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A miniature implanted antenna for UHF RFID applications

Van Hieu NGUYEN* 1, Aliou DIALLO1, Philippe LE THUC1, Robert STARAJ1,
Stephane LANTERI2 and Georges F. CARLE3

Abstract—In this paper, the design of a miniature antenna dedicated to be implanted in a small
animal and intended to work in the European UHF RFID (865-868 MHz) band is presented. One of
the goals of this work is the miniaturization of the radiating element while preserving its efficiency to
allow a reliable communication between an external interrogating reader and the implanted device. The
radiating element is a small rectangular loop antenna associated to a dipole allowing the impedance
matching. The antenna has dimensions of 2.4 mm x 25.4 mm x 0.5 mm and integrates an Impinj Monza
4 chip presenting an impedance of 5.5-j74 Ohms at 868 MHz. The antenna is designed and optimized
by using the ANSYS HFSS software. The obtained results show a simulated radiation efficiency of
0.7% and a simulated total gain of -17.5 dBi. A prototype was realized and RSSI measurements have
demonstrated the possibility of reliable wireless communications between the implanted antenna and an
external reader. In addition, Specific Absorption Rate (SAR) calculation indicates that this implanted
antenna meets the required safety regulations.

1. INTRODUCTION

The monitoring of small animals in laboratory tests and the remote analysis of their behavior in real
time interest researchers for a long time. This monitoring can be done by using implanted miniature
wireless sensors. Thus, electronic radio telemetry capsules were invented in the 1950’s and were used to
measure temperature and pressure [1]. These capsules can integrated numerous electronic components
such as battery, digital signal processor, light emitting diodes, camera, other sensory devices and at
least one antenna which is one of the most difficult components to design for this kind of application
[2]. Indeed, the main difficulty in designing antennas for bio-implantable communication devices is
to provide an efficient radiating structure, despite the volume constraints and the high impact of
the surrounding biological tissues which constitute a dispersive environment and reduce the antenna
radiating performance such as its efficiency [3], [4].

Although many studies have focused on the design of implanted antennas dedicated to the MICS
band (402-405 MHz) [5], [6], it should be noted that at these frequencies, the size of the antennas and
the use of battery can be a real disadvantage in the case of small animals which require miniature
structures [7].

Thus, the use of RFID (Radio Frequency IDentification) technology in the European UHF band
(865-868 MHz) can be a good solution because it has two major advantages: it facilitates the
implementation of the tag and does not require the addition of a battery to power the implanted
device [8]. Recently, several research papers have presented implantable antenna solutions dedicated to
the UHF bands (868 or 915 MHz) and using the RFID technology. For example, in [9] a folded dipole
antenna for an implantable RFID tag working in the US UHF band has been proposed. This structure of
dimensions 4 x 22 mm2 works as a loop antenna and is intended to be implanted in a human body. This
type of antenna possesses a dominant magnetic field and may not be able to communicate effectively
with interrogating antennas having a dominant electric field. Moreover, unfortunately, its performance
in terms of efficiency and gain are not given by the authors. In [10], the design and characterization
of a compact multilayer passive UHF-RFID tag solution for implantable biotelemetry based on Low-
Temperature Co-fired Ceramic (LTCC) technology is presented. It consists in a spiral PIFA (Planar
Inverted-F Antenna) antenna matched to an UHF embedded integrated circuit source thanks to an



2 NGUYEN and al.

inductor line. However, except the antenna bandwidth, neither its efficiency nor its gain are given. In
[11], a cylindrical antenna presenting dimensions of 55.2 x π x 25 mm3 and destinated to be implanted
in human living tissues is proposed. Despite its good performance, its global dimensions do not allow
its implantation in small animals such as mice. Thus, for the design and optimization of this type of
antenna, the use of methods like the genetic algorithm can be very useful [12].

This work aims at the wireless identification and positioning of small animals in a standard
housing environment. In order to make the communication possible, a trade-off needs to be found
between two main parameters of the antenna: its efficiency and its volume. Indeed, on one hand, its
radiation efficiency must be sufficient to maintain the communication between the implant also called
tag (consisting of the antenna and the RFID chip) and the reader. On the other hand, the antenna
volume must be sufficiently small to limit the disturbances that the device may create on the animal
habits. Moreover, the antenna of the implanted tag must be biocompatible, meaning that it must be
covered with a material tolerated by the organism to prevent the possibility of rejection by the animal
body [6], [13] and [14].

In [15], a novel tag antenna intended for small animal identification application has been designed
and the link budget calculation of this implanted antenna was presented. In this paper, the detail
process allowing to achieve this antenna is presented more in detail. First, in section 2, the link budget
is calculated to determine the minimum tag antenna performance suitable for a reliable communication
within the framework of the desired application. Then, in section 3, the proposed initial antenna is
optimized by using some techniques leading to the final design and its performance are compared with
those of other existing solutions. In section 4, the electric and magnetic fields as well as the SAR
(Specific Absorption Rate) distribution are also studied. Finally, a prototype has been realized and
measured in environmental conditions close to the final application.

2. LINK BUDGET CALCULATION

The objective of this section is to calculate the necessary minimal gain of the implanted antenna allowing
a reliable communication between an external reader and the implanted tag. The latter is placed at a
depth of 2 mm in a homogeneous phantom model whose dielectric properties are equivalent to those of
the different layers of tissues present in small animals, which are skin, muscle and bone. The values of
the dielectric permittivity, loss tangent, conductivity and thickness of each layer are given in Table 1.
The total equivalent dielectric permittivity εreq, loss tangent tanδeq and conductivity σeq are respectively
39.6, 0.39 and 0.79 (S/m) [16] - [20].

Table 1. Electric properties of the different tissues.

εr tanδ σ (S/m) Thickness (mm)

Skin 41.05 0.28 0.64 2.0

Muscle 56.90 0.45 1.27 5.5

Bone 23.00 0.34 0.39 6.0

The reader antenna is positioned in a confined space with reduced dimensions and has a limited gain
of 3.2 dBi. The power emitted by the reader is limited to Ptx reader = 27 dBm (reader’s output power)
in order to respect the ERC (European Radiocommunications Committee) recommendations for the
ISM band at 868 MHz which impose a maximum power of 500 mW (27 dBm) [21]. The characteristics
of the reader and its antenna are given in Table 2.

There are two models for defining the near field and far field regions around an electromagnetic
source based on the largest dimension D of antenna and the wavelength λ: the three-region model and
the two-region model [22]. In our application, D is the diagonal length of the reader antenna ground
plane and is equal to 141 mm. In this case, D/2 is greater than λ/2π, defined as the radius of the
Wheeler sphere [23]. So, the tag antenna is located in the near field of the interrogating antenna and
the formula to be used for the link budget calculation of the forward path is (1) [24].
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Table 2. Reader Parameters.

Reader sensitivity Reader trans. power Ptx reader Reader antenna gain Greader

-82 dBm 27 dBm 3.2 dBi

Prx tag = Ptx readerGtagGreader(
λ

4πR
)2[1− λ2

(2πR)2
+

λ4

(2πR)4
] (1)

For this near field calculation, the part of ∆ = [1 − λ2

(2πR)2
+ λ4

(2πR)4
] represents an attenuation of

0.71 dB (with R=58 mm, the distance between two antennas) by compare to the Friis formula in the
far field. For the reverse path, a similar analysis leads to the conclusion that the communication link
is now made in the far field of the implanted antenna. That is why the Friis equation is used according
to the specifications of the tag antenna design.

If we note di (i = 0, 1) the length of the propagation channel of the wave in each medium (Figure
1), d0 the thickness of the air layer and d1 the equivalent thickness of the animal body layers, the
attenuation of the medium Am is then defined by:

Am = (
4πdi
λi

)2e−αidi (2)

where α0 = 0 is the attenuation constant of the air and α1 is the equivalent attenuation in the
animal body:

α1 = ω

√√√√µreqεreq
2

[

√
1 + (

σeq
ωεreq

)2 − 1] (3)

with µreq equals to 1 in our study. Moreover, we consider that the incident wave propagates through
the different media as shown in Figure 1, with different impedances producing a global loss represented
by Lint at the interface between air and body. Lint is obtained by the equations given in [25] from the
value of the reflection coefficient Γ1 (6) which can be expressed directly in terms of d1 and ρi (5).

Figure 1. Transmission and reflection model on the dielectric layer.

ρ0 =
η1 − η0
η1 + η0

(4)

ρ1 =
η0 − η1
η0 + η1

(5)
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Γ1 =
ρ0 + ρ1e

−j2k1d1

1 + ρ0ρ1e−j2k1d1
(6)

Lint = |Γ1|2 (7)

In Figure 1, ρ0 and ρ1 denote respectively the elementary reflection coefficients between the air
and the animal body and between the animal body and the air, k1 = 2π/λ1 is the wave number in the
body, and λ0 is the wavelength in the air. η0 and η1 are the impedances of the air layer and animal
body respectively, and are defined by:

η0 =

√
µ0
ε0

(8)

η1 =

√
µreqµ0
εreqε0

(9)

Thus, based on the reader’s performance, a tag sensibility Prx tag min about -16.9 dBm [26], the
attenuation Am in the animal environment and the losses Lint at the interface between the air and
the animal environment, the minimum value of the implantable antenna gain Gtag min allowing the
communication forward link in this environment can be estimated as:

Gtag min =
Prx tag min

∑
Lint

∑
Am

Ptx readerGreader
(10)

The backscattered power by the implanted tag received by the RFID reader must be greater than
its sensitivity (the minimum power required to detect the feedback signal of the tag) to guarantee the
communication. For the reverse communication link, the power received by the reader can be determined
by the following relation [27], [28], where Lmodulation represents the modulation losses estimated at -3
dB [25].

Prx reader(dBm) = Ptx tag +Greader +Gtag +
∑

Lint +
∑

Am + Lmodulation (11)

Table 3. Calculated parameters.

Am Lint Gtag min Prx reader

25 dB 7.5 dB -28.9 dBi -55.2 dBm

Table 3 summarizes the obtained values for the different parameters for the whole forward-reverse
link. Gtag min is obtained by using (10) and Prx reader, which is the received power of the reader antenna
(11). Thus, it will be necessary to have a minimum implanted antenna gain Gtag min of -28.9 dBi so
that the reader can detect the power returned by the tag.

3. DESIGN OF THE UHF RFID TAG IMPLANTED ANTENNA

3.1. Design and optimization of the antenna in its environment

The antenna optimization was done while the radiating element was placed in a homogenous phantom
(Figure 2) having a cylindrical shape and a total volume of π x 13.52 x 70 mm3. The geometry of the
antenna is shown in Figure 3. It is composed of a dipole printed on a Duroid substrate (permittivity εr
= 2.2, dielectric loss tangent tanδ = 0.0009 and thickness h=0.127mm) excited by coupling with a loop
antenna, which is associated with an Impinj Monza R© 4 chip [26]. This chip presents an impedance of
5.5-j74 Ohms at 868 MHz and is enclosed in a Silicone insulating layer of thickness ts (εr = 3.3 and tanδ
= 0.0025) [29]. This layer is added to prevent the possibility of implant rejection by the animal body
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and also to facilitate the transition of the radiating wave between the implanted antenna and the small
animal tissues [8]. Moreover, as the thickness of the insulator layer has an influence on the resonance
frequency of the antenna, its radiation efficiency and also on the SAR (Specific Absorption Rate), these
parameters will be determined later.

Figure 2. Implanted tag in the homogeneous body phantom.

Figure 3. Geometry of the antenna: (a) top view, (b) bottom view and (c) side view.

To match the antenna to the complex impedance of the chip, it is necessary to obtain an antenna
input impedance equals to the complex conjugate of the chip one i.e. 5.5 + j74 Ohms [26]. The
calculation of the loop impedance Zloop = Rin + jLω was obtained using the formulas given in [22],
Rin = Rr +Rl, Rr and Rl being respectively the radiation and the loss resistances of the loop given by
equations (12) and (13):

Rr = 320π4
A2

λ4
(12)

Rl =
P

2w

√
πfµ

σ
(13)

where A denotes the area of the loop, P is its perimeter, µ is the permeability of the used material,
w is the copper line width, and σ is its conductivity. The goal is to obtain Rin close to 5.5 Ω. We have
chosen the optimization loop dimension in the tissue with A = 1 mm x 13 mm, w = 0.2 mm and P =
28 mm as shown in Figure 4.

Knowing that a biocompatible material such as Silicone has to be used to coat the antenna, the
influence of its thickness on its input impedance, its resonance frequency and its radiating efficiency was
first studied (Figures 5-8). The optimized thickness was set to 0.25 mm and the reason of this choice
will be explained later. If we consider the input impedance presented by the loop antenna without
the Silicone layer (Figure 5(a)), we can see that its presents the desired real part of 5.5 Ohms but an
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Figure 4. Loop geometry (the chip is represented by the red square).

imaginary part of only 40 Ohms. Figure 5 shows that the Silicone layer has more influence on the real
part than on the imaginary part of the input impedance. However, the loop length allows to adjust
the imaginary part. Thus in the presence of the Silicone layer, a loop having a length of 13 mm and
a width of 1 mm allows to increase the imaginary part close to the desired value but decreases at the
same time the real part. That is why a dipole was added close to the loop to obtain a strong coupling
and enhance the real part (Figure 3). This dipole contains two adjustable strands of length L1. The
variation of the antenna impedance as a function of L1 is presented Figure 6. Nevertheless, as the size
of the tag is limited to 26 mm due to the specifications of our application, we have folded the dipole
along its length leading to an increase of the real part from 0.9 to 2.5 Ohms, for L1 = 12.5 mm (Figure
5(b)). Then two other strands of length L2 were added to increase the real part up to 3.5 Ohms (Figure
6(a)). This action allows the imaginary part to remain constant as shown (Figure 5(b) and Figure 6(a)).
Finally, two metal plates of length L3 = 4.9 mm were designed on the other face of the substrate to
couple with the upper radiating element. Moreover, two vias have been added to connect the upper
and the lower metal plates to obtain the desired electrical length despite the small volume available.
By this way, the real part has increased up to 5.5 Ohms (Figure 6(b)). The study on the influence of
the Silicone layer thickness has thus shown that by choosing ts = 0.25 mm, the impedance matching
procedure was facilitated and the antenna efficiency was enhanced (Figures 5-6). These results can be
explained the properties of the close environment of the antenna. Indeed, as the dielectric constant of
the environment is high, the guided wavelength decreases. Equation (12) confirms that the decrease of
the guided wavelength leads to an enhancement of the resistance value.

(a) (b)

Figure 5. Simulated at 868 MHz: (a) Loop impedance as function of its length Lloop for Wloop=1 mm,
(b) Antenna impedance as function of the dipole length L1 for Lloop=13 mm.

Instead of calculating the matching efficiency as it is often the case for the antennas tag [30] and
which only takes into account the impedance of the antenna and the chip, we have simulated under
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(a) (b)

Figure 6. Antenna impedance at 868 MHz: (a) As function of the parameter L2 for L1=12.5 mm, (b)
As function of the length L3 of the metal plates for L1 = 12.5 mm and L2 = 8.1 mm.

HFSS the radiated efficiency of our antenna which only takes into account the losses and which is
independent of the impedance of the chip [31]. In Figure 7(a), the evolutions of the resonant frequency
and the radiation efficiency of the antenna are plotted as a function of the thickness of the Silicone
layer. We note that the efficiency is maximum (slightly greater than 0.75%) for a thickness equal to
0.8 mm at 913 MHz which is not the desired frequency. Moreover, if we consider the antenna efficiency
at the resonance frequency (868 MHz), we observe that its value is maximum for an insulating layer
thickness between 0.2 mm and 0.3 mm (Figure 7(b)). Moreover, we can also see that the insulation
layer thickness has an important influence on the antenna matching (Figure 8).

(a) (b)

Figure 7. Simulation as a function of the insulation layer thickness ts: (a) Efficiency and resonance
frequency of the antenna, (b) Antenna efficiency at 868 MHz.

Based on these simulated results, the antenna has been optimized and its final dimensions are:
Lloop = 13 mm, L1 = 25 mm, L2 = 6.1 mm and L3 = 4.9 mm are summarized in Table 4. For these
values, the antenna (loop and dipole) impedance is Zant = 6.3 + j74.2 Ohms.

Figure 9(b) is presented the simulated reflection coefficient calculated by using:

S11 =
Zant − Z∗

chip

Zant + Zchip
(14)
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Figure 8. Simulated reflection coefficients as function of the Silicone isolation thickness ts (mm).

Table 4. Optimized antenna parameter dimensions.

Parameters Values (mm)

Lloop 13.0

Wloop 1.0

L1 12.5

L2 8.1

L3 4.9

ts 0.25

We observe a good matching at the working frequency (868 MHz, BW = 70 MHz) and the total
gain reaches a maximum value of -17.5 dBi (Figure 9(a)) which is greater than the minimum gain of
-28.9 dBi previously calculated for the link budget (10). This gain value is acceptable considering the
antenna dimensions and the other works previously presented in [15], [32]-[35]. Thus, the total antenna
volume is only 30.5 mm3 which is small compared to similar implantable antennas operating at these
frequencies and listed in Table 5. Thus, with this antenna, the received power by the reader Prx reader
can be between -55.2 dBm and -68.4 dBm for an emitted power of 27 dBm according to (1). These
results confirm that the performance of the antenna is strongly influenced by the biocompatible insu-
lating layer and the lossy tissue environment.

Table 5. Comparison of implantable antenna performance found in literature.

References Bande (MHz) Antenna Type Eff.(%) Gain (dBi) Volume (mm3)

[7] 868 Circular PIFA - -35.1 π x 62 x 1.8 = 203

[11] 868 Cylindrical Microstrip 2.75 - π x 52 x 55 = 4319

[29] 868 Loop 0.33 -28 π x 52 x 15 = 1178

[10] 868 Spiral PIFA - - 8 x 7 x 2 = 112

Proposed Antenna 868 Loop and Dipole 0.7 -17.5 2.4 x 24.5 x 0.5 = 30.5
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(a) (b)

Figure 9. Simulated results of the implanted antenna with insulation layer: (a) Reflection coefficients,
(b) Radiation pattern.

3.2. Experimental results

To validate our design, a prototype has been realized. Figure 10 shows the antenna prototype and the
procedure for measuring its impedance with a Vector Network Analyzer (VNA) Rohde & Schwarz ZVM
(10 MHz - 20 GHz). Simulated and measured reflection coefficients in the two cases are calculated
using (14) and compared in Figure 11. A reduction of the bandwidth and a slight shift of the resonant
frequency can be observed (Figure 11), with a value of S11 around -5 dB at 868 MHz. This is due to
the manufacturing process which can introduce small variations on the insulation layer thickness as it
was shown Figure 8.

Figure 10. Reflection coefficient measurement set-up.

The measurements were done by connecting a small cable to the antenna [11], [32], which was then
immersed in a body phantom realized by combining diethylene glycol butyl ether (44%) and de-ionized
water (56%) [33], [16], in order to obtain the same permittivity as the homogeneous theoretical model
used for the simulation. The solution is contained in a 60 ml polypropylene cylindrical flask having
dimensions and shape close to those of the animal body. The equivalent dielectric permittivity and
loss tangent of the homogeneous tissue have been characterized between 300 MHz and 3 GHz by using
coaxial probe method with the Agilent Technologies E8361C PNA Network Analyzer. The material
under test (MUT) has been measured at the Orange Labs laboratory site of Sophia Antipolis (France)
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Figure 11. Reflection coefficient of the implanted antenna with Silicone layer.

as shown Figure 12. The coaxial probe is first calibrated at the terminal planes of probe by using Open-
Short-Match calibration procedure [34]. The MUT characterization done by using coaxial probe method
requires to carefully position the specimen in order to avoid air gaps or bubbles between the specimen
liquid interface and the boundaries of coaxial probe that could affect the accuracy of measurement.
Finally, the properties of the MUT relative permittivity can be calculated from PNA Network Analyzer
measurement by using the Cole-Cole model [19]. The dielectric constant and the loss tangent results
are shown in Figures 13(a) and (b). We observed that the properties values of the tissue model do not
change too much in the frequency band of interest. Moreover, the trend of these curves corresponds to
the results given by Gabriel and all in [17], [18].

Figure 12. Equivalent dielectric permittivity measurement set-up.

The implantable tag prototype has been tested with a RFID reader antenna connected to an
Impinj Speedway Revolution R420 reader [35] allowing to receive the data from the implanted antenna
associated to the Impinj Monza R© 4 chip as shown in Figure 14 (a). A computer including a software
interface allowing us to control the whole system is connected to the reader (Figure 14 (b)). With these
elements, the reader is able to detect the tag in the Plexiglas rack cage after few seconds. The reader
antenna inspired from [36], is presented in Figure 15. It is made up of an annular ring slot, excited
by a micro-strip line on the lower face of the substrate. The micro-strip/slot line transition is used in
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(a) (b)

Figure 13. Measurement results of the equivalent homogeneous mouse tissue: (a) The equivalent
dielectric permittivity, (b) The equivalent loss tangent.

combination with a small open circle stub for the matching. A U-shaped slot stub is also added to
miniaturize the whole diameter of the antenna and to obtain the circular polarization usually required
for UHF RFID reader antenna.

Figure 14. RSSI measurement: (a) Antenna prototype in the phantom model, (b) Measurement set-up.

Figure 15. Phantom tracking system in the cage in the presence of the reader antenna.
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The simulated and measured reflection coefficients of the reader antenna are given in Figure 16.
We can see that the antenna is well matched in the UHF band with a S11 value around -13 dB at 868
MHz and that a good agreement is obtained between simulated and measured results.

Figure 16. Simulated and measured reflection coefficients of the reader antenna.

In order to verify that the implanted tag can be detected whatever its position in the cage, further
simulated and measured cases were completed. First, the cage bottom was graduated along the X and
Y axis in order to position accurately the phantom model (Figures 15 and 18). Figure 17 presents the
simulated S parameters calculated for the configurations where the tag is disposed in the homogenous
phantom model. This later is then placed at the cage bottom above the center of the reader antenna in
two cases: the phantom model oriented along the X axis and along the Y axis. For both cases, we can
see that the obtained values are around -23 dB for the transmission coefficient and around -20 dB for
the reflection coefficient at 868 MHz.

Figure 17. Simulated reflection and transmission coefficients of the reader antenna at the positions of
phantom model oriented along the X axis (a), the Y axis (b).

Then, these siumlated results have been compared to measurements. To know the operating
distance of a tag, it is important to measure the backscattered signal which is the power level returned
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Figure 18. Positions of phantom model oriented along the X axis (a), the Y axis (b) and varing
according to the Y axis.

Figure 19. RSSI measurements when the phantom model is oriented along the X axis (a), and along
the Y axis (b) versus the position of the phantom along the Y axis.

by the tag and received by the reader. That can be estimated by measuring the RSSI which is a
parameter proportional to the level of the received power [37]. Figure 19 presents the measured values
obtained for the two phantom orientations. As we can observe, the RSSI value is close to the maximum
when the phantom model is above the center of the reader antenna. The small shift in the position
compared to the center of the antenna is due to the asymmetry of the plastic casing of the phantom,
the asymmetry of the reader antenna and uncertainties in the phantom positioning. The influence of
this asymmetry is logically more important when the phantom is oriented along the Y axis than along
the X one. According to Figures 19 (a) and (b), we can observe that the measured RSSI values are
between -48 dBm and -68 dBm, which are close to the theoretical values calculated previously in section
2. These results demonstrate that our system can operate in a small and limited area of the cage. Thus,
by placing several antennas in different zones of the cage, the system can detect and identify a small
animal equipped with such miniaturized implanted tag.

4. CHARACTERIZATION OF E AND H FIELDS

Often implanted antennas powered by RFID chips are either dipoles whose dominating field is the
electric field (E) or loop antennas with dominant magnetic fields (H). In this work, we used a dipole
antenna coupled to a loop antenna. This allows to obtain a field E and H simultaneously dominant
in the operating zone of the tag. To justify the performance of this antenna, we have also studied its
radiating near fields as the shape of the E field and especially the one of the H field, which is of particular
interest in the context of our application. Figures 20(a) and (b) represent the shape of these two fields
as a function of the width and the length of the animal body phantom along the X axis and the Y axis.
These electromagnetic fields were simulated at the height of the implanted tag in the homogeneous
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model and are observed at 868 MHz. We can note that whatever is the direction of observation, the
maximum of the two fields are obtained at the position corresponding to the center of the implanted
antenna. The distribution of the fields along the X axis is narrower than that obtained along the Y axis,
due to the geometry of the antenna. In addition, we can see that the H and E fields are concentrated
around the tag and attenuated as we move away from the surface under consideration. The geometry of
the antenna explains the observed results. Indeed, the radiating element is composed of a rectangular
magnetic loop (dominant H-field) coupled to an electrical dipole (dominant E-field), that is why these
two components are both present in the near-field antenna radiation zone.

(a) (b)

Figure 20. E and H standardized fields as a function of the width of the homogeneous model : (a)
Along the X axis, (b) Along the Y axis.

5. CHARACTERIZATION OF SAR (SPECIFIC ABSORPTION RATE)

When an electromagnetic wave source is positioned near or placed within a biological medium, some of
the radiated power is absorbed by the medium and may increase its temperature. The energy dissipated
in a living body which produces localized heating or generates the heat stress can be quantified by
calculating the SAR. The SAR parameter is expressed in Watt per kilogram (W/kg), and is defined
as the ratio of the amount of power absorbed (dW ) by the mass unit (dm) of the tissue (15). For
determining the SAR, we have to take into account the peak value of the electric field E induced
in biological media at the working frequency, the electrical conductivity σ and the density ρm of the
medium (16). In the case of a short exposure duration, the SAR can be expressed from equation (17)
as a function of the temperature variation ∆T , the exposure time ∆t and the specific heat Cm of the
lossy medium [38], [39].

SAR =
dW

dm
(15)

SAR =
σ

2ρm
|E|2 (16)

SAR = Cm
∆T

∆t
(17)

It is generally agreed that if the SAR value is too high, the transmitted power is low. Figure 21
shows the SAR10-g distribution around the antenna. This simulation aims at characterizing the thermal
elevation in biological media exposed to electromagnetic waves. Indeed, the simulated results denote
that the SAR10-g maximum value observed at 868 MHz is 1.31 W/kg (in the case of a Silicone thickness
of 0.25 mm and a maximum supply power of 500 mW) which corresponds to the maximum allowed
standard guideline in Europe (2 W/kg averaged over 10-g of tissue) [40], [41]. Figure 22 shows the
simulated 10-g average SAR maximum values at 868 MHz as a function of the insulation layer thickness
by using CST software which gives us more options for simulating this parameter. As depicted in this
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figure, the results show that the use of the insulation layer allows to improve the efficiency and reduce
the SAR10-g value in the tissue environment. Furthermore, it validates again that the best choice for
the Silicone thickness is in the 0.2 mm to 0.3 mm range as mentioned in the section 3.

It is well known that of passive tags, the RFID reader supplies the power to activate the tag. A
simulation close to this use case was done by using the reader antenna presented in the 3.2 section.
This latter was located under the cage bottom and was fed by 500 mW. The result shows that the
SAR10-g maximum value is 0.447 W/kg (Figure 23) which respects the safety regulation rules. The
same simulations have been done with HFSS software. The obtained results are very close : around 1.4
W/kg for the case presented Figure 21 and 0,44W/kg for the one presented Figure 23. However, for
brevity only CST results are presented.

Figure 21. SAR10-g distribution at 868 MHz in the case of ts = 0.25 mm insulation layer thickness.

Figure 22. Simulated SAR10-g maximum values at 868 MHz as a function of the insulation layer
thickness ts.

6. CONCLUSION

In this paper, the design of an implanted antenna intended to operate in the European UHF RFID band
was presented. The antenna consists in a printed dipole excited by a loop associated to a RFID chip.
Techniques for improving its efficiency and miniaturization have also been proposed. The optimized
antenna presents a radiation efficiency of 0.7% and a total gain of -17.5 dBi. A homogeneous body
phantom was used for the simulations and the measurements. The observation of the electromagnetic
near fields radiated by the implanted antenna has validated the presence of the two fields components
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Figure 23. Simulated SAR10-g maximum values at 868 MHz with the presence of the reader antenna
placed under the cage.

due to the geometry of the structure thus facilitating the implanted tag detection by the reader. RSSI
measurements have also demonstrated the possibility of reliable wireless communications between the
implanted antenna and an external reader. Finally, the SAR10-g distribution has been evaluated and the
results have shown that the antenna respects the safety requirements and may be used in the intended
application.
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