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Abstract

Multivariate time series are ubiquitous objects in signal processing. Measuring a distance
or similarity between two such objects is of prime interest in a variety of applications,
including machine learning, but can be very difficult as soon as the temporal dynamics and
the representation of the time series, i.e. the nature of the observed quantities, differ from
one another. In this work, we propose a novel distance accounting both feature space and
temporal variabilities by learning a latent global transformation of the feature space together
with a temporal alignment, cast as a joint optimization problem. The versatility of our
framework allows for several variants depending on the invariance class at stake. Among
other contributions, we define a differentiable loss for time series and present two algorithms
for the computation of time series barycenters under this new geometry. We illustrate the
interest of our approach on both simulated and real world data and show the robustness of
our approach compared to state-of-the-art methods.

1 Introduction

Time series are subject to a number of variabilities that make their processing difficult in practice. One of the
most well-known example is the temporal shift, usually handled using the celebrated Dynamic Time Warping
(DTW, Sakoe & Chiba 1978) that aligns, in time, two time series and is invariant to any monotonically
increasing temporal map. It has been initially introduced for speech processing applications and is now widely
used in a variety of contexts such as human activity recognition (Chang et al., 2019), satellite image analysis
(Wegner Maus et al., 2019) or medical applications (Huang & Lu, 2020; Janati et al., 2020).

Another source of variability in time series is feature space alterations, that may occur due to a permutation
of sensors, changes in sensor properties or even different number of sensors. This problem of heterogeneous
representations, also called distribution shifts in machine learning, has been studied mostly on non-structured
data. It has been shown that algorithms are notoriously weak (Ben-David et al., 2010) when it comes to
generalizing to out-of-distribution samples, as they rely on the correlations that are found in the training
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Figure 1: DTW-GI aligns time series by optimizing on temporal alignment π (through Dynamic Time
Warping) and feature space transformation f (e.g. here in the Stiefel manifold V2,3). In the figure π∗, f∗
denote the solutions of the optimization problem DTW-GI. Time series represented here are color-coded
trajectories, whose starting (resp. end) point is depicted in blue (resp. yellow).

data (Arjovsky et al., 2019). Consequently, dedicated paradigms such as domain adaptation (Kouw & Loog,
2019) directly take into account this problem in the learning process. Another approach is to learn with
respect to some invariance classes (based on some prior knowledge) in order to be more robust to irrelevant
feature transformations (Battaglia et al., 2018; Goodfellow et al., 2009). In this work, we aim at tackling
this problem in the time series context through the definition of similarity measures that naturally encode
desirable invariances. More precisely, we introduce similarity measures that are able to deal with both
temporal and feature space transformations.

There exist many frameworks to register different spaces under some classes of invariance. In the shape
analysis community, matching objects under rigid transformations is a widely studied problem. Iterative
Closest Point (ICP, Chen & Medioni 1992) is a standard algorithm for such a task. It acts by alternating
two simple steps: (i) matching points using nearest neighbor search and (ii) registering shapes together
based on the obtained matches, which is known as the orthogonal Procrustes problem that has a closed form
solution (Goodall, 1991). This idea is further explored in Cohen & Guibas (1999); Alvarez-Melis et al. (2019),
where optimal transport is used to match points in the first step, and a recent extension to objects with a
hierarchical structure has been introduced in Alvarez-Melis et al. (2020) that considers a dedicated invariance
class for the registration step.

This heterogeneous setting has also been investigated in the time series context, where the goal is to align
series of features lying in different spaces. One of the most salient track of research in this setting is the
Canonical Time Warping (CTW) method. CTW (Zhou & Torre, 2009) has been introduced for human
motion alignment under rigid space transformations. It consists of temporal alignment (using DTW) of
transformed time series, using Canonical Correlation Analysis (CCA) to define the feature space transform.
Few extensions to CTW have been proposed. GTW (Zhou & De la Torre, 2012) parametrizes CTW temporal
alignments in continuous time instead of relying on DTW. Deep CTW (Trigeorgis et al., 2016) extends CTW
by learning a feature space embedding (in the form of a neural network) before performing CTW. Finally,
Canonical soft Time Warping applies the CTW methodology to soft alignments (see Section 2 for more details
on soft alignments). In the same vein as CTW, Deng et al. (2020) learns an invariant subspace based on
DTW alignments. More recently, GromovDTW (Cohen et al., 2021) has been introduced as an extension of
the Gromov-Wasserstein distance measure between heterogeneous distributions to the time series context.
GromovDTW relies on time series self-similarities as a way to circumvent the need to compute distances
across feature spaces. Compared to these approaches, our method works by optimizing a map between feature
spaces, hence allowing one to (i) add prior information in the form of constraints on the set of allowed maps
and (ii) use the computed map for downstream application, as illustrated in our experiments on MoCap data
(as described in Section 4).

In more detail, we aim at tackling both temporal and feature space invariances. To do so, we state the
problem as a joint optimization over temporal alignments and feature space transformations, as depicted in
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Figure 1. Our general framework allows the use of either DTW or its smoothed counterpart softDTW as an
alignment procedure. Similarly, though rigid transformations of the feature space seem a reasonable invariance
class, we show that our method can be used in conjunction with other families of transformations. Such a
framework allows considering the case when time series differ both in length and feature space dimensionality.
We introduce two different optimization procedures that could be used to tackle this problem and show
experimentally that they lead to effectively invariant similarity measures. Our method can also be used to
compute meaningful barycenters even when time series at stake do not lie in the same feature space. Finally,
we showcase the versatility of our method and the importance of jointly learning feature space transformations
and temporal alignments on two real-world applications that are time series forecasting for human motion
and cover song identification.

2 Dynamic Time Warping (DTW)

Dynamic Time Warping (DTW, Sakoe & Chiba 1978) is an algorithm used to assess similarity between time
series, with extensions to multivariate time series proposed in Ten Holt et al. (2007); Wöllmer et al. (2009).
In its standard form, given two multivariate time series x ∈ RTx×p and y ∈ RTy×p of the same dimensionality
p, DTW is defined as:

DTW(x,y) = min
π∈A(x,y)

∑
(i,j)∈π

d(xi,yj) (1)

where A(x,y) is the set of all admissible alignments between x and y and d is a ground metric. In most
cases, d is the squared Euclidean distance, i.e. d(xi,yj) = ‖xi − yj‖2.

An alignment π is a sequence of pairs of time frames which is considered to be admissible iff (i) it matches
first (and respectively last) indexes of time series x and y together, (ii) it is monotonically increasing and (iii)
it is connected (i.e. every index from one time series must be matched with at least one index from the other
time series). Efficient computation of the above-defined similarity measure can be performed in quadratic
time using dynamic programming, relying on the following recurrence formula:

DTW(x→t1 ,y→t2) = d(xt1 ,yt2) + min

 DTW(x→t1 ,y→t2−1)
DTW(x→t1−1,y→t2)
DTW(x→t1−1,y→t2−1)

(2)

where we denote by x→t the time series x observed up to time t. Many variants of this similarity measure
have been introduced. For example, the set of admissible alignment paths can be restricted to those lying
close to the diagonal using the so-called Itakura parallelogram or Sakoe-Chiba band, or a maximum path
length can be enforced (Zhang et al., 2017). Most notably, a differentiable variant of DTW, coined softDTW,
has been introduced in Cuturi & Blondel (2017) and is based on previous works on alignment kernels (Cuturi
et al., 2007). It replaces the min operation in Equation 2 by a soft-min operator minγ whose smoothness is
controlled by a parameter γ > 0, resulting in the DTWγ distance:

DTWγ(x,y) = min γ
π∈A(x,y)

∑
(i,j)∈π

d(xi,yj) = −γ log

 ∑
π∈A(x,y)

e
−
∑

(i,j)∈π
d(xi,yj)/γ

 . (3)

In the limit case γ = 0, minγ reduces to a hard min operator and DTWγ is equivalent to the DTW algorithm.

3 DTW with Global Invariances

Despite their widespread use, DTW and softDTW are not able to deal with time series of different dimension-
alities or to encode feature transformations that may arise between time series. In the following, we introduce
a new similarity measure aiming at aligning time series in this complex setting and provide ways to compute
associated alignments. We also derive a Fréchet mean formulation that allows computing barycenters under
this new geometry.
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DTW DTW-GI

Figure 2: Example alignments between 2D time series (trajectories in the plane). Color coding corresponds
to timestamps. Our DTW-GI method jointly estimates temporal alignment and global rotation between time
series. On the contrary, standard DTW alignment fails at capturing feature space distortions and therefore
produces a mostly erroneous alignment (matching in red), except at the beginning and end of the time series,
whose alignments are preserved thanks to DTW border constraints (see Section 2).

3.1 Definitions

Let x ∈ RTx×px and y ∈ RTy×py be two time series of length Tx and Ty. In the following, we assume that
the dimension px ≥ py. In order to allow comparison between time series x and y, we optimize on a family
of functions F that map y onto the feature space in which x lies. More formally, we define Dynamic Time
Warping with Global Invariances (DTW-GI) as the solution of the following joint optimization problem:

DTW-GI(x,y) = min
f∈F,π∈A(x,y)

∑
(i,j)∈π

d(xi, f(yj)), (4)

where F is a family of functions from Rpy to Rpx . Properties (including symmetry) of this similarity measure
are detailed in Sec. 3.1.1. Note that this problem can also be written as:

DTW-GI(x,y) = min
f∈F,π∈A(x,y)

〈Wπ, C(x, f(y))〉 (5)

where f(y) is a shortcut notation for the transformation f applied to all observations in y, 〈., .〉 denotes the
Frobenius inner product, Wπ is defined as:

∀i ≤ Tx, j ≤ Ty, (Wπ)i,j =
{

1 if (i, j) ∈ π
0 otherwise

(6)

and C(x, f(y)) is the cross-similarity matrix of squared Euclidean distances between samples from x and
f(y), respectively. This definition can be extended to the softDTW case of Equation 3 as proposed in the
following:

DTWγ-GI(x,y) = min
f∈F

min γ
π∈A(x,y)

〈Wπ, C(x, f(y))〉 (7)

= min
f∈F
−γ log

∑
π∈A(x,y)

e−〈Wπ,C(x,f(y))〉/γ .

Note that, due to the use of a soft-min operator, Equation 7 is no longer a joint optimization.

These similarity measures estimate both temporal alignment and feature space transformation between time
series simultaneously, allowing the alignment of time series when the similarity should be defined up to a
global transformation. For instance, one can see in Figure 2 two temporal alignments between two series
in 2D that have been rotated in their feature space. In this case DTW-GI, whose invariant is the space of
rotations, recovers the proper alignment whereas DTW fails.
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3.1.1 Properties of DTW-GI

By definition, DTW-GI and softDTW-GI are invariant under any global transformation T (·) such that
{f ◦T | f ∈ F} = F (i.e. F is stable under T ), which motivates the name (soft)DTW with Global Invariances.
Moreover, DTW-GI inherits from some of the classical DTW properties. First, if for any f ∈ F , f−1 exists
and is in F (which implies px = py), and if elements of F are norm preserving operations, then DTW-GI and
softDTW-GI are symmetric, since in this case:

DTW-GI(x,y) = min
f∈F,π∈A(x,y)

∑
(i,j)∈π

d(xi, f(yj)) (8)

= min
f∈F,π∈A(x,y)

∑
(i,j)∈π

d(f(f−1(xi)), f(yj)) (9)

= min
f∈F,π∈A(x,y)

∑
(i,j)∈π

d(f−1(xi),yj) (10)

= min
f∈F,π∈A(x,y)

∑
(i,j)∈π

d(f(xi),yj) (11)

= min
f∈F,π∈A(y,x)

∑
(i,j)∈π

d(yi, f(xj)) = DTW-GI(y,x). (12)

Though the constraints on F for this condition to hold might appear rather strong, this still allows to include
standard rigid transformations such as rotations, translations and reflections.

Finally, it is straightforward to see that DTW-GI(x,x) = 0 for any time series x as soon as F contains the
identity map. More generally, regardless of the class of functions F and for any pair of time series (x,y), we
have DTW-GI(x,y) = 0 iff there exists f ∈ F such that x and f(y) are equal up to repetitions in the series.

3.2 Optimization

Optimization on the above-defined losses can be performed in several ways, depending of the nature of F .
We now present one optimization scheme for each loss.

3.2.1 Gradient descent

We first consider the optimization on the softDTW-GI loss (Equation 7) in the case where F is a parametric
family of functions, here denoted fθ, that are differentiable with respect to their parameters θ. The
optimization can be done with a gradient descent on the parameters of fθ. Since softDTW is smooth (contrary
to DTW), this strategy can be used to compute gradients of DTWγ-GI w.r.t. θ.

Complexity for this approach is driven by (i) that of a softDTW computation and (ii) that of computing fθ(y).
If we denote the latter cf , overall complexity for this approach is hence O(niter(TxTypx + cf )). Note that
when Riemannian optimization is involved, an extra complexity term has to be added, corresponding to the
cost of projecting gradients onto the considered manifold. This cost is O(p3

y) for example when optimization
is performed on the Stiefel manifold (Wen & Yin, 2013), which is an important case for our applications, as
discussed in more details in the following.

3.2.2 Block Coordinate Descent (BCD)

When DTW-GI (see Equation 5) is concerned, we introduce another strategy that consists in alternating
minimization over (i) the temporal alignment and (ii) the feature space transformations. We will refer to this
strategy as Block Coordinate Descent (BCD) in the following.

Optimization over the alignment path given a fixed transformation f solely consists in a DTW alignment, as
described in Section 2. For a fixed alignment path π, the optimization problem then becomes:

min
f∈F
〈Wπ, C(x, f(y))〉 . (13)
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Recall that C is a matrix of squared distances, which means that the problem above is a weighted least
square problem. Depending on F , there can exist a closed form solution for this problem (e.g. when F is the
set of affine maps with no further constraints). Let us first note that the matrix C can be rewritten as:

C(x, f(y)) = ux1>Ty + 1Txv>f,y − 2xf(y)> (14)
where:

ux = (‖x1‖2, . . . , ‖xTx‖2)> and vf,y = (‖f(y1)‖2, . . . , ‖f(yTy )‖2)>

and 1n = (1, · · · , 1︸ ︷︷ ︸
n times

)>. In particular, the optimization problem (13) reduces to maximizing
〈
Wπ,xf(y)>

〉
when F is a set of norm preserving operations.

3.2.3 Estimating f in the Stiefel manifold

Let us consider the special case where F is the set of linear maps whose linear operator is an orthonormal
matrix, hence lying on the Stiefel manifold that we denote Vpy,px in the following. It is defined for py ≤ px
as Vpy,px = {P ∈ Rpx×py ,P>P = Ipy} and this invariance class encodes rigid transformations of the features.
In this case, the optimization problem becomes:

min
P∈Vpy,px

〈
Wπ,ux1>Ty + 1Txv>P,y − 2xPy>

〉
(15)

and we have vP,y = (‖Py1‖2, . . . , ‖PyTy‖2)> = (‖y1‖2, . . . , ‖yTy‖2)> = vy since for all j, ‖Pyj‖2 =
y>j P>Pyj = ‖yj‖2 and thus the considered applications are norm-preserving. Overall, we get the following
optimization problem:

min
P∈Vpy,px

〈
Wπ,ux1>Ty + 1Txv>y

〉
− 2

〈
Wπ,xPy>

〉
(16)

which, since the term
〈
Wπ,ux1>Ty + 1Txv>y

〉
does not depend on P, is equivalent to solving:

max
P∈Vpy,px

〈
Wπ,xPy>

〉
= max

P∈Vpy,px

〈
x>Wπy,P

〉
(17)

the last equality being a direct consequence of the cyclic property of the trace.

Algorithm 1: Block-Coordinate Descent for DTW-GI with Stiefel registration
P← Ipx,py ;
repeat

Wπ ← Alignment matrix from DTW(x,yP>) ;
M← x>Wπy (see Equation 17) ;
U,Σ,V> ← SVD(M) ;
P← UV> ;

until convergence;

As described in Jaggi (2013), the latter problem can be solved exactly using Singular Value Decomposition
(SVD): if UΣV> = M is the SVD of a matrix M of shape (py, px), then S? = UV> is a solution to the linear
problem maxS∈Vpy,px 〈S,M〉. Note that this method can also tackle the case where F is an affine map whose
linear part lies in the Stiefel manifold by realigning time series means, as discussed for example in Lawrence
et al. (2019). A sketch of the algorithm is presented in Algorithm 1 (for the simplified case where time series
means do not have to be realigned).

Interestingly, this optimization strategy where we alternate between time series alignment, i.e. time corre-
spondences between both time series, and feature space transform optimization can be seen as a variant of the
Iterative Closest Point (ICP) method in image registration (Chen & Medioni, 1992), in which nearest neighbors
are replaced by matches resulting from DTW alignment. Its overall complexity is then O(niter(TxTypx+pxp2

y)).
This complexity is equal to that of the gradient-descent when px = O(py). However, in practice, the number
of iterations required is much lower for this BCD variant, making it a very competitive optimization scheme,
as discussed in Section 4.
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Generalizations. The algorithms presented above are mainly focused on optimization on the Stiefel
manifold. Note however that they are not strictly restricted to this case. Typically, (projected) gradient
descent based optimization could be performed for softDTW-GI on any family of functions parametrized
by a neural network. Regarding the BCD algorithm, it requires a numerically efficient way to compute the
optimal feature space transform for a fixed alignment. In our experiment, we illustrate this in the context of
cover song identification, for which aligning song keys is a well-known registration step (see Section 4.5 for
details). Another example is for block-structured linear transformations of the features. More precisely, this
corresponds to the case where the features are structured into k groups i.e. px = k · qx and py = k · qy with
qy ≤ qx, k ∈ N and when one looks for a linear transformation p ∈ Rqx×qy that aligns the features of each
group. To make the connection with our framework, this coincides with a global transformation P ∈ Rpx×py
that can be written as P = blockdiagk(p) where:

blockdiagk(p) = diag(p, · · · ,p︸ ︷︷ ︸
k times

) =


p 0 . . . 0
0 p . . . 0
...

... . . . ...
0 0 . . . p

 .

In the special case of p ∈ Vqy,qx it is easy to show that P>P = Ipy and thus P ∈ Vpy,px which also corresponds
to a rigid transform of the features but this time structured in blocks. In this situation, the alignment problem
becomes:

min
P=blockdiagk(p)

s.t. p∈Vqy,qx

〈
Wπ,ux1>Ty + 1Txv>P,y − 2xPy>

〉
. (18)

As P ∈ Vpy,px we can use the same reasoning as above and show that it is equivalent to
maxp∈Vqy,qx

〈
x>Wπy,blockdiagk(p)

〉
. Interestingly the latter problem also admits a closed form expression.

More precisely by decomposing x>Wπy into k blocks Cij , each of size qx × qy, the solution is given by
S? = UV> where U,V come from the SVD of

∑k
i=1 Cii, i.e. the sum of the diagonal blocks. For more

details we refer the reader to the Lemma 6.1 in the supplementary materials. We will illustrate this type of
transformation for the alignment of human motion trajectories in Section 4.4.

3.3 Barycenters

Let us now assume we are given a set {x(i)}i of time series of possibly different lengths and dimensionalities.
A barycenter of this set in the DTW-GI sense is a solution to the following optimization problem:

min
b∈RT×p

∑
i

wi min
fi∈F

DTW(x(i), fi(b)), (19)

where weights {wi}i as well as barycenter length T and dimensionality p are provided as input to the problem.
Note that, with this formulation, when F is the Stiefel manifold, p is supposed to be lower or equal to the
dimensionality of any time series in the set {x(i)}i.

In terms of optimization, as for similarity estimation, two schemes can be used. First, softDTW-GI barycenters
can be estimated through gradient descent (and when the set of series to be averaged is large, a stochastic
variant relying on minibatches can easily be implemented). Second, when BCD is used for time series alignment,
barycenters can be estimated using a similar approach as DTW Barycenter Averaging (DBA, Petitjean et al.
2011), that would consist in alternating between barycentric coordinate estimation and DTW-GI alignments.

4 Experiments

In this section, we provide an experimental study of DTW-GI (and its soft counterpart) on simulated data
and real-world datasets. Unless otherwise specified, the set F of feature space transforms is the set of affine
maps whose linear part lies in the Stiefel manifold. In all our experiments, tslearn (Tavenard et al., 2020)
implementation is used for baseline methods and gradient descent on the Stiefel manifold is performed using
GeoOpt (Kochurov et al., 2019; Becigneul & Ganea, 2019) in conjunction with PyTorch (Paszke et al., 2019).
Open source code of our method will be released upon publication.
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Figure 3: Computing time as a function of time series length (left) and dimensionality (right). Solid lines
correspond to median values and shaded areas correspond to 20th (resp. 80th) percentiles.

4.1 Timings

We are first interested in a quantitative evaluation of the temporal complexity of our methods. Note that the
theoretical complexity of DTW and softDTW are the same, hence any difference observed in this series of
experiments between DTW-GI and softDTW-GI would be solely due to their optimization schemes discussed
in Section 3.2. In these experiments, the number of iterations for BCD as well as the number of gradient
steps for the gradient descent optimizer are set to 5,000. The BCD algorithm used for DTW-GI is stopped
as soon as it reaches a local minimum, while early stopping is used for the gradient-descent variant with a
patience parameter set to 100 iterations.

We first study the computation time as a function of the length of the time series involved. To do so, we
generate random time series in dimension 8 and vary their lengths from 8 to 1,024 timestamps.

Figure 3 (left) shows a clear quadratic trend for all methods presented, except GromovDTW whose complexity
is cubic w.r.t. the length of the time series due the tensor-matrix multiplication that is involved at each step
of its pseudo-Frank-Wolfe algorithm (Cohen et al., 2021). Note that DTW-GI and its BCD optimizer clearly
outperform the gradient descent strategy used for softDTW-GI because the latter requires more iterations
before early stopping can be triggered. Building on this, we now turn our focus on the impact of feature space
dimensionality p (with a fixed time series length of 32). DTW and softDTW baselines are asymptotically
linear with respect to p. Similarly, since GromovDTW relies on pre-computed self-similarity matrices, it only
linearly depends in the feature space dimensionality for the computation of these self-similarity matrices. Since
feature space registration is performed through optimization on the Stiefel manifold, both our optimization
schemes rely on Singular Value Decomposition, which leads to an O(p3) complexity that can also be observed
for both methods in Figure 3 (right). Note also that the CTW baseline is slightly more computationally
expensive than DTW-GI in practice, even if asymptotic complexities are the same as for DTW-GI.

4.2 Rotational invariance

We now evaluate the ability of our method to recover invariance to rotation. To do so, we rely on a synthetic
dataset of noisy spiral-like 2D trajectories. For increasing values of an angle α, we generate pairs of spirals
rotated by α with additive Gaussian noise. Alignments between a reference time series and variants that are
subject to an increasing rotation are computed and repeated 50 times per angle. The ratio of each distance
to the distance when α = 0 is reported in Figure 4 (left). One can clearly see that the GI counterparts of
DTW and softDTW are invariant to rotation in the 2d feature space, while DTW and softDTW are not.
Interestingly, CTW and GromovDTW, that should be invariant to rotation, still exhibit an increase in the
loss with the angle α, suggesting that their algorithm has more difficulties reaching a global minimum in
practice. Also, when varying the noise level in Figure 4 (right), one can notice that (soft-)DTW-GI are
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Figure 4: Illustration of the rotation invariance provided by DTW-GI. On the left, ratio of the distance to
that of a non-rotated pair of spirals is presented as a function of the rotation angle for a fixed noise level.
On the right, ratio of the distance to that of a non-rotated pair of spirals is presented as a function of the
noise level for a fixed rotation angle π. Median distance ratios are reported as solid lines and shaded areas
correspond to 20th (resp. 80th) percentiles.

Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 DTW softDTW Gromov-DTW DTW-GI softDTW-GI

Samples Barycenters

Figure 5: Barycenter computation using (i) DTW and softDTW baseline approaches, (ii) the alternative
Gromov-DTW (Cohen et al., 2021) and (iii) our proposed rotation-invariant DTW-GI and softDTW-GI.
Each row correspond to a different dataset, and the latter one contains both 2D and 3D trajectories, hence
cannot be tackled by DTW nor softDTW. Trajectories are color-coded from blue (beginning of the series) to
yellow (end of the series).

slightly more robust to high levels of noise than the CTW baseline, while GromovDTW is very sensitive to
this noise level (the GW loss is a quadratic function of its input).
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Figure 6: Barycenters computed on the RTD Dataset from 50 sample trajectories from each of the 10 classes
using DTW-GI, softDTW-GI and GromovDTW. Trajectories are color-coded from blue (beginning of the
series) to yellow (end of the series).

4.3 Barycenter computation

So as to better grasp the notion of similarity captured by our methods, we compute barycenters using
the strategy presented in Section 3.3. Barycenters are computed for 3 different datasets: the first two are
made of 2D trajectories of rotated and noisy spirals or folia, and the third one is composed of both 2- and
3-dimensional spirals (see samples in the left part of Figure 5). For each dataset, we provide barycenters
obtained by three baseline methods. DTW Barycenter Averaging (DBA, Petitjean et al. 2011) is used for
DTW while softDTW resorts to a gradient-descent scheme to compute the barycenters. Their GI counterpart
use the same algorithms but rely on the alignments obtained from DTW-GI and softDTW-GI respectively.
Finally, GromovDTW is optimized by alternating between computation of the barycenter self-similarity
matrix and alignments, as done in Cohen et al. (2021). Note that the DTW and softDTW baselines cannot
be used for the third dataset since features of the time series do not lie in the same ambient space. We
would like to emphasize that the barycenter based on GromovDTW only finds a pairwise distance matrix
from which the positions of the points must be inferred, for example by applying multidimensional scaling
(MDS) (Kruskal & Wish, 1978) (as done here and in Cohen et al. 2021).

For the 2d spiral dataset, all the reconstructed barycenters can be considered as meaningful. Note however
that the outer loop of the spiral (the one that suffers the most from the rotation) is better reconstructed
using DTW-GI and softDTW-GI variants. When it comes to the folia trajectories, that are more impacted
by rotations, baseline barycenters fail to capture the inherent structure of the trajectories at stake, while
both our methods generate smooth and representative barycenters. DTW-GI and softDTW-GI are even able
to recover barycenters when datasets are made of series that do not lie in the same space, as shown in the
third row of Figure 5. Finally, in all three settings considered, temporal alignments successfully capture the
irregular sampling from the samples to be averaged (denser towards the center of the spiral / loop of the
folium).

The RealSense based Trajectory Digit (RTD) dataset Alam et al. (2020) is made of digit writing trajectories. In
our experiment, we have randomly sampled 50 trajectories per digit class and computed trajectory barycenters
using (soft)DTW-GI and GromovDTW. On such data, expected invariants are rotations and translations.
One can observe that invariance to mirroring strongly impacts GromovDTW’s barycenter estimation on
classes 4, 7 and 9. On the other hand, for both DTW-GI and softDTW-GI, we obtain meaningful barycenters
that do not suffer from mirroring artifacts and better preserve overall trajectories.

4.4 Time series forecasting

To further illustrate the benefit of our approach, we consider a time series forecasting problem (Le Guen &
Thome, 2019), where the goal is to infer the future of a partially observed time series. In this setting, we
suppose that we have access to a training set of full time series X, with x(i) ∈ X a time series of length T
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Ground truth Train Sample 0 Train Sample 1 Train Sample 2 Train Sample 3 Train Sample 4

DTW-GI. Err=37.68 Coeff = 0.89792 Coeff = 0.09569 Coeff = 0.00317

softDTW-GI. Err=39.23 Coeff = 0.79506 Coeff = 0.06918 Coeff = 0.03905

CTW. Err=187.01 Coeff = 0.03336 Coeff = 0.03336 Coeff = 0.03335

GromovDTW. Err=184.99 Coeff = 0.09044 Coeff = 0.08969 Coeff = 0.07673

Figure 7: Examples of the forecasted subseries. (first row) The first sample is the ground-truth ŷT ′→ for
the subject S1 and then training samples x(i)

T ′→ are depicted. (from second to last row) Predictions for
the methods DTW-GI, softDTW-GI, CTW and GromovDTW (the other methods are given in 8). In the
first column the prediction ŷT ′→ is depicted along with the error ‖ŷT ′→ − yT ′→‖2. In the other columns, we
illustrate the first 3 neighbors w.r.t. the method x(i)

→T ′ associated with their coefficients ad
(
y→T ′ ,x(i)

→T ′

)
.

For each movement an arrow indicates the orientation of the subject. The beginning of the movement is
displayed in shaded blue while the end is displayed in bold red.
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L2. Err=187.01 Coeff = 0.03334 Coeff = 0.03334 Coeff = 0.03334

Procrustes. Err=46.54 Coeff = 0.93897 Coeff = 0.02469 Coeff = 0.02304

softDTW. Err=187.02 Coeff = 0.03459 Coeff = 0.03443 Coeff = 0.03440

DTW+Procrustes. Err=43.34 Coeff = 0.89792 Coeff = 0.09569 Coeff = 0.00317

softDTW+Procrustes. Err=43.22 Coeff = 0.94239 Coeff = 0.02054 Coeff = 0.01462

Figure 8: Examples of the forecasted subseries for the methods L2, L2+Procrustes, softDTW,
DTW+Procrustes and softDTW+Procrustes
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and dimensionality px, and another test set of partial time series Y where each y ∈ Y is of length T ′ < T
and dimensionality py. The goal is to predict the values for timestamps T ′ to T for each test time series. We
will denote by x→T ′ the beginning of the time series x (up to time T ′) and xT ′→ its end (from time T ′ to
time T ).

Let d(y,x(i)) denote a dissimilarity measure between time series y and x(i) associated with a transformation
fi ∈ F : Rpx → Rpy that maps the features of x(i) onto the features of y. This function aims at capturing the
desired invariances in the feature space, as described in the previous section. A typical example is when d is
the (soft)DTW-GI cost, then the fi are the Stiefel linear maps which capture the possible rigid transformation
between the features. We propose to predict the future of a time series y as follows:

ŷT ′→ =
∑
i

ad

(
y→T ′ ,x(i)

→T ′

)
fi

(
x(i)
T ′→

)
(20)

where ad is the attention kernel:

ad(y,xi) = e−λd(y,xi)∑
j e
−λd(y,xj) (21)

with λ > 0. The prediction is based on the known timestamps for the time series of the training set and on
transformations fi that aim at capturing the latent transformation between training and test time series. The
attention kernel gives more importance to time series that are close to the time series we want to forecast
w.r.t. the notion of dissimilarity d. Note that for large values of λ, the softmax in Equation 21 converges to a
hard max and the proposed approach corresponds to a nearest neighbor imputation.

4.4.1 Dataset and methodology

We use the Human3.6M dataset (Ionescu et al., 2014) which consists of 3.6 million video frames of human
movements recorded in a controlled indoor motion capture setting. This dataset is composed of 7 actors
performing 15 activities (“Walking”, “Sitting” ...) twice. We are interested in forecasting the 3D positions
of the subject joints evolving over time. More precisely, each data point x(i) is a time series representing
a skeleton of 32 joints where each joint is described by 3D coordinates. This problem corresponds to
px = py = 32× 3. We follow the same data partition as Coskun et al. (2017): the training set has 5 subjects
(S6, S7, S8, S9 and S11) and the remaining 2 subjects (S1 and S5) compose the test set. In our experiments,
1) we split the limit frames as follows: we keep the first T ′ = 300 timestamps to calculate the coefficient
ad

(
y→T ′ ,x(i)

→T ′

)
and the transformations fi 2) we find the hyperparameter λ which gives the best prediction

(w.r.t. the `2 norm) for t ∈ [T ′, T0] (where T0 = 400) 3) the remaining times [T0, T
′] are used for the test set.

We set the last limit frame as T ′ = 1100 which corresponds to predicting T ′ − T0 = 700 timestamps, that is
predicting 14 seconds of motion given the initial 8 seconds. To emulate possible changes in signal acquisition
(e.g. rotations of the camera), we randomly rotate the train subjects w.r.t. the z-axis. We consider the
movements of type “Walking”, “WalkDog” and “WalkTogether” for the training set and “Walking” for the
test set. Top row of Figure 7 illustrates samples of movements x(i)

→T ′ resulting from this procedure and the
resulting dataset is provided as supplementary material.

4.4.2 Competing structured prediction methods

We look for global transformations of the features fi : R32×3 → R32×3. In order to obtain coherent
transformations for each joint of the skeleton, the fi are structured as fi = (gi, gi, · · · , gi︸ ︷︷ ︸

32 times

) where gi : R3 → R3.

In other words, we consider that there is only one global 3D transformation that aligns all the joints of two
time series (such as one rotation). We use DTW-GI and softDTW-GI as our similarity measures and the
associated maps fi as described in Equation 5 and in Equation 7. We compute DTW-GI using the BCD
procedure with block-structured rigid transformations of the features as in Equation 18 (qx = qx = 3, k = 32
in this context). We calculate softDTW-GI with automatic differentiation as described in Section 3.2. In this
experiment we set γ = 0.05 for the smoothness parameter. We compare these methods to 8 baselines, that
correspond to different pairs of time series similarity measure and feature space invariances. The first two
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Method Average test error
L2 183.11 ± 3.90

softDTW (Cuturi & Blondel, 2017) 183.12 ± 3.90
CTW (Zhou & Torre, 2009) 183.11 ± 3.90

GromovDTW (Cohen et al., 2021) 181.28 ± 3.71
L2+Procrustes 46.33 ± 0.21

DTW+Procrustes 43.31 ± 0.03
softDTW+Procrustes 43.90 ± 0.11

DTW-GI (ours) 38.05 ± 0.37
softDTW-GI (ours) 39.58 ± 0.34

Table 1: Average error on tests subjects for the time series forecasting on the Human3.6M dataset

baselines, denoted L2 and softDTW, do not encode any feature space invariance and are based on `2 and
softDTW similarities respectively. We also consider a Procrustes baseline (Goodall, 1991) defined as:

d(y→T ′ ,x(i)
→T ′) = min

P,b
‖(x(i)
→T ′P> + b)− y→T ′‖2

2 (22)

where P = blockdiag32(p) with p ∈ V3,3 and b = (b, · · · ,b) with b ∈ R3. The corresponding transformation
fi is the affine map based on the optimal P?,b? found by the previous problem. We denote this baseline
L2+Procrustes. Two other baselines are computed by first registering series using the Procrustes procedure
defined above and then using the similarity measure d(y→T ′ ,x(i)

→T ′) = DTW(y→T ′ ,x(i)
→T ′P

?> + b?) and
d(y→T ′ ,x(i)

→T ′) = DTWγ(y→T ′ ,x(i)
→T ′P

?> + b?). They are denoted respectively by DTW+Procrustes and
softDTW+Procrustes. Finally, we also compare with GromovDTW (Cohen et al., 2021) and CTW (Zhou &
Torre, 2009). Note that the methods L2, softDTW, GromovDTW and CTW do not provide a transformation
of the features of x(i)

→T ′ onto those of y→T ′ and, as such, we set fi = id for all of these methods.

4.4.3 Results

Qualitative and quantitative results are provided in Figures 7, 8 and Table 1 respectively. We evaluate, for
each test subject, the `2 reconstruction loss ‖yT ′→ − ŷT ′→‖2 between the ground truth time series and its
prediction. Table 1 displays the average loss on the test subjects based on the best hyperparameter found
using the timestamps [T0, T

′]. Figures 7 and 8 present examples of reconstructed movements for the different
methods on one test subject as well as the 3 highest coefficients ad with the corresponding neighbors.

We observe from the quantitative study that softDTW, L2, CTW and GromovDTW lead to the worst
reconstruction losses while L2+Procrustes, DTW+Procrustes, softDTW+Procrustes and DTW-GI, softDTW-
GI lead to the best ones. The results for the first four methods can be explained by the fact that none of
them can use an explicit spatial transformation of the feature fi for the prediction and thus only a simple
weighted average of the time-series x(i)

T ′→ is realized. This is illustrated for CTW, GromovDTW, softDTW
and L2 in Figures 7 and 8, where we can see that the prediction tends to shrink. We can also see that
DTW+Procrustes and softDTW+Procrustes are superior to a simple L2+Procrustes which highlights the
importance of temporal realignment. More importantly, the performances of DTW-GI and softDTW-GI are
also better than DTW+Procrustes, softDTW+Procrustes and L2+Procrustes which shows that our joint
realignment of time and space has an advantage over a two-step procedure such as DTW+Procrustes,
softDTW+Procrustes which first finds the feature transformation and then aligns series in time.

Moreover, one can observe qualitatively that GromovDTW and CTW seem to uniformly average all the
different motions to compensate for the lack of reprojection fi. On the contrary, by capturing the possible
spatial variability, L2+Procrustes and softDTW+Procrustes perform reasonably well qualitatively but the
predicted movement is slightly less accurate than the one of softDTW-GI. This is due to the fact that
L2+Procrustes or softDTW+Procrustes mainly chooses the movement corresponding to the first nearest
neighbor (ad[1] = 0.94) while softDTW-GI is able to average other dynamics (ad[1] = 0.79). It is somehow
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Figure 9: Cover song identification using the covers80 dataset. Methods are compared in terms of recall and
results are averaged over 10 train / test set draws. For each method, the shaded area corresponds to one
standard deviation around the mean value.

a natural conclusion since the optimal transformations found by the Procrustes analysis supposes a trivial
one-to-one correspondence of the timestamps (i.e. y→T ′(t) corresponds to x(i)

→T ′(t) at the same time t)
and do not consider the temporal shifts between them. In this way, the method L2+Procrustes leads to
unrealistic transformations when the dynamics of movements are not the same. Note that the two-step
procedure softDTW+Procrustes is only slightly more precise as the feature realignment is independent of the
temporal realignment since both are not optimized jointly. On the opposite, softDTW-GI method leads to
the best qualitative results, highlighting the benefits of our approach over methods that whether discard the
temporal variability of the movements (L2+Procrustes) or its spatial variability (softDTW).

4.5 Cover song identification

Cover song identification is the task of retrieving, for a given query song, its covers (i.e. different versions of
the same song) in a training set. State-of-the-art methods either rely on anchor matches in the songs and/or
on temporal alignments. In most related works, chroma or harmonic pitch class profile (HPCP) features are
usually chosen, as they capture harmonic characteristics of the songs at stake (Heo et al., 2017).

For this experiment, we use the covers80 dataset (Ellis & Cotton, 2007) that consists in 80 cover pairs of pop
songs and we evaluate the performance in terms of recall. Since the selection of features is not our main focus,
we choose to extract chroma energy normalized statistics (CENS, (Müller et al., 2005)) over half a second
windows. We compare variants of our method to a baseline that consists in a DTW alignment between songs
transposed to the same key using the Optimal Transposition Index (OTI, (Serra et al., 2008)). This OTI
computes a transposition based on average energy in each semitone band. For each competitor, test set songs
are ranked based on their distances to query songs.

Figure 9 presents recall scores for compared methods as well as the mean rank of the first correctly identified
cover (MR1) that is a standard evaluation metric for the task (used in MIREX1 for example). For the sake of
readability, performance for DTW-GI with feature space optimization on the Stiefel manifold is omitted in
this Figure. In practice, this approach leads to an MR1 of 29.0± 1.0, which is clearly outperformed by the
baseline relying on OTI. This is because a very common transformation in this setting is when cover songs
are played in different keys, which is captured by the OTI transposition strategy. Similarly, CTW, which

1https://www.music-ir.org/mirex/wiki/2019:Audio_Cover_Song_Identification
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does not allow to use prior information about the form of the feature space registration into account, behaves
poorly in this setting. Interestingly enough, the flexibility of our DTW-GI framework allows us to use the
OTI strategy. Since the registration family F in this OTI setting is restricted to the set of 12 possible key
transpositions, we do not rely on BCD in this case and rather seek for the exact optimum by computing
(soft-)DTW for each of the 12 possible transpositions and retain the minimizer. This way, we are able to
compute the optimal transposition index along the alignment path instead of computing it on averaged
features, as the “DTW (OTI)” baseline does. This leads to a significant improvement of the performance for
both DTW-GI and its soft counterpart and illustrates both the versatility of our method and the importance
of performing joint feature space transformation and temporal alignment.

Note finally that the performance reached by the competitors in this study is far from what deep models can
achieve. ByteCover Du et al. (2021), for example, reaches an MR1 of 3.54 on this task, by relying on both a
triplet loss and a classification loss derived from a proxy classification task to train a ResNet. The use of
softDTW-GI as an alternative similarity measure in the triplet loss of such an approach is left for future work.

5 Conclusion and Perspectives

We propose in this paper a novel similarity measure that can compare time series across different spaces in
order to tackle both temporal and feature space invariances. This work extends the well-known Dynamic
Time Warping algorithm to deal with time series from different spaces thanks to the introduction of a joint
optimization over temporal alignments and space transformations. In addition, we provide a formulation for
the computation of the barycenter of a set of times series under our new geometry, which is, to the best of our
knowledge, the first barycenter formulation for a set of heterogeneous time series. Another important special
case of our approach allows for performing temporal alignment of time series with invariance to rotations in
the feature space.

We illustrate our approach on several datasets. First, we use simulated time series to study the computational
complexity of our approach and illustrate invariance to rotations. Then, we apply our approach on two real-life
datasets for human motion prediction and cover song identification where invariant similarity measures are
shown to improve performance.

Extensions of this work will consider scenarios where features of the series do not lie in a Euclidean space,
which would allow covering the case of structured data such as graphs evolving over time, for example. Future
works also include the use of our methods in more elaborated models where, following ideas from Cai et al.
(2019); Iwana et al. (2020), softDTW-GI could be used as a feature extractor in neural networks. It could
also serve as a loss to train heterogeneous time series forecasting models (Le Guen & Thome, 2019; Cuturi &
Blondel, 2017) or for imitation learning problems as considered in Cohen et al. (2021) where one wants to
learn an agent (parametrized by a neural network) that generates trajectories on a different space than the
initial ones.
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6 Appendix

For a matrix p we note:

blockdiagk(p) = diag(p, · · · ,p︸ ︷︷ ︸
ktimes

) =


p 0 . . . 0
0 p . . . 0
...

... . . . ...
0 0 . . . p


We will prove the following Lemma:
Lemma 6.1. Let qx, qy ∈ N such that qy ≤ qx and k ∈ N. Consider C ∈ Rk·qx×k·qy . We write the block
diagonal decomposition of C as:

C =


C11 C12 . . . C1k
C21 C22 . . . C2k
...

...
. . .

...
Ck1 Ck2 . . . Ckk


where Cij ∈ Rqx×qy for i, j ∈ {1, · · · , k}. Consider C =

∑k
i=1 Cii ∈ Rqx×qy the sum of the diagonal blocks of

C and consider the full SVD decomposition of C = UΣV> where U,Σ,V ∈ Rqx×qy . Then the solution to:

max
p∈Vqy,qx

〈C,blockdiagk(p)〉 (23)

is given by p? = UV>.

Proof. We have:

〈C,blockdiagk(p)〉F = tr
(
blockdiagk(p)>C

)
= tr




p> 0 . . . 0
0 p> . . . 0
...

... . . . ...
0 0 . . . p>




C11 C12 . . . C1k
C21 C22 . . . C2k
...

... . . . ...
Ck1 Ck2 . . . Ckk




= tr




p>C11 p>C12 . . . p>C1k
p>C21 p>C22 . . . p>C2k

...
... . . . ...

p>Ck1 p>Ck2 . . . p>Ckk


 =

k∑
i=1

tr(p>Cii)

= tr
(

p>(
k∑
i=1

Cii)
)

= 〈
k∑
i=1

Cii,p〉 = 〈C,p〉

Thus finding the solution to Equation 23 is the same as finding the solution to maxp∈Vqy,qx 〈C,p〉 which is
given by the SVD of C (Jaggi, 2013).

20


	Introduction
	Dynamic Time Warping (DTW)
	DTW with Global Invariances
	Definitions
	Properties of DTW-GI 

	Optimization
	Gradient descent
	Block Coordinate Descent (BCD)
	Estimating f in the Stiefel manifold

	Barycenters

	Experiments
	Timings
	Rotational invariance
	Barycenter computation
	Time series forecasting 
	Dataset and methodology
	Competing structured prediction methods
	Results

	Cover song identification

	Conclusion and Perspectives
	Appendix

