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Abstract: Target detection is an important issue in the HyperSpectral Image (HSI)
processing field. However, current spectral-identification-based target detection
algorithms are sensitive to the noise and most denoising algorithms cannot preserve
small targets, therefore it is necessary to design a robust detection algorithm that
can preserve small targets. Because the signal-dependent photonic noise has become
as dominant as the signal-independent noise generated by the electronic circuitry in
HSI data collected by new-generation hyperspectral sensors, the reduction of the
additive signal-dependent photonic noise becomes the focus of the current research
in this field. To reduce the opto-elctronic noise from HSIs, a new method is
developed in this paper. Firstly, a pre-whitening procedure is proposed to whiten
noise in HSIs. Secondly, a three-dimensional wavelet packet transform (3-WPT) in
tensor form is presented to find different component tensors of HSI. Then, to jointly
filter a component tensor in each mode, multiway Wiener filter (MWF) is
introduced. Moreover, to determine the best transform level and basis of 3-WPT a
risk function is proposed. The effectiveness of our method in classification is
experimentally demonstrated on a real-world HSI acquired by airborne sensor.

1. Introduction

Hyperspectral image has been considered with an increasing interest since the 90s in many fields such as medicine
[1], forest monitoring [2], etc. In hyperspectral image processing, images are modeled as three-dimensional data:
two spatial dimensions and one spectral dimension [3, 4, 5, 6]. Most of hyperspectral images, such as images
acquired by Hyperspectral Digital Imagery Collection Experiment(HYDICE) and Airborne Visible/Infrared
Imaging Spectrometer (AVIRIS) sensors are impaired by noise from solar radiation, atmospheric scattering,
interactions between solar radiation and the Earth’s surface, and responsivity of the sensing instrument in the
acquisition process as well as calibration and quantization error [7, 8, 9, 10].

Noise in a hyperspectral image can be broadly grouped into two main classes: random noise and fixed
pattern noise [11]. The focus of this paper is about random noise reduction. This random noise includes signal-
dependent photonic noise and signal-independent thermal noise [12]. A widely used model for random noise
in the hyperspectral image is the additive white noise along both spectral and spatial dimensions [13, 4, 14],
which is reasonable when the thermal noise is dominant [11]. However, as the performance of the electronic
component is improved in the new-generation hyperspectral sensors [15, 16], the signal-dependent photonic
noise is as dominant as the signal-independent thermal noise, therefore the aforementioned white noise model
is not appropriate.

Many applications such as classification and target detection require high signal-to-noise ratio hyperspectral
image to achieve good performance. Therefore, noise reduction is required as preliminary step. Generally, in
the classical hyperspectral image denoising methods, the matrix-algebra methods are applied on vectorized data
tensor. But the incautiously splitting of tensor leads to a loss of information as the tensor is no longer considered
as a whole: the relationships between channels are lost. To overcome these disadvantages, a hyperspectral
image is considered as an entity, so as to keep jointly the spatial and spectral relationships of different channels
[17, 18, 19, 20]. They proposed a multiway Wiener filter (MWF) to remove noise in the hyperspectral images and
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the results are better than those of classical methods. The multiway Wiener filter uses multilinear algebra tools,
such as TUCKER3 [21, 22], to extend the known Wiener filter to the tensor model. As the signal subspace
dimension or rank is estimated for each mode, a rank(K1,K2,K3) multiway Wiener filter was proposed to
remove the noise [23, 24].

Distinguishing from MWF which treats a dataset as an entity [4], wavelet packet transform [25] was proposed
to decompose a dataset into different sets of coefficients. To remove noise from the wavelet coefficients, Donoho
and Johnstone proposed a strategy named soft threshold [26]. In this strategy, coefficients below the threshold are
removed whereas those above the threshold are shrunk. Three algorithms VisuShrink [27], SureShrink [28] and
BayesShrink [29] which is based on Bayes principle, were proposed to determine the threshold aforementioned.
The noise variance required in these algorithms is estimated from the detail coefficients of highest level by the
robust median estimator [27, 28]. To extend wavelet transform to the hyperspectral image case, a hyperspectral
image is vectorized and processed as a one-dimensional signal, which obviously neglected the relationships
among different elements of the tensor [30]. In [31] 2-D wavelet transform is performed to each band and
averaged the criteria of all the bands to obtain the criterion for the whole hyperspectral image. Moreover,
in [32] the first-order derivative for each spectral band is calculated and then performed 2-D wavelet to each
band. These algorithms treat spatial and spectral information separately without considering the relationships
between them.

In this paper, the main idea is to decompose a hyperspectral image into different coefficient tensors and jointly
filter each of these tensors in three modes. To apply wavelet packet transform to a tensor conveniently, a three-
dimensional wavelet packet transform is deduced. Through the multidimensional wavelet packet transform, a
tensor R ∈ RI1×I2×I3 is transformed into a series of wavelet packet coefficient tensors. Each of these coefficient
tensors can be treated as a component with different ”frequencies”, where the low frequency component contains
more signal while the high frequency component contains more noise. The space of these coefficients is named
as the multidimensional wavelet packet domain (3-WPD) in this paper. To jointly filter each component tensor
in three modes, MWF is introduced into the 3-WPD in our proposed denoising algorithm 3-WPD-MWF.
Moreover, the signal-dependent noise is also taken into account in 3-WPD-MWF. As MWF performs well when
the additive noise is white [23, 24], to adapt 3-WPD-MWF for the signal-dependent noise situation, a noise-
whitening method is proposed as well. Besides, the performance of 3-WPD-MWF is affected by the transform
level and basis, therefore a risk function is also proposed to determine the best transform level and basis.

The remainder of the paper is organized as follows. Section briefly introduces the multiway data model
and some basic knowledge of multilinear algebra. Section gives the signal model used in this paper. Section
overviews the multiway Wiener filtering algorithm. In section , the 1-D wavelet packet transform is outlined.
Section presents the proposed denoising method. Section gives some comparative classification results. Finally,
section details the conclusion of the research undertaken.

2. Signal model and multilinear algebra tools

2.1. Signal model

A multiway signal is also called tensor. A tensor is a multidimensional array, X ∈ RI1×I2×...×IN , in which R
indicates the real mainfold, and N is the number of dimensions. The elements in this tensor can be expressed
as xi1i2...iN , with i1 = 1, . . . , I1; i2 = 1, . . . , I2; · · · ; iN = 1, . . . , IN . The n-th dimension of this tensor is called
n-mode.

A hyperspectral image can be represented as a three-way array X ∈ RI1×I2×I3 , where I1 indicates the
number of rows, I2 the number of columns and I3 the number of spectral channels. The three entries are related
to pixel localization and spectral band.

2.2. Multilinear algebra tools

2.2.1. n-mode unfolding

Xn ∈ RIn×Mn denotes the n-mode unfolding matrix of a tensor X ∈ RI1×I2×...×IN , whereMn = In+1 . . . I1IN . . . In−1.
The columns of Xn are the In-dimensional vectors obtained from X by varying index in while keeping the other
indices fixed. Here, we define the n-mode rank Kn as the n-mode unfolding matrix rank, i.e., Kn = rank (Xn).

2.2.2. n-mode product
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The n-mode product is defined as the product between a data tensor X ∈ RI1×I2×...×IN and a matrix
B ∈ RJ×In in mode n. This n-mode product is denoted by C = X ×n B, whose entries are given by

ci1...in−1jin+1...iN ,
In∑
in=1

xi1...in−1inin+1...iN bjin (1)

where C ∈ RI1×I2×...×In−1×J×In+1×...×IN

2.2.3. Element extraction

For a given tensor X ∈ RI1×I2×...×IN , we define the element extraction operation:

X (i1, i2, . . . , iN ) , xi1i2...iN (2)

3. Signal modelling

In this paper we model a noisy hyperspectral image as a tensor R ∈ RI1×I2×I3 resulting from a multidi-
mensional signal X ∈ RI1×I2×I3 impaired by an additive noise N ∈ RI1×I2×I3 . The tensor R can be expressed
as:

R = X +N (3)

in which the noise N accounts for signal-dependent photonic noise Xsr ~ P and signal-independent thermal
noise T [11, 16]:

N = Xsr ~ P + T (4)

where Xsr denotes a tensor obtained by calculating the square root of each element of X and ~ indicates the
Hadamard product [33]. By using (3) and (4) each element of tensor R can be written as [12]:

ri1i2i3 = xi1i2i3 + ni1i2i3 = xi1i2i3 +
√
xi1i2i3pi1i2i3 + ti1i2i3 (5)

where pi1i2i3 and ti1i2i3 are zero-mean Gaussian-distributed spectrally and spatially uncorrelated random values
with variances σ2

p,i3
and σ2

t,i3
for band i3, respectively. It is well known that the summation of two Gaussian-

distributed random variables is also Gaussian-distributed, therefore ni1i2i3 =
√
xi1i2i3pi1i2i3 + ti1i2i3 is a condi-

tional Gaussian-distributed random variable with its mean being zero and its variance being σ2
ni1i2i3

, which can

be expressed as [12, 11]:

σ2
ni1i2i3

= E
[
(
√
xi1i2i3pi1i2i3 + ti1i2i3)2|xi1i2i3

]
= xi1i2i3σ

2
p,i3 + σ2

t,i3 (6)

Signal-dependent noise becomes as dominant as the signal-independent noise only in the recent new-generation
hyperspectral sensors [11, 12], therefore there are few denoising algorithms based on the signal-dependent noise
model [12]. In the following section and section , we will overview multiway Wiener filter and wavelet packet
transform which are usually used to remove white noise from the image. Then in section a new algorithm will
be proposed to remove the signal-dependent and signal-independent noise from the hyperspectral image.

4. Multiway Wiener filtering

4.1. Denoising model

Multiway Wiener filter provides an estimate X̂ of the desired signal X from data tensor R using a three-
dimensional filtering, which can be expressed as follows [19]:

X̂ = R×1 H1 ×2 H2 ×3 H3 (7)

From the signal processing point of view, the n-mode product is a n-mode filtering of R, and we call Hn the
n-mode filter.

In order to obtain the optimal n-mode filters {Hn, n = 1, 2, 3}, the mean squared error (MSE) between the
estimated signal X̂ and the initial signal X should be minimized [19]:

e(H1,H2,H3) = E
(
‖X −R×1 H1 ×2 H2 ×3 H3‖2

)
(8)
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In the classical multidimensional and multi-mode signal processing assumption, the n-mode vector space E(n)

of dimension In associated with the n-mode of tensor R is the direct sum of signal subspace E
(n)
1 of dimension

Kn and the noise subspace E
(n)
2 of dimension In −Kn, i.e., E(n) = E

(n)
1 ⊕ E(n)

2 [19].

4.2. Hn estimation

The n-mode filters {Hn, n = 1, 2, 3} can be obtained by the minimization of the optimization criterion MSE
in (8). By setting the derivation of MSE to zero, the expression of the optimal n-mode filter Hn is [19]:

Hn = V(n)
s Λ(n)V(n)

s

T
(9)

where V
(n)
s is a matrix containing the Kn orthonormal basis vectors of n-mode signal subspace and

Λ(n) = diag

λγ1 − σ(n)2

γ

λΓ
1

, . . . ,
λγKn

− σ(n)2

γ

λΓ
Kn

 (10)

in which {λγi , i = 1, . . . ,Kn} and {λΓ
i , i = 1, . . . ,Kn} are the Kn largest eigenvalues of matrices γ

(n)
RR and Γ

(n)
RR

respectively, where

γ
(n)
RR = E

[
Rnq(n)RT

n

]
(11)

Γ
(n)
RR = E

[
RnQ(n)RT

n

]
(12)

with
q(n) = Hp1 ⊗Hp2 , (13)

Q(n) = HT
p1Hp1 ⊗HT

p2Hp2 (14)

where p1 6= n, p2 6= n and p1, p2 = 1, 2, 3 and ⊗ defines the Kronecker product. In the contrast, σ
(n)2

γ is equal

to the In −Kn smallest eigenvalues {λγi , i = Kn + 1, . . . , In} of γ
(n)
RR. However, in the practice, the In −Kn

smallest eigenvalues are generally different. So σ
(n)2

γ can be estimated by:

σ̂(n)2

γ =
1

In −Kn

In∑
i=Kn+1

λγi (15)

4.3. ALS algorithm

To jointly find n-mode filters {Hn, n = 1, 2, 3} that minimize (8), an Alternating Least Square (ALS)
algorithm [23] is necessary. Owing to this procedure any filter along a given mode depends on the filters along
all other modes. The steps of this algorithm can be summarized as follows:

1. Input: Data tensor R
2. Initialization k = 0 :
X 0 = R ⇐⇒ Hn = IIn ∀n = 1, 2, 3. Where IIn is the In × In identity matrix.

3. ALS loop: Repeat until convergence, that is, for example, while ‖X k+1 −X k‖ > ε

(a) Estimation of Kn, n = 1, 2, 3,
Kn = arg minkn [AIC(kn)] , kn = 1, . . . , In − 1.

(b) Estimation of Hk+1
n for n = 1, 2, 3.

i. X kn = R×p Hk+1
p ×q Hk

q . p, q = 1, 2, 3, p, q 6= n and p < q

ii. Hk+1
n = arg min

Zn

‖X − X kn ×n Zn‖
2

subject to Zn ∈ RIn×In .

(c) Multidimensional Wiener filtering X k+1 = R×1 Hk+1
1 ×2 Hk+1

2 ×3 Hk+1
3 .

(d) k ← k + 1.

4. Output: Estimated signal tensor X̂ = R×1 Hkc
1 ×2 Hkc

2 ×3 Hkc
3 , where kc is the convergence iteration index.

As the calculation of n-mode filter Hn in step 3b utilizes the filters in other modes {Hi, 1 ≤ i ≤ 3 and i 6= n},
it shows that MWF considers the relationships between elements in all modes of the dataset.

28



5. Wavelet packet transform

5.1. 1-D wavelet packet transform

Wavelet packet transform [34] can decompose data r ∈ RI into different components (coefficient vectors)

cl,m ∈ RI/2l , m = 0, . . . , 2l − 1 in transform level l. Especially, c0,0 = r indicates the coefficients of transform
level l = 0. The decomposition from level l to l + 1 can be expressed as follows:[

cl+1,2m

cl+1,2m+1

]
= Wl+1

m cl,m (16)

and the reconstruction:

cl,m = (Wl+1
m )T

[
cl+1,2m

cl+1,2m+1

]
(17)

where Wl+1
m denotes wavelet transform matrix of coefficients cl,m. Wl+1

m is an orthogonal matrix. In this

paper, only an orthogonal basis is used in the transform. By defining: W̄l = diag
(
Wl

0,W
l
1, · · · ,Wl

2l−1−1

)
and cl = [cl,0, cl,1, · · · , cl,2l−1]T , cl can be obtained directly from r and we only need to perform:

cl =
l∏
i=0

W̄ic0 =
l∏
i=0

W̄ir (18)

Then the decomposition and the reconstruction can be expressed as cl = W̃lr and r = (W̃l)
T
cl respectively,

where W̃l =
∏l
i=0 W̄i.

5.2. Overview of SureShrink filter

Stein’s unbiased risk estimator (SURE) Shrink minimizes the stein’s unbiased risk for estimating the thresh-
old. The formula to obtain SureShrink threshold is [28]:

τ = arg min
0≤τ≤

√
2 logNl,m

RSURE(τ, cl,m) (19)

where Nl,m is the number of wavelet coefficients in cl,m and RSURE is the SURE risk for a threshold τ , which
is defined as:

RSURE(τ, cl,m) = Nl,m − 2nl,m +

Nl,m∑
k=1

[min(| cl,m(k) |, τ)]2 (20)

in which nl,m is the number of elements in set {k :| cl,m(k) |≤ τ} and cl,m(k) indicates the k-th element of
vector cl,m. After obtaining the threshold τ , we can use soft threshold [26] to filter the coefficients:

ηT (cl,m) = sgn(cl,m) ~ max(|cl,m| − τ1,0) (21)

Where 1 and 0 denote all-one vector all-zero vector, respectively.
In this paper, a hyperspectral image is modeled as a third-order tensor to conserve the element position

information. In the following section, the multidimensional wavelet packet transform (MWPT) in tensor form
will be derived to transform a hyperspectral image into its component tensors, which build the multidimensional
wavelet packet domain (3-WPD). SureShrink will be applied to filter the component tensor, and for convenience,
this algorithm is named 3-WPD-SURE.

To apply SureShrink to the component tensor, we firstly convert the tensor into its vectorization form [33],
then use (19) to obtain the threshold τ , and finally perform soft threshold (21) to the elements of the vector.
After SureShrink, the vector is reshaped into its tensor form. For each tensor, the threshold calculated from
(19) is different. In other words, the threshold changes adaptively with the tensor.

From (19) and (21) we know that SureShrink processes a component tensor without considering the position
of each its element, which contains the signal information. Therefore, an algorithm will be proposed in the next
section to apply MWF in the 3-WPD.
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6. Proposed method

6.1. Noise pre-whitening

The main idea of the proposed method is to filter the wavelet packet coefficients by MWF better than
SureShrink. As MWF performs well when the noise is white [35], it is necessary to whiten the noise in the
hyperspectral image. As aforementioned in section , ni1i2i3 obeys the zero-mean Gaussian distribution with
variance σ2

ni1i2i3
, therefore the element ri1i2i3 in the hyperspectral image can be whitened as:

ri1i2i3 =
ri1i2i3
σni1i2i3

(22)

However, in (22), σni1i2i3
is unknown in the realistic case, therefore it should be estimated from the hyperspectral

image. In [11], a HYNPE algorithm is proposed to estimate σ2
p,i3

and σ2
t,i3

. In the estimation procedure of
HYNPE, the estimate x̃i1i2i3 of the signal xi1i2i3 is obtained by the MLR-theory-based method [36, 37], which
calculates the estimate of the signal in band i3 [33] by the linear prediction of the other I3−1 bands. Furthermore,
σ̂2
p,i3

and σ̂2
t,i3

are obtained by maximizing the likelihood function [11]:

{σ̂2
p,i3 , σ̂

2
t,i3} = arg max

σp,i3
>0

σt,i3
>0

ln (σp,i3 , σt,i3) (23)

with

ln (σp,i3 , σt,i3) = −M
2

ln(2π)− 1

2

I1∑
i1=1

I2∑
i2=1

ln
[
σ2
p,i3 · xi1i2i3 + σ2

t,i3

]
− 1

2

I1∑
i1=1

I2∑
i2=1

n2i1i2i3
σ2
p,i3
· xi1i2i3 + σ2

t,i3

(24)

in (23) σ̂2
p,i3

and σ̂2
t,i3

are the estimates of σ2
p,i3

and σ2
t,i3

respectively. After σ̂2
p,i3

and σ̂2
t,i3

are obtained, the
estimate of the noise variance can be obtained by using (6). As xi1i2i3 in (6) is unknown, we use the estimate
x̃i1i2i3 instead. Finally the estimate of the noise variance for each element can be calculated as:

σ̂2
ni1i2i3

= x̃i1i2i3 σ̂
2
p,i3 + σ̂2

t,i3 (25)

Therefore, the prewhitening process can be expressed as:

ri1i2i3 = xi1i2i3 + ni1i2i3 =
xi1i2i3
σ̂ni1i2i3

+
ni1i2i3
σ̂ni1i2i3

(26)

and its corresponding tensor form can be written as:

R = X +N (27)

To get the estimated signal X̂ , an inverse process of prewhitening is necessary after we get the denoised result X̂ .
The inverse prewhitening process can be obtained by multiplying each element by the noise standard deviation:

x̂i1i2i3 = x̂i1i2i3 σ̂ni1i2i3
(28)

where x̂i1i2i3 is the element of tensor X̂ , which is the estimate of X obtained by the following sections.

6.2. 3-dimensional wavelet packet transform in tensor form

The multidimensional wavelet packet transform (3-WPT) can be computed by performing 1-D wavelet packet
transform in each mode [38]. Therefore, the wavelet packet coefficient tensor CRl can be computed as:

CRl = R×1 W̃l1
1 ×2 W̃l2

2 ×3 W̃l3
3 (29)

and the reconstruction can be written as:

R = CRl ×1 (W̃l1
1 )T ×2 (W̃l2

2 )T ×3 (W̃l3
3 )T (30)

Where l = [l1, l2, l3]T and l1, l2, l3 ≥ 0. Especially, when l1, l2, l3 > 0, 3-WPT indicates the 3-wavelet packet
transform. W̃lk

k denotes the lk level wavelet packet transform to k-th mode of R. The wavelet packet coefficient
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tensors constitute the 3-dimensional wavelet packet domain (3-WPD). CRl,m is defined as the coefficient sub-

tensor of CRl , where m = [m1,m2,m3]T is the index vector, and 0 ≤ mk ≤ 2lk − 1, k = 1, 2, 3. Then for each
element of CRl,m we can define:

CRl,m(j1, j2, j3) , CRi (J1(j1), J2(j2), J3(j3)) (31)

where {
Jn =

[
mnIn

2l
, . . . ,

(mn + 1)In
2l

− 1

]T
, n = 1, 2, 3

}
(32)

and

jn ∈
{

1, . . . ,
In
2l

}
, n = 1, 2, 3 (33)

The notation CRl,m(j1, j2, j3) indicates the element of tensor CRl,m in position (j1, j2, j3) as defined in (2). From
the properties of the wavelet packet transform, we know that mn indicates the ”frequency” of mode n. Thus,
m is the frequency index of coefficient block CRl,m. For convenience, a component tensor of R is referred to as

CRl,m in this paper.

6.3. Multiway Wiener filter in three-dimensional wavelet packet domain

In the existing MWF algorithm, the filter is applied to the whole hyperspectral image R. As the calculation
of the filters in expression (9) needs the estimation of the signal subspace or rank in each mode for suppressing
the smallest eigenvalues, some weak signal might be removed in this procedure. Therefore, the SNR is an
important factor influencing the rank. When SNR is higher, the rank estimated is greater, therefore more signal
is preserved in the filtering process. In the contrast condition, more signal is lost. When the noise is white,
the power of noise in each component CRl,m is the same, while the signal concentrates in the lower frequency
component. That is to say, in different components, the SNR is different. When MWF is applied to each
component, more signal can be preserved. Performing 3-WPT to tensor R, X and N in expression (27), we
obtain:

R×1 W̃l1
1 ×2 W̃l2

2 ×3 W̃l3
3

= (X +N )×1 W̃l1
1 ×2 W̃l2

2 ×3 W̃l3
3

= X ×1 W̃l1
1 ×2 W̃l2

2 ×3 W̃l3
3 +N ×1 W̃l1

1 ×2 W̃l2
2 ×3 W̃l3

3

(34)

The coefficient tensor of each part:

CRl = R×1 W̃l1
1 ×2 W̃l2

2 ×3 W̃l3
3 (35)

CXl = X ×1 W̃l1
1 ×2 W̃l2

2 ×3 W̃l3
3 (36)

CNl = N ×1 W̃l1
1 ×2 W̃l2

2 ×3 W̃l3
3 (37)

and the coefficient tensor of the estimate X̂ :

ĈXl = X̂ ×1 W̃l1
1 ×2 W̃l2

2 ×3 W̃l3
3 (38)

Extracting the components of each frequency CRl,m, CXl,m and CNl,m from CRl , CXl and CNl respectively by using(31),
we obtain:

CRl,m = CXl,m + CNl,m (39)

From Parseval’s theorem, the following expression can be obtained:

‖X − X̂‖2 = ‖CXl − ĈXl ‖2 =
∑
m

‖CXl,m − ĈXl,m‖2 (40)

which means that minimizing the MSE between X and its estimate X̂ is equivalent to minimizing the MSE
between CXl,m and ĈXl,m for each m. If ĈXl,m is estimated by Tucker3 decomposition of CRl,m:

ĈXl,m = CRl,m ×1 H1,m ×2 H2,m ×3 H3,m (41)
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then H1,m,H2,m,H3,m are the n-mode filters of the multiway Wiener filter aforementioned in section . After

estimating ĈXl,m for each m, we obtain ĈXl by concatenating ĈXl,m. Furthermore, the estimate X̂ can be obtained
by inverse MWPT:

X̂ = ĈXl ×1 (W̃l1
1 )T ×2 (W̃l2

2 )T ×3 (W̃l3
3 )T (42)

6.4. Best transform level and basis selection
In the proposed algorithm, several parameters should be determined:

1. Level of transform: the performance of the algorithm is affected by the level of transform, which depends on
the size of tensor R. The maximum level can be calculated by:

NLk
= dlog2 Ike − 5, k = 1, 2, 3 (43)

where d·e rounds a number upward to its nearest integer and the constant 5 is reduced from dlog2 Ike to make
sure there are enough elements in each mode so that the transform is meaningful. Then the set of possible
transform levels can be expressed as:

Lk = {0, 1, · · · , NLk
}, k = 1, 2, 3 (44)

where {·} denotes a set.
2. Basis of transform: there are many wavelet bases designed for different cases. For the simplicity of expression,

we define:
W = {w1, w2, · · · ,wNW

} (45)

to denote the set of possible wavelet bases, where NW is the number of wavelets in this set.

The best transform level and basis should minimize the MSE or risk Rc(X , X̂ ) = E
[
‖X − X̂‖2

]
[39], whose

equivalent form using the coefficients can be expressed as:

Rc(X , X̂ ) =
∑
m

E
[
‖CXl,m − ĈXl,m‖2

]
(46)

Then the best transform level and basis can be selected by:

l, w = arg min
lk∈Lk, w∈W

∑
m

E
[
‖CXl,m − ĈXl,m‖2

]
, k = 1, 2, 3 (47)

As the selection of the optimal l, w depends on X which is generally unknown, to overcome this drawback an
alternative solution should be found. Denoting by ĈXl,m[d] the estimate of CXl,m at the d-th ALS loop aforemen-

tioned in section and noticing that when ‖ĈXl,m[d] − ĈXl,m[d − 1]‖2 is minimized, ĈXl,m , ĈXl,m[d] is the optimal

estimate of CXl,m obtained by MWF, and at the same time E
[
‖CXl,m − ĈXl,m‖2

]
is minimized according to section

. Therefore (47) can be replaced by:

l, w = arg min
lk∈Lk, w∈W

R̂c, k = 1, 2, 3 (48)

where
R̂c =

∑
m

‖ĈXl,m[d]− ĈXl,m[d− 1]‖2 (49)

.

6.5. Summary of the proposed method
The proposed algorithm, denoted by 3-WPD-MWF, can be summarized as follows:

1. Prewhiten noise in the original hyperspectral image:
(a) Estimate noise variance σ2

p,i3
and σ2

t,i3
and the signal estimate x̂i1i2i3 by algorithm HYNPE.

(b) Whiten the original hyperspectral image using (26) and obtain the tensor form: R = X +N .
2. Find the optimal l1, l2, l3 ∈ L and w ∈W . Loop l1, l2, l3 and w:

(a) Decompose the whitened data R by 3-WPT: CRl = R×1 W̃l1
1 ×2 W̃l2

2 ×3 W̃l3
3 .

(b) Extract component CRl,m from CRl by equation (31), for m = [m1,m2,m3]T , where 0 ≤ mk ≤ 2lk − 1, k = 1, 2, 3.

(c) Filter component CRl,m by MWF: ĈXl,m = CRl,m ×1 H1,m ×2 H2,m ×3 H3,m.

(d) Calculate the risk R̂c using (49). If R̂c reaches a fixed threshold, return the optimal l1, l2, l3, w and ĈXl,m.

3. Concatenate ĈXl,m to obtain CXl and perform inverse MWPT: X̂ = ĈXl ×1 (W̃l1
1 )T ×2 (W̃l2

2 )T ×3 (W̃l3
3 )T .

4. Perform inverse prewhitening procedure to X̂ and then the estimate of the noise-free image: X̂ can be obtained.

The corresponding intuitive flowchart of 3-WPD-MWF is illustrated in Fig. 1.
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Figure 1: Flowchart of proposed algorithm

7. Experimental Results

7.1. Dataset in experiments

The dataset used in the experiments is the hyperspectral image which was captured by the airborne visi-
ble/infrared imaging spectrometer (AVIRIS) from a mixed forest/agricultural site at the Indian Pine test site
in north-west Indiana. This image was taken at altitude 19812 m by the National Aeronautics and Space Ad-
ministration (NASA)/ Jet Propulsion Laboratory. The original image size is 145 × 145 × 220 (I1 = 145, I2 =
145, I3 = 220), which means 145×145 pixels and 220 spectral bands [15]. To represent the signal to noise ratio
in R, an input SNR is introduced:

SNRINPUT = 10 log(
‖X‖2

‖N‖2
) (50)

The SNRINPUT interval of interest in the experiments is from 10dB to 40dB including 7 SNRINPUT values: 10dB,
15dB, 20dB, 25dB, 30dB, 35dB and 40dB. Two types of noise will be added to the hyperspectral image in the
experiments. The first type is signal-independent white noise, which is widely used in the classical hyperspectral
image noise model. This model is a particular case of model (4) when ‖P‖2 = 0 and T is white spatially and
spectrally. This noise model is used to prove that the proposed algorithm performs well in the classical white
noise situation. The second type is a combination of signal-dependent and signal-independent noise, whose
model is as (4). As the power of signal-dependent noise and the power of signal-independent noise are of same
level [11], in this paper, only the case E

[
‖Xsr ~ P‖2

]
= E

[
‖T ‖2

]
is taken into account. The RGB composites

of X and R with two types of noise are shown in Fig. 2. The noise variance in each band of the second type
noise is presented in Fig. 3.

7.2. Experiment settings

The size of the hyperspectral image is 145× 145× 220. After padding values to each dimension to perform
MWPT, the dataset size changes to 256×256×256. By using (43), we can obtain NL = 3. Then the transform
level set can be expressed as:

Lk = {0, 1, 2, 3}, k = 1, 2, 3 (51)
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(a) RGB composites of X (b) RGB composites of R
(SNRINPUT = 20dB, noise type 1)

(c) RGB composites of R
(SNRINPUT = 20dB, noise type 2)

Figure 2: RGB composites of X and R (band 25, 65 and 80 for red, green and blue)
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Figure 3: Noise variance in each band (SNRINPUT = 20 dB, noise type 2)

Apart from the transform level, the wavelet type should also be taken into account. In this paper, only several
usually used wavelets are chosen for the proposed MWPT method. The wavelets used in the experiments are:
coif1, coif2, db1, db2, db3. Hence the number of wavelets is NW = 5 and the wavelet set can be expressed as:

W = {coif1, coif2, db1, db2, db3} (52)

The main purpose of hyperspectral image denoising is to improve the results of classification, detection, etc.
In this paper, the classification is used to evaluate the performance of the considered denoising algorithms. A
number of 16 classes [40] are expected in the hyperspectral image and the support vector machine (SVM) algo-
rithm [41], which is very largely applied to HSI data, is used. The kernel function of the SVM classifier used in
this experiment is radial basis function (RBF) exp (−γ ∗ |u− v|2) with γ = 1 and the regularization parameter
C = 100. The reference data of the 16 classes are shown in the ground truth (Fig. 4), which is supplied with the
original data [40]. A proportion of 10% of the reference data of each class is selected randomly as the training
samples, whereas all the reference data are used as testing samples [42]. The numbers of training and testing
samples are shown in TABLE 1. Note that the minimum number of training samples is set to 10 for the rare
classes such as Grass/pasture-mowed.

In the experiments, MWF, 3-WPD-SURE and 3-WPD-MWF are applied to remove noise from the pre-
whitened hyperspectral image. As 3-WPD-SURE is compared to 3-WPD-MWF, its optimal parameter com-
bination is selected by minimizing the MSE, which relies on the noise-free image. In practice, the results of
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Figure 4: Classification reference data: ground truth of the
area with 16 classes

Table 1: Training and testing samples of classification
ID Class Training Samples Testing Samples
1 Corn-min 85 842
2 Hay-windrowed 49 489
3 Stone-steel towers 10 95
4 Woods 130 1294
5 Wheat 22 212
6 Soybean-clean 62 614
7 Oats 10 20
8 Soybean-notill 97 968
9 Corn 24 234
10 Bldg-Grass-Tree-Drives 38 380
11 Alfalfa 10 54
12 Corn-notill 144 1435
13 Grass/Trees 75 747
14 Grass/Pasture 50 500
15 Grass/pasture-mowed 10 26
16 Soybeans-min 247 2468

Total 1063 10378

3-WPD-SURE should be worse than those obtained in these experiments. Then, after denoising by each al-
gorithm, the denoised image is classified by SVM. The performances of these three algorithms are compared
through the classification results.

7.3. Evaluation criteria: Overall Accuracy (OA)

To evaluate the experimental results and compare the proposed algorithm with others, the commonly used
criteria is introduced below: To appreciate quantifiable comparisons, we determine the overall accuracy (OA)
in percentage exhibited by SVM classifier. For P classes Ci, i = 1, . . . , P ; if aij is the number of testing samples
that actually belong to class Ci and are classified into Cj for i, j = 1, . . . , P , then OA is defined as follows: OA=

1
Ntotal

∑i=P
i=1 aii, where Ntotal is the total number of samples, P is the number of classes Ci for i = 1, . . . , P and

aii is equal to aij for i = j. That is, in this paper, OA is defined as:

OA =
Ncorrect

Ntotal
× 100% (53)

where Ncorrect is the number of testing samples classified correctly into their corresponding classes. The
higher the OA, the better the classification result.

7.4. Optimal parameter combination

The optimal parameter combinations of 3-WPD-MWF obtained by using (48) are given in TABLE 2 and
TABLE 3 for noise type 1 and noise type 2 respectively. These two tables also present the optimal parameter
combination of 3-WPD-SURE, which is obtained by minimizing the MSE. We can notice from these two tables
that the parameter combination changes as a function of the SNRINPUT to allow 3-WPD-MWF to filter as much
noise as possible. Since different wavelet types are designed for different cases, when the SNRINPUT changes, it
is better to select a suitable wavelet automatically than to use the same for all situations. Moreover, the higher
the transform level the smaller component size. This might decrease the performance of the rank estimation
in MWF. Therefore a higher depth of the wavelet decomposition does not always improve the performance of
3-WPD-MWF, which can be seen from the transform levels of 3-WPD-MWF.

7.5. Classification Results
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Table 2: Optimal parameter combination for each SNRINPUT (noise type 1)
Name SNRINPUT 10 15 20 25 30 35 40

3-WPD-MWF w db3 db3 coif1 coif2 db1 coif2 db1
[l1, l2, l3] [3,3,0] [2,2,0] [1,1,0] [3,3,0] [3,3,0] [3,3,0] [3,3,0]

3-WPD-SURE w coif2 coif2 coif2 coif2 coif2 db3 coif2
[l1, l2, l3] [3,3,3] [3,3,3] [3,3,3] [3,3,3] [3,3,3] [3,3,3] [3,3,3]

Table 3: Optimal parameter combination for each SNRINPUT (noise type 2)
Name SNRINPUT 10 15 20 25 30 35 40

3-WPD-MWF w db3 coif1 coif1 coif1 coif2 db3 db3
[l1, l2, l3] [3,3,0] [1,1,0] [1,2,0] [1,1,0] [1,1,0] [3,3,0] [2,3,0]

3-WPD-SURE w db3 coif2 db3 coif2 coif2 db3 db3
[l1, l2, l3] [3,3,3] [3,3,3] [3,3,3] [3,3,3] [3,3,3] [3,3,3] [3,3,3]

To evaluate the performance of the proposed algorithm in improving the classification efficiency, the classi-
fication overall accuracy is presented in Fig. 5. Fig. 5(a) and Fig. 5(b) show the classification results obtained
on the denoised hyperspectral image which is perturbed by white noise and generalized noise (expression (5))
respectively. It can be seen that the classification results in Fig. 5(a) are better than the corresponding ones
in Fig. 5(b). Both Fig. 5(a) and Fig. 5(b) show that the proposed algorithm 3-WPD-MWF performs better
than 3-WPD-SURE and MWF in improving the classification results as well. MWF performs well when the
SNRINPUT is low, while 3-WPD-SURE becomes slightly better than MWF when the SNRINPUT is high. Be-
cause 3-WPD-MWF is the combination of 3-WPD-SURE and MWF, it takes the advantages of 3-WPD-SURE
and MWF, therefore it performs better than both of them. In fact, in the denoising process, 3-WPD-MWF
can preserve more signal details, which is important to distinguish two classes, therefore it is reasonable for
3-WPD-MWF to exhibit a higher OA. Moreover, the classification results of hyperspectral image without noise
are also given to provide a reference for the comparison of the classification results of the SVM used in this
experiment.

10 15 20 25 30 35 40
30

40

50

60

70

80

90

SNR
INPUT

(dB)

O
A

(1
00

%
)

WITHOUT DENOISING
NO NOISE
MWF
MWPD−MWF
MWPD−SURE

(a) Noise type 1: white noise
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(b) Noise type 2: generalized noise model

Figure 5: Classification OA with respect to SNRINPUT
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To exemplify the performances of the considered algorithms, Fig. 6 and Fig. 7 show the results of classifica-
tion at 15 dB and 30 dB. At 15 dB, it can be seen that the performances of MWF and 3-WPD-MWF are almost
same and both of them are better than 3-WPD-SURE, which can be seen especially in the Corn-notill class.
While at 30 dB, the performances of 3-WPD-SURE and 3-WPD-MWF are better than MWF, which is obvious
also in the Corn-notill class. Moreover, at both 15 dB and 30 dB, the classification results are greatly improved
after denoising, which implies that the denoising procedure is necessary for improving the classification results.

(a) Classification map
of dataset without

denoising
(SNRINPUT = 15dB)

(b) Classification map
by 3-WPD-SURE

(SNRINPUT = 15dB)

(c) Classification map
by MWF

(SNRINPUT = 15dB)

(d) Classification map
by 3-WPD-MWF

(SNRINPUT = 15dB)

(e) Classification map
of dataset without

denoising
(SNRINPUT = 30dB)

(f) Classification map
by 3-WPD-SURE

(SNRINPUT = 30dB)

(g) Classification map
by MWF

(SNRINPUT = 30dB)

(h) Classification map
by 3-WPD-MWF

(SNRINPUT = 30dB)

Figure 6: Classification results (noise type 1)
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(a) Classification map
of dataset without

denoising
(SNRINPUT = 15dB)

(b) Classification map
by 3-WPD-SURE

(SNRINPUT = 15dB)

(c) Classification map
by MWF

(SNRINPUT = 15dB)

(d) Classification map
by 3-WPD-MWF

(SNRINPUT = 15dB)

(e) Classification map
of dataset without

denoising
(SNRINPUT = 30dB)

(f) Classification map
by 3-WPD-SURE

(SNRINPUT = 30dB)

(g) Classification map
by MWF

(SNRINPUT = 30dB)

(h) Classification map
by 3-WPD-MWF

(SNRINPUT = 30dB)

Figure 7: Classification results (noise type 2)

8. Conclusion

In this paper, an algorithm named 3-WPD-MWF is proposed to reduce the signal-dependent and signal-
independent noise in a hyperspectral image. An element-by-element noise whitening method is presented to
whiten the noise in the hyperspectral image. Then the multidimensional wavelet packet transform (3-WPT)
in tensor form is deduced to transform a hyperspectral image into different components. Thereafter, MWF is
used to jointly filter each component to remove noise. Since the SNR of each component is different, MWF
can adjust adaptively as a function of the SNR to remove as much noise as possible. As the performance of
3-WPD-MWF is influenced by its parameter combination, a risk function is proposed as well to determine the
optimal parameter combination for 3-WPD-MWF.

The AVIRIS dataset of Indian Pine is used to evaluate the denoising and classification results of MWF,
3-WPD-SURE and 3-WPD-MWF respectively. The experimental results show the efficiency of the proposed
denoising algorithm to improve the SNR in hyperspectral image and the classification results.

Since in this paper the optimal parameter combination is found by the time consuming brute force searching,
future works will be focused on the reduction of the computational load. Two possible ways might be resorted
to achieve this issue: A heuristic algorithm can be used to search for the optimal (sub-optimal) parameter
combination, the construction of the optimal wavelet, different from any wavelet existing in libraries. The
main difference of the computational load between 3-WPD-MWF and 3-WPD-SURE is the way chosen to filter
each component. 3-WPD-MWF filters each component by MWF as a tensor, while 3-WPD-SURE filters each
component by SureShrink as a vector. Due to the joint filtering of each dimension of the component, the
computation cost of 3-WPD-MWF is slightly greater than 3-WPD-SURE.
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