projected weighted Mourre estimate (2.3), with c " γ{p3Rq and C " xA{Ry ´1 2 w

	1{2 ă p ă q{4. The proof of Theorem 1.3 is complete, as explained in Section 2.3.	´p,´1 2 M	pA{Rq,
	7. Appendix A. Nevanlinna functions, operator monotone functions and
	Loewner's theorem		

  or[START_REF] Simon | Loewner's theorem on monotone matrix functions[END_REF] Chapter 2]. Now the case b " `8. We have Σ µ ď a by Lemma 7.2, and

	Let	f pxq " α `βx	`ż Σµ ´8 ˆ1 λ ´x	´λ λ 2 `1 ˙dµpλq, x P pa, `8q.
	(7.3)	g r pxq :" α	`ż Σµ ´r ˆ1 λ ´x	´λ λ 2

`1 ˙dµpλq, gpxq :" f pxq ´βx, x P pa, `8q.

  Continuation of the proof of Theorem 7.3. Now fix T, S self-adjoint operators with spectrum contained in pa, `8q and T ď S. Let ψ P H. T ď S implies xψ, pλ ´T q ´1ψy ď xψ, pλ ´Sq ´1ψy for all λ ď Σ µ , e.g.[START_REF] Kato | Perturbation theory for linear operators[END_REF] Theorem VI.2.21]. We integrate over the compact r´r, Σ µ s : Σµ ´r xψ, pλ ´Sq ´1ψy dµpλq, for every finite r ą |Σ µ |. Moreover, since the integrand is norm continuous, we infer (7.4) xψ, g r pT qψy ď xψ, g r pSqψy, for every finite r ą |Σ µ |.

	´r xψ, pλ ´T q ´1ψy dµpλq ď ż Σµ	ż

  ], ensures that xψ, g r pT qψy converges to xψ, gpT qψy as r Ñ `8 for all ψ P Domr|gpT q| 1{2 s, and similarly for S. Taking limits in (7.4) gives Domr|gpSq| 1{2 s Ă Domr|gpT q| 1{2 s and xψ, gpT qψy ď xψ, gpSqψy, ψ P Domr|gpSq| 1{2 s.

Thus, if β " 0 we have xψ, f pT qψy ď xψ, f pSqψy, ψ P Domr|gpSq| 1{2 s " Domr|f pSq| 1{2 s, whereas if β ą 0, we use the fact that 0 ă T ď S, and DomrS 1{2 s " Domr|f pSq| 1{2 s, DomrT 1{2 s " Domr|f pT q| 1{2 s, by Lemma 7.2, which yields xψ, f pT qψy ď xψ, f pSqψy, ψ P DomrS 1{2 s " Domr|f pSq| 1{2 s.

  ofAppendix A.2.7] together with Li n p0q " 0), namely : Appendix C. Almost analytic extensions and Helffer-Sjöstrand calculus

	(8.4)	lim xÑ`8	Φ n pxq ln n pxq	"	1 n!	, n P N.
	9.