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Purpose: Fluence-modulated proton computed tomography (FMpCT) using pencil beam scanning
aims at achieving task-specific image noise distributions by modulating the imaging proton fluence
spot-by-spot based on an object-specific noise model. In this work, we present a method for fluence
field optimization and investigate its performance in dose reduction for various phantoms and image
variance targets.
Methods: The proposed method uses Monte Carlo simulations of a proton CT (pCT) prototype
scanner to estimate expected variance levels at uniform fluence. Using an iterative approach, we cal-
culate a stack of target variance projections that are required to achieve the prescribed image variance,
assuming a reconstruction using filtered backprojection. By fitting a pencil beam model to the ratio
of uniform fluence variance and target variance, relative weights for each pencil beam can be calcu-
lated. The quality of the resulting fluence modulations is evaluated by scoring imaging doses and
comparing them to those at uniform fluence, as well as evaluating conformity of the achieved vari-
ance with the prescription. For three different phantoms, we prescribed constant image variance as
well as two regions-of-interest (ROI) imaging tasks with inhomogeneous image variance. The shape
of the ROIs followed typical beam profiles for proton therapy.
Results: Prescription of constant image variance resulted in a dose reduction of 8.9% for a homoge-
neous water phantom compared to a uniform fluence scan at equal peak variance level. For a more
heterogeneous head phantom, dose reduction increased to 16.0% for the same task. Prescribing two dif-
ferent ROIs resulted in dose reductions between 25.7% and 40.5% outside of the ROI at equal peak
variance levels inside the ROI. Imaging doses inside the ROI were increased by 9.2% to 19.2% com-
pared to the uniform fluence scan, but can be neglected assuming that the ROI agrees with the thera-
peutic dose region. Agreement of resulting variance maps with the prescriptions was satisfactory.
Conclusions: We developed a method for fluence field optimization based on a noise model for a
real scanner used in pCT. We demonstrated that it can achieve prescribed image variance targets. A
uniform fluence field was shown not to be dose optimal and dose reductions achievable with the pro-
posed method for FMpCTwere considerable, opening an interesting perspective for image guidance
and adaptive therapy. © 2020 The Authors. Medical Physics published by Wiley Periodicals, Inc. on
behalf of American Association of Physicists in Medicine. [https://doi.org/10.1002/mp.14084]
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1. INTRODUCTION

Cancer treatment using intensity-modulated proton and heav-
ier ion therapy is effective, and comes at a low risk of side-ef-
fects for the patient compared to conventional treatment
modalities using x rays. The good tolerance is believed to be
linked to the low dose to normal tissue when using protons
for treatment.1–4 At the same time, low-dose, frequent and
accurate imaging, ideally at the treatment site, is required to
ensure a safe delivery of the therapeutic doses.5,6 Proton ther-
apy treatment planning requires a spatial map of the relative
(to water) stopping power (RSP), which in current clinical
practice is acquired through a conversion from x-ray com-
puted tomography (CT) images.7–9 X-ray CT images are typi-
cally not acquired in treatment position and not prior to every
treatment fraction, in order to keep treatment time short and
imaging dose low enough that they do not compromise the
dose benefit of proton therapy.10 Direct imaging of RSP using
proton computed tomography (pCT)11–16 has been proposed
to increase accuracy and to allow for a frequent, dose effi-
cient acquisition in treatment position. Accuracies achievable
with current prototypes are comparable to state-of-the art
clinical dual energy x-ray CT.7,17–19

A further reduction of imaging dose can be achieved by
modulating the imaging fluence field during the acquisition
and thereby achieving a task-specific image quality. Fluence-
modulated scans20 can either aim for homogeneous variance
across the whole volume, or for region-of-interest (ROI)
imaging, where only the relevant part of the image is acquired
at low noise and imaging dose is reduced elsewhere. Algo-
rithms21–24 and experimental prototypes25–29 have been
developed for fluence modulation in x-ray CT. Recently, flu-
ence-modulated proton computed tomography (FMpCT) has
also been proposed30 and its initial experimental feasibility
using pencil beam scanning was investigated.31 The best
achievable dose efficiency through fluence modulation or
other techniques is a key requirement for x-ray CT32 and
most likely will be for pCT as it moves closer to the clinics.
Moreover, ROI imaging is of high interest for particle therapy
treatment planning and dose verification, where only a frac-
tion of the image volume (the treatment beam path) is of rele-
vance.30 A challenge for FMpCT is that simple Poisson noise
modeling is not sufficient, as image variance for pCT
depends on the object’s heterogeneity, and several contribu-
tions, including multiple Coulomb scattering, have to be
taken into account for fluence-modulation.33,34

In this work, we present a method for fluence-field opti-
mization in pCT using pencil beam scanning. We employ a
pCT scanner-specific Monte Carlo simulation,35 which was
shown to reproduce experimental variance levels for a typi-
cal fluence field.34 The problem of finding relative modula-
tion factors for each pencil beam such that the summed
fluence pattern results in a prescribed image variance map
is a computationally expensive optimization problem which
generally requires alternating between the reconstructed
image domain (where the variance prescription is defined)
and the projection domain (the detector data at each

projection angle from which the image is reconstructed,
and where the fluence modulation is defined). Therefore,
we separated the problem into first solving for the projec-
tion domain variance yielding a given prescribed variance
in the image domain and subsequently optimizing pencil
beam weights leading to this projection domain variance.
To realistically describe pencil beams in the optimization
and in simulations, we established a pencil beam model
based on experimental data. In a simulation study, we esti-
mated dose savings for FMpCT using three different phan-
toms, and compared our proposed solution with a
straightforward intersection-based fluence modulation.31 We
also verified that the resulting variance map approaches the
target variance. Both a constant variance target as well as
two ROIs following typical treatment beam paths were
investigated.

2. MATERIALS AND METHODS

2.A. Simulation framework

The Monte Carlo simulation framework35 used in this
study is a detailed model of the phase II pCT prototype scan-
ner.13 It is based on the GEANT4 toolkit36 version 10.2.p01.
Details about the modeling of physics processes can be found
in literature, where the platform was validated for its fidelity
in terms of RSP.19,35 A previous study34 improved the plat-
form for reproducing variance levels of experimental scans.
With respect to that work, the beam model was modified, and
is described below. Imaging doses, in the form of absorbed
physical dose, were scored on a centered grid of 125 9 125
9 35 voxels with a uniform voxel size of 2 mm and summed
for all projection angles.

The simulation framework outputs data in the same format
as the prototype scanner. It records position and direction
information of individual protons before and after the object,
as well as the proton’s residual energy. Using a calibration,37

the residual energy can be mapped to a water-equivalent path
length (WEPL), which is the line integral over the RSP of the
object along the curved path of the proton. Because measure-
ments are available for every detected proton, these data are
referred to as “list-mode.”

2.B. Image reconstruction

To reconstruct RSP images from the list-mode data, a most
likely path38 is estimated for every proton from the tracking
information. The path information is taken into account by
performing distance-driven binning and applying a special
cone-beam filtered backprojection algorithm.39 In total, 90
projections from rotation angles covering a full rotation were
used. This relatively low number of projections was chosen
to satisfy experimental timing constraints and to allow for a
future experimental validation of this work. Reconstructions
were performed on a grid of 250 9 250 9 70 voxels with a
uniform size of 1 mm. For performing data cuts,12,38,39 the
grid was 125 9 125 pixels with a uniform size of 2 mm.
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Binning of data into distance-driven projections was per-
formed on a grid of 250 9 250 9 70 voxels with a uniform
size of 1 mm. All grids were centered on the isocenter.

Assume a voxel centered in (u,v,d) in the three-dimen-
sional (3D) distance-driven projection, where d is the binning
depth and u and v are the coordinates normal to it. We can
identify a set of protons such that the most likely path of
every proton crosses the voxel volume around (u,v,d). The
number of protons in that set is then referred to as the
“counts” C(u,v,d). These counts only consider protons used
for image reconstruction and therefore are reduced compared
to the incident protons due to interactions with the object and
cuts on the data. In contrast to that, counts in the absence of
interactions and cuts are referred to as F(u,v,d) throughout
the paper. The point u = v = d = 0 is the location of the
isocenter, where the rotation axis is located.

2.C. Phantoms

In the simulation study, three different phantoms with a
physical counterpart were used. The water phantom is a
cylindrical container made from polystyrene (outer diameter
150.5 mm, wall thickness 6.35 mm) and filled with distilled
water. The CTP404 phantom (Phantom Laboratory, New
York, USA) is a commercial sensitometric phantom with a
cylindrical shape (diameter 150) and several tissue-equivalent
inserts and two cylinders filled with air. Both phantoms were
implemented in the simulation as analytical models. The
pediatric head phantom (ATOM�, Model 715 HN, CIRS
Inc., Norfolk, USA) models the anatomy of a 5-yr-old child
and was implemented as a voxelized phantom in the simula-
tion.40 Previous publications34,35,40 can be consulted for
details about the phantoms.

2.D. Gaussian pencil beam model

To allow for the flexible simulation of FMpCT data, an
analytical pencil beam model was derived from experimental
tracking data acquired at the pencil beam scanning beamline
of the Northwestern Medicine Chicago Proton Center with-
out phantom. Using the timing information of the scanner, a
count rate was calculated in steps of 0.8 ms, allowing for the
separation of individual pencil beams as the count rate
dropped in between two spots. The separated data were pro-
cessed individually by estimating most likely paths and per-
forming distance-driven binning.39

For each pencil beam b, this resulted in a 3D experimental
counts map Cbðu; v; dÞ. We fitted the Gaussian model

Gðu;v;dÞ¼ N0

2pr0ur0v
� exp �ðu�u00ðdÞÞ2

2r02u
�ðv� v00ðdÞÞ2

2r02v

 !

(1)

to each pencil beam’s Cb, where N0 is the total number of
protons per pencil beam, and ðu00ðdÞ; v00ðdÞÞ is the pencil
beam center at depth d. The pencil beam center is assumed to
diverge linearly with the binning depth, such that

u00ðdÞ ¼ u0 � ð1þ du � dÞ and v00ðdÞ analogously, where
ðu0; v0Þ is the pencil beam center at d = 0 and du and dv are
the linear divergence factors. By construction, the isocenter-
beam for u0 ¼ v0 ¼ 0 is parallel to the d-axis. The

r0u ¼ ru �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ d2uu

2
0

q
and r0v analogously are the beam

widths projected to a plane normal to the d-axis while ru and
rv are the actual beam widths. This resulted in a fit with
seven open parameters (N0, u0, v0, ru, rv, du, dv), which was
performed for each individual pencil beam by minimization
of the squared deviation. The parameters ru, rv, du and dv
were not specific to one pencil beam, and estimates for them
were therefore found as the mean value over all pencil beams.
N0, v0 and u0 were open parameters specific to a given pencil
beam, but overwritten in subsequent simulations of different
pencil beam patterns. They are therefore not reported.

2.D.1. Simulation of pencil beams

All datasets were generated by shooting a regular grid of
simulated proton pencil beams. At d = 0, neighboring pencil
beams were interspaced by DPB;u ¼ 12 mm along u and
DPB;v ¼ 8 mm along v. The pencil beam grid was offset in u
by DPB;u=4 ¼ 3 mm so that the summed fluence from two
opposing angles was homogeneous. This helped to reduce
the total number of pencil beams and thereby reduce the com-
plexity of the optimization. In the simulation platform, pro-
tons were emitted from a point ðu0 � ð1 þ du � d0Þ;
v0 � ð1 þ dv � d0Þ; d0Þ þ ðru; rv; 0Þ, where d0 ¼ �400 mm
and ru and rv are normally distributed random numbers with
a standard deviation of ru and rv, respectively. The point d0
is just before the front tracker and was chosen in agreement
to previous investigations.34 Protons were assumed to have
an initial direction vector of ðu0du; v0dv; 1Þ. The beam centers
ðu0; v0Þ were chosen according to the pencil beam grid
defined above. For nonmodulated scans, N0 was set to a
default value N0 ¼ N for all pencil beams. For modulated
scans, it was N0 ¼ ma

bN for a pencil beam modulated with a
factor ma

b. The proton’s initial energy was set to
200.00 � 0.66 MeV, which is the standard mean energy
used experimentally. The energy spread was determined in a
previous study34 and agrees with experimental data acquired
at the beamline at the Northwestern Medicine Chicago Pro-
ton Center, albeit with a wider spot size setting.

2.D.2. Pencil beam reference counts

To optimize pencil beam weights, a reference of the proton
counts for every pencil beam is needed. This reference serves
as a basis function for the fluence modulation and should not
take into account interactions with the object. It can be gener-
ated for every pencil beam b using the Gaussian model

Fbðu; v; dÞ ¼ Gðu; v; dÞjN0¼N;u0¼ub;v0¼vb (2)

assuming a pencil beam center ðub; vbÞ according to the regu-
lar grid and a constant number of protons N which is equal
for all pencil beams.
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2.D.3. Optimization of pencil beam weights

Using the Fb as basis functions, it is possible to generate
an arbitrary counts field Ca for rotation angle a by finding
weights wa

b, such that Ca is expressed as a linear combination
of the reference counts Fb from Eq. (2). Weights were found
by minimizing the squared deviation, and therefore

wa
bðCaÞ¼ argmin

wa
b

Z Z
dudv Caðu;v;0Þ�

X
b

wa
bFbðu;v;0Þ

 !2

:

(3)

Integration was performed over u and v, but only the isocen-
ter binning depth d = 0 was considered. Optimization was
performed using the method of Nelder and Mead.41

2.E. Proposed algorithm for fluence field
optimization

Fluence field optimization requires finding a set of fluence
modulation factors ma

b 2 ½0; 1� for pencil beam b at rotation
angle a, such that the resulting pCT reconstruction best
achieves a given image variance target Vtargetðx; y; zÞ. The pro-
posed method for fluence field optimization is performed in
the projection domain (denoted by coordinates (u,v,d) and the
rotation angle a) instead of the image domain (denoted by
coordinates (x,y,z)). The method is sketched in Fig. 1 and
consists of the following three steps, which will be detailed in
Sections 2.E.1–2.E.3:

1. For a given phantom, find the resulting variance
Va
unitðu; v; dÞ in the projection domain for a unit fluence

simulation with ma
b ¼ 1 for all pencil beams.

2. For a given image variance target Vtargetðx; y; zÞ, find a
stack of variance levels in the projection domain
Va
targetðu; v; dÞ that yields the image variance target.

3. Calculate the pixel-wise counts target Ca
targetðu; v; dÞ.

Then, optimize weights that yield the counts target
according to Eq. (3).

The algorithm extends ideas from literature for x-ray
CT21,22 to requirements of pCT such as the 3D projections
due to distance-driven binning39 and a more complex noise
model.33,34 It is, to our knowledge, not equivalent to any
existing approach as it is performed in projection domain and
computationally feasible without simplification to a parallel-
beam geometry.

2.E.1. Step 1: variance at unit fluence prediction

To find variance levels at unit fluence for a given
phantom, we employed a Monte Carlo simulation using
the beam model described in Section 2.D and ma

b ¼ 1 for
all pencil beams and rotation angles. This step requires an
object model according to Section 2.C and resulted in
counts Ca

unitðu; v; dÞ, which were reduced compared to the
reference counts Funitðu; v; dÞ ¼ P

b Fbðu; v; dÞ due to

interactions with the object. For every point (u,v,d) in the
projection, a set of n ¼ Ca

unitðu; v; dÞ WEPLs, {p}, was
found such that the voxel around (u,v,d) was crossed by
the most likely path of each of the selected protons.39 The
unit fluence variance was then the squared error of the
mean

Va
unitðu; v; dÞ ¼ Var½fpg�=Ca

unitðu; v; dÞ: (4)

Given a variance projection stack Va
unitðu; v; dÞ, the corre-

sponding image variance Vunitðx; y; zÞ can be calculated ana-
lytically as reconstruction was performed using filtered
backprojection. Please refer to previous publications33,34 for
details about variance calculations for pCT and for variance
reconstruction in general.42

2.E.2. Step 2: iterative variance forward projection

Finding a stack of variance projections Va
targetðu; v; dÞ

whose variance reconstruction33 yields a given image
variance target Vtargetðx; y; zÞ is a problem with a large
set of solutions. We therefore aimed to find the inverse
operation of variance reconstruction,42 that is, a “vari-
ance forward projection.” An initial guess Va

0 ðu; v; dÞ
could be obtained by performing ray tracing43 through
the image variance target Vtargetðx; y; zÞ followed by ramp
filtration. The additional filtration was motivated by the
fact that variance reconstruction is very close to a sim-
ple unfiltered backprojection.42 Since ray-tracing is the
inverse operation to filtered backprojection, an additional
ramp-filtration was required. While such forward- and
backprojection yield Vtarget again, this often yields
unphysical negative variance projection values and ampli-
fies noise. Therefore, a median filter was applied to the
ramp-filtered projections followed by thresholding to
positive values.

To minimize the error introduced by thresholding, we
employed an iterative approach by applying variance
reconstruction to the i-th set of variance projections
Va
i ðu; v; dÞ yielding a variance volume Viðx; y; zÞ. Again,

using ray-tracing, the difference volume Vtargetðx; y; zÞ
�Viðx; y; zÞ was forward-projected and added to the cur-
rent stack of variance projections. In every iteration, the
variance projection values were forced to be positive. This
will converge to a set of physical (i.e., strictly positive)
variance projections that yield an image variance
approaching Vtargetðx; y; zÞ.

2.E.3. Step 3: fluence optimization

By definition, the variance projection values in Eq. (4) are
inversely proportional to the number of contributing protons
C. Therefore, the pixel-wise counts required to achieve the
variance target could be calculated as ðVa

unit=V
a
targetÞ � Ca

unit.
However, for low counts, we need to consider that C follows
a Poisson distribution (contrary to a normal distribution at
sufficiently high counts) and therefore an additional correc-
tion function
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kðCÞ ¼ C �
X1
n0¼1

PCðn0Þ � bn0;C ¼ C2
X1
n0¼1

PCðn0Þ
n0

(5)

needs to be introduced, where PCðn0Þ ¼ Cn0 expð�CÞ=n0! is
the Poisson probability of detecting n0 protons instead of the
expectation value of C and bn0;C ¼ C=n0 is the relative
change in variance if n0 instead of C protons were detected.
The function k(C) was stored in a lookup table for all relevant
integer values of C up to 300 by numerically calculating the
infinite sum for 1000 summands. Since limC 7!1 kðCÞ
=C ¼ 1 and k(300)/300 = 1.0033 we assumed k(C) = C for
all C > 300. Furthermore, k(C) was thresholded to return at
least Cmin ¼ 8 protons to avoid detector elements with miss-
ing information.

We used an optimization according to Eq. (3) to find pen-
cil beam weights wa

bðCa
targetÞ which achieve the pixel-wise

projection counts target of

Ca
targetðu; v; dÞ ¼ k

Va
unitðu; v; dÞ

Va
targetðu; v; dÞ

� Ca
unitðu; v; dÞ

" #
: (6)

Due to the fact that Ca
unit and C

a
target are both affected by inter-

actions with the object, the optimization also needed to be
performed for unit fluence allowing for an elimination of the
effect of attenuation and scattering. This resulted in fluence
modulation factors

ma
b ¼

wa
bðCa

targetÞ
wa
bðCa

unitÞ
(7)

with numerator and denominator as defined in Eq. (3). Due
to the normalization, these factors were corrected for

interactions with the object and thus could be used to simu-
late an FMpCT scan according to Section 2.D.1.

2.E.4. Reference approach

A simpler approach to fluence field optimization, which
was used in previous works,31 is to perform a binary modula-
tion with two fluence levels. In image domain, a ROI is
defined as a set of voxels that should be imaged with high
fluence. A pencil beam is assigned a high imaging fluence if
its central axis intersects the ROI, and a low imaging fluence
otherwise. The fluence modulation factors were

ma
b ¼

1 if intersecting
c otherwise

�
; (8)

where 0 < c < 1 is the modulation strength, which was cho-
sen to be equal to the contrast of the variance prescription of
the proposed method.

2.F. Simulation study

In a simulation study, we prescribed three different image
variance targets, which can be appreciated in Fig. 2: (a) con-
stant variance VROI throughout the imaged object; (b)
FMpCT prescription A (variance VROI inside one quadrant of
the imaged object and 4 � VROI elsewhere); and (c) FMpCT
prescription B (VROI inside a central rectangular region and
4 � VROI elsewhere). Variance targets are used in step b of the
proposed algorithm, and therefore independent of the imaged
object. In agreement to previous investigations31, the pre-
scription contrast of 4 was chosen such that it is higher than
the variance dynamic range of a unit fluence scan,34 but

FIG. 1. Workflow for optimization of fluence modulation factors ma
b, given an object model and a variance target Vtarget. [Color figure can be viewed at wileyon

linelibrary.com]
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reasonably achievable without expecting regions with vanish-
ing counts or distortions of RSP accuracy.

Previous investigations34 have shown that a uniform flu-
ence does not yield a constant variance for pCT. Therefore,
the constant variance prescription is the most dose-efficient
image, if the complete image is required for diagnosis. Pre-
scriptions A and B model two treatment scenarios, where the
treatment beam path is coming from 90° and 180° in A and
from 90° and 270° in B. Prescriptions were slightly blurred
as sharp gradients in image variance cannot be achieved due
to the ramp filtration involved in reconstruction. Throughout
this work, we use the nomenclature “constant,” “A” and “B”
to refer to the three prescriptions.

For all phantoms, we first simulated a high dose unit fluence
dataset with ma

i ¼ 1. The mean incident proton fluence was
chosen to be 133mm�2 such that it yielded a typical imaging
dose for pCT of about 1.4 mGy,12 when summed over all pro-
jections. We then chose the value of VROI for each phantom as
the 95th percentile value of the variance in the unit fluence
scan. For the water phantom, this was VROI ¼ 4:61 � 10�4,
for the CTP404 phantom VROI ¼ 5:89 � 10�4, and for the
head phantom VROI ¼ 11:96 � 10�4. These values are con-
sistent with previous studies.34

For the CTP404 phantom, RSP values of the phantom
body and of two inserts inside the ROI were evaluated and
compared to the unit fluence scenario. The body consisted of
epoxy (RSP = 1.144), and inserts were made from Teflon
(RSP = 1.791) and polymethylpentene (RSP = 0.883). RSP
values were calculated with GEANT4 at a proton energy of
150 MeV and agreed with previous experiments.35

For a fair comparison of imaging doses, we computed the
95th percentile variance value vROI95 inside the ROI (inside the
whole phantom for unit fluence) and calculated a linear cor-
rection factor g ¼ vROI95 =VROI. Doses and counts were multi-
plied by g, variances were multiplied by 1/g. The choice of
the 95th percentile value over the mean or the maximum
value is a compromise between the requirement that vari-
ances should be at VROI or lower, and tolerating outliers. As
the water and the CTP404 phantom were thin, the percentile
value was calculated only within the displayed central slice.
For the head phantom, which covered the entire height of the
detector aperture, it was calculated over the full volume. To
avoid the variance evaluation being dominated by increased
noise at the hull of the phantom as discussed in previous
works,33,34 we determined the shape of the hull by setting an
RSP threshold of 0.5 and eroding the hull by 7 mm. Values
outside this region were disregarded. The ROI region and the
out-of-ROI region are indicated in Fig. 2 for fluence modula-
tions A and B.

3. RESULTS

3.A. Gaussian pencil beam model

In an experimental dataset without phantom, we deter-
mined the beam spreads of the Gaussian beam model to be
ru ¼ ð4:04 � 0:08Þ mm and rv ¼ ð5:24 � 0:09Þ mm.

The divergence was du ¼ ð5:2 � 0:6Þ � 10�4 mm�1 and
du ¼ ð5:8 � 1:4Þ � 10�4mm�1. The beam spread in the u
direction was significantly smaller compared to the beam
spread in v direction. Divergence in the u and v direction did
not differ outside of the uncertainty bounds. The distances
from the isocenter to a virtual source were 1=du ¼
ð1:9 � 0:2Þ m and 1=dv ¼ ð1:7 � 0:4Þ m, which agrees
with the position of the scanning magnets, which is 1.8 m
from the isocenter. The stated parameters were used in all the
following evaluations.

3.B. Variance optimization

3.B.1. Iterative variance forward projection

For step 2 of the proposed method, Fig. 3(a) shows error
measures as a function of the iteration number. The root-
mean-square (RMS) error as well as the mean error between
the current variance volume Viðx; y; zÞ and the variance target
Vtargetðx; y; zÞ are calculated within the field-of-view. The fast-
est convergence is observed for the constant variance pre-
scription, while both FMpCT prescriptions A and B show a
remaining RMS error that only reduces slowly in every itera-
tion. The mean error quickly drops to zero within the first
iterations. The relative change in RMS error for all prescrip-
tions was below 1% per iteration when they were stopped.
Figures 3(b) to 3(d) show Viðx; y; zÞ for prescription B at
three different iterations. At iteration 20, the high-variance
region has reached the correct value, while in the low-
variance region artifacts remain, but decrease up to the last
iteration.

3.B.2. Fluence optimization

To validate the use of the correction function k(C), Fig. 4
shows k(C)/C together with the relative increase in the image
variance VC at mean counts C. The relative increase is calcu-
lated as ðVC � CÞ=ðVC1 � C1Þ for C1 ¼ 310 for simulated
pCT data. Both curves agree, which shows that variance
increases overproportionally for low counts and that the cor-
rection function k(C) describes this well.

Figure 5 shows intermediate steps of the fluence optimiza-
tion for the pediatric head phantom and variance prescription

FIG. 2. Three different image variance targets for the simulation study. The
region-of-interest (ROI) region and the out-of-ROI region are indicated in
green and red respectively. The display center (C) and window (W) is noted
below the figure. [Color figure can be viewed at wileyonlinelibrary.com]
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A. All projection data are shown as sinograms plotted as a
function of the detector position in u direction and the rota-
tion angle. Only data for v = d = 0 are shown. In Fig. 5(a),
variance at unit fluence Va

unitðu; 0; 0Þ is shown (step 1 of the
algorithm), which is high at the periphery of the object and
around heterogeneities, as discussed in previous works.34

Figure 5(b) shows the variance target Va
targetðu; 0; 0Þ as a result

of the iterative optimization (step 2). Figure 5(c) shows the
pixel-wise counts target for fluence modulation Ca

targetðu; 0; 0Þ
(step3) as given by Eq. (6). Parts of the variance target in (b)
are assigned a value of 0, and receive the unit fluence in (c).
In Fig. 5(d), the counts target is fitted by the pencil beam
model to get the weights required for fluence modulation
(also step 3). This can be calculated as

P
b w

a
bFbðu; v; dÞ.

Some small features of (c) are not present in (d) if they are
smaller than the extension of a pencil beam.

3.C. Simulation study

Figures 6 and 7 show simulated fluence modulations for
all phantoms. RSP, variance, and dose maps are shown
together with the counts sinograms. For the water phantom
imaged with unit fluence [Fig. 6(a)], counts, and dose were

homogeneous throughout the phantom, variance was reduced
in the center. This reduction was compensated in Fig. 6(b) for
the constant variance target, where instead counts and imag-
ing dose were reduced in the center and variance was homo-
geneous across the phantom, except for a steep increase in
the hull. The fluence modulations in Figs. 6(c) and 6(e) for
variance targets A and B can already be appreciated in the
RSP maps. Variance levels followed the prescription with a
sharp gradient. For prescription A some streaks of high vari-
ance were observed within the ROI. Using the reference
approach in Figs. 6(d) and 6(f), conformity of variance and
dose maps with the ROI was degraded, in particular for pre-
scription B, where variance and dose are at the same level as
in the unit fluence scan for most of the phantom and the
change in variance cannot be seen in the RSP maps. In the
counts sinograms, regions of increased counts roughly agreed
with those using the optimization, but were uniform, as
required. Instead, using the optimization, a heterogeneous
counts pattern was observed.

For the CTP404 phantom [Figs. 7(a) and 7(b)] and the
head phantom [Figs. 7(c) and 7(d)], the variance increased
around heterogeneities both in unit fluence and fluence-
modulated scans. For the head phantom in particular, the
palate exhibited locally elevated variance levels. The fluence
modulation with prescription A was less conformal, com-
pared to those of the water phantom. In particular for the
CTP404 phantom, the variance contrast was impaired.
Counts sinograms for prescription A in Figs. 6(c) and 7(b)
and 7(d) are similar, but phantom-specific differences are
noticeable.

Mean imaging doses are summarized in Fig. 8, where the
fluence modulation, the mean dose over the whole phantom
as well as the mean doses in the ROI region and the out-of-
ROI region are reported. For the water phantom, prescribing
constant variance resulted in a dose reduction of 8.9% com-
pared to the unit fluence dose. For the ROI fluence modula-
tions, dose saving outside the ROI was 40.5% for
prescription A and 25.7% for prescription B. Using the sim-
ple reference approach, dose reductions were less pronounced
and dropped to 29.2% and 13.2% respectively. For the
FMpCT prescription A and the CTP404 phantom as well as

(a) (b) (c) (d)

FIG. 3. (a) Root-mean-square error (solid) and mean error (dashed) as a function of the iteration number of the three image variance targets. (b)–(d) Recon-
structed variance volumes for prescription B for different iterations. The display center (C) and window (W) is noted below the figure. [Color figure can be
viewed at wileyonlinelibrary.com]

FIG. 4. Overproportional increase of image variance with decreasing counts
in a simulation with varying mean proton number C and agreement with the
fluence correction function k(C)/C. [Color figure can be viewed at wileyon
linelibrary.com]
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(a) (b) (c) (d)

FIG. 5. Intermediate results of the fluence optimization process for the pediatric head phantom and the orthogonal beams variance target: (a) unit fluence variance
Va
unitðu; 0; 0Þ, (b) variance target Va

targetðu; 0; 0Þ, (c) pixel-wise target counts Ca
targetðu; 0; 0Þ, and (d) target counts as fitted by the beam model. Data are shown as a

function of the rotation angle a and the detector coordinate u. For display a center of 0.4 mm2 and a window of 0.8 mm2 has been applied for variances, and a
center of 80 and a window of 160 for counts.

(a) (b) (c) (d) (e) (f)

FIG. 6. Simulation study for the water phantom and variance targets as indicated in the titles. Sinograms are shown for v = d = 0. Center (C) and window (W)
settings for display of RSP and variance values are given. [Color figure can be viewed at wileyonlinelibrary.com]
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the head phantom, dose savings outside the ROI were slightly
lower compared to the 40.5% of the water phantom (35.4%
and 38.9% respectively). For all phantoms, fluence modula-
tions A and B achieved a lower dose outside the ROI com-
pared to the unit fluence, but after normalization with g
required a higher dose inside the ROI by 9.2% to 19.2%.
Doses inside the ROI were approximately constant for the ref-
erence approach. Mean doses over the whole phantom were
reduced by 7.2% to 13.1% using the reference approach and
by 9.8% to 18.6% for the FMpCToptimizations.

For the CTP404 phantom, the two inserts and the body
inside the ROI had an RSP value of 1.776, 0.881, and 1.143,
compared to 1.776, 0.879, and 1.143 for the unit fluence case.

Figure 9 shows the head phantom with unit fluence (a,b)
and for the constant variance target (c,d) both in a sagittal
view (a,c) and a coronal view (b,d). Dose is homogeneous for
the unit fluence imaging, but the variance is notably lower in

the back of the head and around the spinal cord compared to
regions around the palate and the nasal cavities. These varia-
tions were compensated for in the fluence modulations
achieving more homogeneous variance levels at reduced
doses in regions where variance was low for unit fluence.
Mean dose over the whole phantom was 1.15 mGy compared
to 1.37 mGy in the unit fluence case (16.0% reduction).
Around the palate and the nasal cavities, dose is increased in
the fluence-modulated scan, which is not expected and may
be due to the normalization by g.

4. DISCUSSION

4.A. Gaussian pencil beam model

We found parameters of a Gaussian pencil beam model that
allowed us to describe pencil beams at arbitrary fluences and

(a) (b) (c) (d)

FIG. 7. Simulation study for the CTP404 and the head phantom, and variance targets as indicated in the titles. Sinograms are shown for v = d = 0. Center (C)
and window (W) settings for display of RSP and variance values are given. [Color figure can be viewed at wileyonlinelibrary.com]
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positions. This is a key component of the fluence modulation
scheme, as it allows us to find a linear combination of a regular
grid of pencil beams that achieves the required counts as calcu-
lated by our algorithm. Uncertainty bounds for fits in v direc-
tion were consistently larger than those in u direction, in
particular for the divergence parameter d. This was because
the detector aperture is smaller in u direction and less data-
points were available. The beam spread rv was significantly
larger than ru. While this anisotropy is not expected for clini-
cal operation, it may have been caused by operating the beam
line in research mode and modifying beam optics settings to
keep proton fluence low and viable for the scanner. For future
experimental studies, certain model parameters, such as the
beam energy spread, may require adjustment to exactly match
experimental variance levels.

4.B. Variance optimization

4.B.1. Iterative variance forward projection

Using an iterative approach, we calculated stacks of vari-
ance projections that yield a desired variance map in image
space. Depending on the complexity of the variance prescrip-
tion, this required a different amount of iterations and a non-
zero RMS error remained. The easiest case (constant
variance target), did not require negative variance values (a
constant stack of variance projections would yield a constant

image variance) and therefore converged quickly. The two
inhomogeneous variance targets A and B did suffer from the
positivity requirement and therefore only slowly converged
toward a reduced RMS error. While with negative variance
values, a (close to) zero RMS error would be possible, this
was not the case when requiring physical variance values.
The variance target stacks therefore already contained an
inherent error, which impacted the achievable variance con-
trast. However, it did not impact fluence modulation in gen-
eral, as the prescribed fluences could be rescaled, such that
VROI was achieved inside the ROI.

4.B.2. Fluence optimization

We calculated the counts target according to Eq. (6),
which could run into a lower and an upper limit. Firstly, to
ensure that that data were available throughout the projec-
tion, we required at least Cmin protons in every pixel. Sec-
ondly, to avoid unreasonably high imaging doses, only
fluence modulation factors ma

b � 1 were allowed, even if the
variance target from the previous step (iterative variance for-
ward projection) was zero. This was relevant, in particular,
to the hull of the object, which is also a limited area to be
traversed by a therapeutic proton beam. Again, both limits
impacted achievable variance contrast, but VROI could be
achieved in the ROI by rescaling with g. Due to the limita-
tion of pencil beams with a finite size, small variance fea-
tures were averaged out, which may impact homogeneity of
the achieved variance, in particular for phantoms with strong
heterogeneities.

4.C. Simulation study

We simulated FMpCT scans for different phantoms and
variance targets demonstrating two possible applications for
dose reduction using fluence modulation: (a) for achieving
constant variance throughout the object and (b) concentrating
imaging dose in a high image quality ROI and reducing it
elsewhere.

The dose reduction for constant variance with the homoge-
neous water phantom was 8.9%, which already is consider-
able. As shown in previous investigations,34 variance for

FIG. 8. Mean imaging doses for the simulation study. The dashed line indi-
cates the unit fluence dose while bars show the average phantom dose and
doses inside and outside the region-of-interest. The relative dose change
compared to unit fluence dose is given inside the bars. Unit fluences were
equal for all phantoms, but unit fluence doses differed slightly. [Color figure
can be viewed at wileyonlinelibrary.com]

(a) (b) (c) (d)

FIG. 9. Simulation study for the pediatric head phantom with unit fluence (a), (b) and the constant variance target (c), (d). Row by row, the RSP, variance, and
imaging dose are shown. Sagittal and coronal views are shown. Center (C) and window (W) settings for display of RSP and variance values are given. [Color fig-
ure can be viewed at wileyonlinelibrary.com]
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heterogeneous phantoms is dominated by multiple Coulomb
scattering, which depends on the local heterogeneity of the
phantom. Therefore, variance maps of the head phantom in
coronal and sagittal views were varying greatly. Assuming
that good image quality is required in the complete field-of-
view, a fluence-modulated scan can reduce the imaging dose
by 16.0% compared to a unit fluence scan, without any loss
of diagnostic value. Equivalently, the signal-to-noise ratio
could have been improved by 35% at equal dose.

For all phantoms and two different image variance targets,
we could demonstrate considerable dose savings of 25.7% to
40.5% outside of the ROI. At the same time, the imaging
dose inside the ROI increased compared to the unit fluence
acquisition. Assuming that the ROI agrees with the treatment
beam path and that treatment doses are several orders of mag-
nitude higher than imaging doses, this increase is probably
not relevant. At the same time, proton therapy allows for min-
imal doses outside the treatment beam path, requiring that
this advantage is not compromised by frequent imaging.
Mean imaging doses over the whole phantom were reduced
for all combinations of phantoms and variance targets. Using
a sensitometric phantom, we showed that RSP accuracy is
not compromised by fluence modulation. RSP errors were
comparable for modulated and un-modulated scans, and all
below 1%, which is within the magnitude expected from liter-
ature.12,19,35

Imaging doses in fluence-modulated scans showed local
increases and doses partially spilled out of the ROI. This may
have impaired results in this study and could be caused by the
fact that optimization was exclusively performed with a vari-
ance objective. Future studies should therefore include a dose
objective outside of the ROI while keeping the variance
objective inside the ROI, further developing ideas from stud-
ies for x-ray CT.21 Moreover, the optimal choice of the con-
trast in the image variance prescription should be studied in
the future, but is out of scope for this work.

Using a simple intersection-based approach also showed
dose savings compared to unit fluence acquisitions. However,
dose savings were considerably less compared to the opti-
mized FMpCT scans and conformity of variance with the pre-
scription was degraded. By construction, a prescription of
constant variance is not possible with this approach.

Future work should also address the impact of iterative
image reconstruction, which is frequently used for pCT imag-
ing.44–48 In contrast to the direct filtered backprojection algo-
rithm used in this study, iterative reconstruction employs a
regularization method (typically total variation), which
reduces noise and whose optimal weight depends on the object
and the fluence level.49 While most fluence modulation stud-
ies for x-ray CT have been performed using filtered backpro-
jection,20,21 a first study23 investigated a joint optimization of
the fluence field and a spatially varying regularization parame-
ter in the iterative reconstruction. For pCT, a comparison of
iterative and direct reconstruction47 showed comparable image
quality. Preliminary work of the authors using an iterative
reconstruction algorithm46 and fluence modulation suggests
feasibility of combining the two methods for pCT.

5. CONCLUSIONS

We developed a novel method for FMpCT using pencil
beam scanning and demonstrated its feasibility in a simula-
tion study. Dose reductions achieved by prescribing uniform
variance were considerable, in particular for an anthropomor-
phic head phantom. This suggests the need for employing
nonuniform fluence patterns in future pCT studies, whenever
dose efficiency is a key requirement. Furthermore, the pro-
posed method allows us to prescribe arbitrary image variance
targets, which were shown to further reduce imaging dose
outside of a given ROI. This can be of particular interest in
the context of particle therapy and allow for daily imaging at
a reduced imaging dose to healthy tissue outside of the treat-
ment beam path.
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