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Abstract

Methanogenic archaea occupy a functionally important niche in the gut microbial ecosystem

of mammals. Our purpose was to quantitatively characterize the dynamics of methanogen-

esis by integrating microbiology, thermodynamics and mathematical modelling. For that, in

vitro growth experiments were performed with pure cultures of key methanogens from the

human and ruminant gut, namely Methanobrevibacter smithii, Methanobrevibacter ruminan-

tium and Methanobacterium formicium. Microcalorimetric experiments were performed to

quantify the methanogenesis heat flux. We constructed an energetic-based mathematical

model of methanogenesis. Our model captured efficiently the dynamics of methanogenesis

with average concordance correlation coefficients of 0.95 for CO2, 0.98 for H2 and 0.97 for

CH4. Together, experimental data and model enabled us to quantify metabolism kinetics

and energetic patterns that were specific and distinct for each species despite their use of

analogous methane-producing pathways. Then, we tested in silico the interactions between

these methanogens under an in vivo simulation scenario using a theoretical modelling exer-

cise. In silico simulations suggest that the classical competitive exclusion principle is inappli-

cable to gut ecosystems and that kinetic information alone cannot explain gut ecological

aspects such as microbial coexistence. We suggest that ecological models of gut ecosys-

tems require the integration of microbial kinetics with nonlinear behaviours related to spatial

and temporal variations taking place in mammalian guts. Our work provides novel informa-

tion on the thermodynamics and dynamics of methanogens. This understanding will be

useful to construct new gut models with enhanced prediction capabilities and could have

practical applications for promoting gut health in mammals and mitigating ruminant methane

emissions.
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Introduction

Methanogenic archaea inhabit the gastro-intestinal tract of mammals where they have estab-

lished syntrophic interactions within the microbial community [1–3] playing a critical role in

the energy balance of the host [4,5]. In the human gut microbiota, the implication of methano-

gens in host homeostasis or diseases is poorly studied, but of growing interest [6]. Methanobre-
vibacter smithii (accounting for 94% of the methanogen population) and Methanosphaera
stadtmanae are specifically recognized by the human innate immune system and contribute to

the activation of the adaptive immune response [7]. Decreased abundance of M. smithii was

reported in inflammatory bowel disease patients [8], and it has been suggested that methano-

gens may contribute to obesity [9]. In the rumen, the methanogens community is more diverse

though still dominated by Methanobrevibacter spp., followed by Methanomicrobium spp.,

Methanobacterium spp. [10] and Methanomassillicoccus spp [11]. However, the proportion of

these taxa could vary largely, with Methanomicrobium mobile and Methanobacterium formi-
cium being reported as major methanogens in grazing cattle [12]. Though methanogens in the

rumen are essential for the optimal functioning of the ecosystem (by providing final electron

acceptors), the methane they produce is emitted by the host animal, contributing to global

greenhouse gas (GHG) emissions. In the gastrointestinal tract of mammals, major rumen

methanogens [13] and the dominant human archaeon M. smithii [14], are hydrogenotrophic

archaea without cytochrome (membrane-associated electron transfer proteins). Cytochrome-

lacking methanogens exhibit lower growth yields than archaea with cytochromes [15]. How-

ever, this apparent energetic disadvantage has been counterbalanced by a greater adaptation to

the environmental conditions prevailing in the gastrointestinal tract [16], and by the establish-

ment of syntrophic interactions with feed fermenting microbes. This syntrophic cooperation

centred on hydrogen allows the anaerobic reactions of substrate conversion to proceed close to

the thermodynamic equilibrium [17,18] (that is with Gibbs free energy change close to zero).

To our knowledge, thermodynamic considerations on human gut metabolism have been

poorly addressed in existing mathematical models [19–22], although ttheoretical frameworks

have been developed in other domains to calculate stoichiometric and energetic balances of

microbial growth from the specification of the anabolic and catabolic reactions of microbial

metabolism [23,24], and advances have been done to link thermodynamics to kinetics [25–27].

For the rumen, thermodynamic principles have been incorporated already into mathematical

research frameworks because of their important role in feed fermentation. Thermodynamic

studies have been performed to investigate theoretically (i) the profile of fermentation [28],

(ii) alternative routes for hydrogen utilization [29], and (iii) the effect of hydrogen partial pres-

sure on glucose fermentation and methanogenesis [30,31]. However, studies assessing quanti-

tative comparisons between experimental data and model predictions using thermodynamic-

based approaches have been of limited success in providing accurate predictions [32,33], prob-

ably due to missing controlling factors such as NADH oxidation and the dynamics of hydro-

gen partial pressure [31]. Another key factor explaining inaccurate predictions in existing

rumen models is the lack of a dynamic representation of the microbial methanogens group. In

this respect, new knowledge on the extent of methanogenesis and metabolic differences

between the microbial members of this group could help to improve existing gut models. To

our knowledge, none of the existing gut models integrates thermodynamics aspects to describe

microbial growth of methanogens. Accordingly, our objective in this work was to develop a

dynamic model with thermodynamic basis to quantify metabolism kinetics and energetic

patterns that could inform on metabolic specificities between gut methanogenic archaea.

Additionally, this model development aimed at providing tools for the analysis of ecological

aspects (e.g., competitive exclusion principle) of the methanogenic community that can be
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instrumental when designing, for example, nutritional strategies for methane mitigation in

ruminants. The model was built upon quantitative data characterizing the in vitro dynamics of

hydrogen utilization, methane production, growth and heat flux of three hydrogenotrophic

methanogenic species representing major human and ruminant genera: Methanobrevibacter
smithii, Methanobrevibacter ruminantium and Methanobacterium formicium.

Material and methods

In vitro growth experiments

Archaeal strains and growth media. Archaeal strains used in the study were M. ruminan-
tium M1 (DSM 1093), M. smithii PS (type strain DSM 861), and M. formicium MF (type strain

DSM 1535). All archaeal strains were purchased from DSM previously. The strains were frozen

at -80˚C, thawed and grown to get actively growing population before the beginning of the

study. Balch growth media was prepared as previously described [34] and composition is sum-

marized in S1 Table. Before autoclaving, 6 ml of media were distributed in Balch tubes (26 ml

total volume) under CO2 atmosphere.

Experimental design and measures. Starter cultures were grown until reaching optical

density at 660 nm (OD660) of 0.400 ± 0.030. Optical density was measured on a Jenway spec-

trophotometer (Bibby Scientific). Then, 0.6 ml were used to inoculate one experimental tube.

Commercially prepared high purity H2/CO2 (80%/20%) gas mix was added to inoculated

tubes by flushing for 1 min at 2.5 Pa. Mean initial OD660 and pressure values are summarized

in S2 Table. Growth kinetics for each strain were followed over 72 h. The experiment was

repeated twice. Each kinetics study started with 40 tubes inoculated at the same time. At a

given time point, two tubes with similar OD660 values were sampled. The tubes were used for

measuring gas parameters: pressure was measured using a manometer and composition of the

gas phase was analysed by gas chromatography on a Micro GC 3000A (Agilent Technologies,

France). The GC was equipped with two columns, MS-5A using argon as carrier gas and set to

100˚C and PPU using helium and set to 75˚C. The GC was calibrated using a certified gas stan-

dard mixture (Messer, France) containing methane, oxygen, hydrogen, carbon dioxide, and

nitrogen. Approximately 2 ml of the sampled gas was injected in the GC for analysis. After gas

sampling, one of the tubes was centrifuged 10 min at 13 000 g. The microbial pellet was

weighed and stored at -20˚C in 2 ml screw-cap tubes containing 0.4 g of sterile zirconia beads

(0.3 g of 1 mm and 0.1 g of 0.5 mm).

DNA extraction and qPCR quantification of 16S rRNA genes. One ml of lysis buffer

(50mM NaCl, 50 mM TrisHCl pH 7.6, 50 mM EDTA, 5% SDS) was added directly to the fro-

zen microbial pellet before homogenizing for 2 × 30 s at 5100 tours/min in a Precellys bead-

beater (Bertin Instruments). Samples were centrifuged for 3 min at 14 000 g and the liquid

phase transferred to a new tube before adding 600 μl of phenol–chloroform–3-methyl-1-buta-

nol (25:24:1) solution. After centrifugation at 14 000 g for 3 min, the aqueous phase was trans-

ferred to a fresh tube and 500 μl of chloroform were added. The chloroform-washing step was

repeated twice with centrifugation at 14000 g for 3 min between steps. The final volume of the

aqueous phase was measured and DNA precipitation was initiated by adding 70% of the vol-

ume of isopropanol 100% and 10% of the volume of sodium acetate 3M. Sedimentation at 14

000 g for 30 min was again performed and the resulting DNA pellet was washed with 500 μl of

ethanol 70% and dissolved in 50μl of molecular biology quality water. The extraction yield was

checked on a Nanodrop 1000 Spectrophotometer (Thermo Fisher Scientific, France) and

extracts run on a FlashGel System (Lonza, Rockland, Inc) to check integrity.

Copies of 16S rRNA genes were quantified using a qPCR approach. Primers used are those

of Ohene-Adjei et al [35]; reaction assay and temperature cycles were as described previously

Thermodynamic and kinetic modelling of gut methanogens
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[36]. Triplicate qPCR quantification was performed on 20 ng of extracted DNA. Amplifica-

tions were carried out using SYBR Premix Ex Taq (TaKaRa Bio Inc., Otsu, Japan) on a Ste-

pOne system (Applied Biosystems, Courtabeuf, France). Absolute quantification involved the

use of standard curves that had been prepared with gDNA of Methanobrevibacter ruminan-
tium DSM 1093. PCR efficiency was of 103%. Results were expressed as copy numbers per ng

of extracted DNA per g of microbial pellet. M. smithii and M. ruminantium strains used in this

study possess two copies of 16S rRNA genes in their genomes. The number of cells was com-

puted by dividing 16S copy numbers by 2.

Microcalorimetry

Microcalorimetric experiments were performed to determine the heat flux pattern of each

methanogen. Metabolic activity and microbial growth were monitored by using isothermal

calorimeters of the heat-conduction type (A TAM III, TA Instruments, France) equipped

with two multicalorimeters, each holding six independent minicalorimeters, allowed contin-

uous and simultaneous recording as a function of time of the heat flux produced by 12 sam-

ples. The bath temperature was set at 39˚C; its long-term stability was better than ± 1x10-4˚C

over 24h. Each minicalorimeter was electrically calibrated. The specific disposable 4 mL

microcalorimetric glass ampoules capped with butyl rubber stoppers and sealed with alumin-

ium crimps were filled with 1.75 mL of Balch growth media and overpressed with 2.5 Pa of

H2/CO2 80%/20% gas mixture for 30 s. There was no significant difference in pressure at the

beginning of the study. They were sterilized by autoclave and stored at 39˚C until the begin-

ning of the microcalorimetric measurements. Actively growing cultures of methanogens

(OD660 of 0.280±0.030 for M. smithii, 0.271±0.078 for M. ruminantium and 0.142±0.042 for

M. formicium) were stored at -20˚C in order to diminish microbial activity before inocula-

tion. Cultures were thawed for 30 min at ambient temperature and inoculation was carried

out by injecting 0.25 mL of the culture through the septum of the overpressed microcalori-

metric ampoules just before inserting them into the minicalorimeters. Samples took about

two hours to reach the bath temperature and yield a stable zero baseline. Blank experiments

were also carried out by inserting ampoules that were not inoculated and, as expected, no

heat flux was observed confirming the medium sterility. Each experiment was repeated

thrice.

The heat flux dQ
dt

� �
, also called thermal power output P, was measured for each methanogen

and blank samples with a precision� 0.2 μW. The heat flux data of each sample were collected

every 5 minutes during more than 10 days. The total heat Q was obtained by integrating the

overall heat flux time curve using the TAM Assistant Software and its integrating function (TA

Instruments, France).

Classically, the heat flux-time curve for a growing culture starts like the S-shaped biomass

curve (a lag phase followed by an exponential growth phase) but differs beyond the growth

phase, the heat flux being then modulated by transition periods [37]. Heat flux data can be

used to infer the microbial growth rate constant provided the existence of a correlation

between isothermal microcalorimetry data and microbiological data (e.g., cell counts) at early

growth [38]. During the exponential growth phase, microbial growth follows a first-order

kinetics defined by the specific growth rate constant μc (h-1). Analogously, the heat flux follows

an exponential behaviour determined by the parameter μc as described by [37,38].

dQ
dt
¼ mc � Q ð1Þ

The growth rate constant μc can be determined by fitting the exponential part of the

Thermodynamic and kinetic modelling of gut methanogens
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heat flux-time curve using the fitting function of the TAM Assistant Software. In our

case study, careful selection of the exponential phase of heat flux dynamics was performed

to provide a reliable estimation of the maximum growth rate constant from calorimetric

data.

Mathematical model development

Modelling in vitro methanogenesis. The process of in vitro methanogenesis is depicted

in Fig 1. The H2/CO2 mixture in the gas phase diffuses to the liquid phase. The H2 and CO2 in

the liquid phase are further utilized by the pure culture to produce CH4. Methane in the liquid

phase diffuses to the gas phase.

Model construction was inspired by our previous dynamic models of human gut [19] and

rumen in vitro fermentation [39] followed by certain simplifications. The model considers the

liquid-gas transfer of carbon dioxide. Due to the low solubility of hydrogen and methane [40],

the concentration of these two gases in the liquid phase was not modelled. We assumed that

the dynamics of concentrations in the gas phase are determined by kinetic rate of the metha-

nogenesis. To incorporate thermodynamic information, instead of using the Monod equation

in the original formulation, we used the kinetic rate function proposed by Desmond-Le Quém-

éner and Bouchez [26]. The resulting model is described by the following ordinary differential

Fig 1. Schematics of the in vitro methanogenesis process by hydrogenotrophic methanogens. Double arrows represent fluxes due to liquid-gas

transfer, simple arrows represent metabolic fluxes.

https://doi.org/10.1371/journal.pone.0226243.g001
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equations

dxH2

dt
¼ mmax � exp �

Ks � Vg

ng;H2

 !

� xH2
� kd � xH2

ð2Þ

dsCO2

dt
¼ �
� YCO2 �

mmax

Y
� exp �

Ks � Vg

ng;H2

 !

� xH2
� kLa � ðsCO2

� KH;CO2
� R � T � ng;CO2

=VgÞ ð3Þ

dng;H2

dt
¼ �

mmax

Y
� exp �

Ks � Vg

ng;H2

 !

� VL � xH2
ð4Þ

dng;CO2

dt
¼ VL�kLa � ðsCO2

� KH;CO2
� R � T � ng;CO2

=VgÞ ð5Þ

dng;CH4

dt
¼

YCH4 �
mmax

Y
� exp �

Ks � Vg

ng;H2

 !

� VL � xH2
ð6Þ

where sCO2
is the concentration (mol/L) of carbon dioxide in the liquid phase and xH2

is the

biomass concentration (mol/L) of hydrogenotrophic methanogens. The numbers of moles in

the gas phase are represented by the variables ng;H2
, ng;CO2

, ng;CH4
. The gas phase volume Vg = 20

mL and the liquid phase volume VL = 6 mL. Liquid-gas transfer for carbon dioxide is described

by a non-equilibria transfer rate which is driven by the gradient of the concentration of the

gases in the liquid and gas phase. The transfer rate is determined by the mass transfer coeffi-

cient kLa (h-1) and the Henry’s law coefficients KH;CO2
(M/bar). R (bar�(M � K)-1) is the ideal gas

law constant and T is the temperature (K). Microbial decay is represented by a first-order

kinetic rate with kd (h-1) the death cell rate constant. Microbial growth was represented by the

rate function proposed by Desmond-Le Quéméner and Bouchez [26] using hydrogen as single

substrate

m ¼ mmax � exp �
Ks � Vg

ng;H2

 !

ð7Þ

where μ is the growth rate (h-1), μmax (h-1) is the maximum specific growth rate constant and

Ks(mol/L) the affinity constant. Eq (7) is derived from energetic principles following Boltz-

mann statistics and uses the concept of exergy (maximum work available for a microorganism

during a chemical transformation). The affinity constant has an energetic interpretation since

it is defined as

Ks ¼
EMþEdis

vharv � Ecat
ð8Þ

where Edis (kJ/mol) and EM (kJ/mol) are the dissipated exergy and stored exergy during growth

respectively. Ecat (kJ/mol) is the catabolic exergy of one molecule of energy-limiting substrate,

and vharv is the volume at which the microbe can harvest the chemical energy in the form of

substrate molecules [26]. Ecat is the absolute value of the Gibbs energy of catabolism (ΔGr,c)

when the reaction is exergonic (ΔGr,c<0) or zero otherwise. The stored exergy EM is calculated

from a reaction (destock) representing the situation where the microbe gets the energy by con-

suming its own biomass. EM is the absolute value of the Gibbs energy of biomass consuming

Thermodynamic and kinetic modelling of gut methanogens
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reaction (ΔGr,destock) when the reaction is exergonic (ΔGr,destock<0) or zero otherwise. Finally,

the dissipated exergy Edis is the opposite of the Gibbs energy of the overall metabolic reaction,

which is a linear combination of the catabolic and destock reactions. This calculation follows

the Gibbs energy dissipation detailed in Kleerebezem and Van Loosdrecht [24].

In our model, the stoichiometry of methanogenesis is represented macroscopically by one

catabolic reaction (R1) for methane production and one anabolic reaction (R2) for microbial

formation. We assumed that ammonia is the only nitrogen source for microbial formation.

The molecular formula of microbial biomass was assumed to be C5H7O2N [40].

R1 : 4 H2 þ CO2 ! CH4 þ 2 H2O

R2 : 10 H2 þ 5 CO2 þNH3 ! C5H7O2Nþ 8 H2O

In the model, the stoichiometry of the reactions is taken into account via the parameters Y,

YCO2
, YCH4

, which are the yield factors (mol/mol) of microbial biomass, CO2 and CH4. The

microbial yield factor Y was extracted from literature. We assumed that M. smithii and M.

ruminantium have the same yield (being both Methanobrevibacter). This yield factor was set

to 0.006 mol biomass/mol H2, using the methane-based molar growth yield of 2.8 g biomass/

mol CH4 estimated for M. smithii [41] and the Eqs (9) and (11). Similarly, the yield factor for

M. formicium was set to 0.007 mol biomass/mol H2 using the methane-based molar growth

yield of 3.5 g biomass/mol CH4 reported by Schauer and Ferry [42]. The fraction of H2 utilized

for microbial growth (reaction R2) is defined by the yield factor Y (mol of microbial biomass/

mol of H2). Now, let f be the fraction of H2 used for the catabolic reaction R1. Reaction R2 tells

us that for every 10 moles of H2 used in R2, we get 1 mol of microbial biomass. Hence, it fol-

lows that

Y ¼
1

10
� ð1 � f Þ ð9Þ

If Y is known, the fraction f can be computed from Eq (9).

The yield factors of CO2 and CH4 can be expressed as functions of the the fraction f:

YCO2
¼

1

4

� �

� f þ
5

10

� �

� ð1 � f Þ ð10Þ

YCH4
¼

1

4

� �

� f ð11Þ

The model has two physicochemical parameters (kLa, KH;CO2
) and four biological parame-

ters (μmax, Ks, Y, kd). The initial condition for sCO2
is unknown and was also included in the

parameter vector for estimation. The Henry’s law coefficients are known values calculated at

39˚C using the equations provided by Batstone et al. [40]. An implementation of the model in

the Open Source software Scilab (https://www.scilab.org/) is available at https://doi.org/10.

5281/zenodo.3271611.

Theoretical model to study interactions among methanogens. The experimental study

of microbial interactions requires sophisticated in vitro systems under continuous operation

such as the one developed by Haydock et al. [43]. In our work, we explored by means of

mathematical modelling how the methanogens can interact under in vivo conditions. For this

theoretical study, we elaborated a toy model based on the previous model for in vitro methano-

genesis. Let us consider the following simple model for representing the consumption of
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hydrogen by the methanogenic species i under an in vivo scenario of continuous flow

dxH2;i

dt
¼ mmax;i � exp �

Ks;i � Vg

ng;H2

 !

� xH2;i
� Di�xH2 ;i

ð12Þ

dng;H2

dt
¼ qH2

�
mmax;i

Yi
� exp �

Ks;i � Vg

ng;H2

 !

� VL � xH2 ;i
� b � ng;H2

ð13Þ

where qH2
(mol/h) is the flux of hydrogen produced from the fermentation of carbohydrates.

The kinetic parameters are specific to the species i (xH2;i
). The parameter Di (h-1) is the dilution

rate of the methanogens and b (h-1) is an output substrate rate constant. Extending the model

to n species with a common yield factor Y, the dynamics of hydrogen is given by

dng;H2

dt
¼ qH2

�
VL

Y

Xn

i¼1
mmax;i � exp �

Ks;i � Vg

ng;H2

 !

� xH2;i
� b � ng;H2

ð14Þ

where the sub index i indicates the species. In our case study, n = 3.

Parameter identification

Before performing the numerical estimation of the model parameters, we addressed the ques-

tion of whether it was theoretically possible to determine uniquely the model parameters given

the available measurements from the experimental setup. This question is referred to as struc-

tural identifiability [44]. Structural identifiability analysis is of particular relevance for model

whose parameters are biologically meaningful, since knowing the actual value of the parameter

is useful for providing biological insight on the system under study [45]. Moreover, in our

case, we are interested in finding accurate estimates that can be further used as priors in an

extended model describing the in vivo system.

We used the freely available software DAISY [46] to assess the structural identifiability of

our model. Physical parameters (kLa, KH;CO2
) were set to be known. The model was found to be

structurally globally identifiable. In practice, however, to facilitate the actual identification of

parameters and reduce practical identifiability problems such as high correlation between the

parameters [47], we fixed some model parameters to values reported in the literature. The

transport coefficient kLa, the Henry’s law coefficient KH;CO2
, and the dead cell rate constant kd

were set to be known and were extracted from Batstone et al. [40]. Therefore, only the parame-

ters μmax, Ks and initial condition of sCO2
were set to be estimated. To capitalize on the calori-

metric data, we further assumed that μmax was equal to the specific rate constant μc estimated

from the heat flux-time curve. By this, only the affinity constant for each strain and the initial

condition of sCO2
were left to be estimated.

The parameter identification for each methanogen was performed with the IDEAS

Matlab1 toolbox [48] (freely available at http://genome.jouy.inra.fr/logiciels/IDEAS). The

parameter identification was performed with the data of the in vitro growth experiments. The

measured variables are the number of moles in the gas phase (H2, CH4, CO2). The Lin’s con-

cordance correlation coefficient (CCC) [49] was computed to quantify the agreement between

the observations and model predictions.
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Results

Methanogens biomass

Archaea-specific primers targeting the 16S rRNA gene were used to enumerate microbial cells

in each pure culture. Three hours post inoculation microbial numbers varied from 7.62×107 to

2.81×108 and reached 109 after 72 hours of incubation. S3 Table summarizes microbial num-

bers at different sampling times.

Calorimetric pattern of methanogens

Fig 2 displays a representative isothermal calorimetric curve for each methanogen. The three

measured heat flux dynamics of each methanogen were found to follow similar energetic pat-

terns. M. smithii and M. formicium exhibited a lag phase of a few hours, while M. ruminantium
was already metabolically active when introduced into the minicalorimeter though several

attempts were made to obtain a lag phase by changing storage conditions and thawing the

Fig 2. Example of isothermal calorimetric curves for M. ruminantium (dashed blue line), M. smithii (solid red line) and M. formicium (dotted

black line). The dominant metabolic phase is represented by one peak (shown with the arrows). The magnitude of the peak differs between the

methanogens and also the slope of the heat flux trajectories. The return of the heat flux to the zero baseline also differs between the three methanogens.

The inset zoom displays the peak exhibited by M. smithii at 7.4 h.

https://doi.org/10.1371/journal.pone.0226243.g002
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culture just before inoculating the microcalorimetric ampoules. The pattern of heat flux for all

tested methanogens is characterized by one predominant peak which was observed at different

times for each methanogen. M. smithii exhibited a second metabolic event occurring at 60 h

with an increase of heat flux. The same phenomenon was observed for M. formicium but at a

lower intensity that started at 140 h. The process was considered completed when the heat flux

ceased marking the end of the metabolic activity. It is noted that M. formicium produced a

small peak at 14 h (Fig 2). A similar peak, but of much smaller size, was observed on the other

curves obtained with this methanogen. M. smithii also exhibits a small peak (occurrence of 3

out of 3) at 7.4 h shown in the inset of Fig 2.

The total heat (Qm) produced during the methanogenesis process that took place under the

present experimental conditions was, on average, -5.5 ± 0.5 J for the three methanogens (for

M. ruminantium, the missing initial part of the heat flux-time curve was approximately esti-

mated by extrapolating the exponential fit). As we shall see below, this experimental value is

consistent with the theoretically expected value.

Estimation of thermodynamic properties

We defined two macroscopic reactions to represent the catabolism (R1) and anabolism (R2) of

the methanogenesis (see Modelling in vitro methanogenesis section). All thermodynamic

properties result from the contribution of both catabolic and anabolic reactions. The calcula-

tions of total heat (Qm), enthalpy (ΔHm), Gibbs energy (ΔGm) and entropy (ΔSm) of the

methanogenesis are detailed in S4 Table. The estimated overall heat produced during the

methanogenesis process under our experimental conditions was in average Qm = −5.66J. This

heat results from the sum of the heat of the catabolic reaction (Qc) and the heat of the anabolic

reaction (Qa). From the total heat of the methanogenesis, the anabolic reaction contributes to

7% of the metabolic heat for M. smithii and M. ruminantium. For M. formicium, the contribu-

tion of the anabolic reaction to the metabolic heat is 9%. It is also interesting to note that there

is a very good agreement between the theoretical value calculated above and the overall heat

experimentally determined by microcalorimetry (-5.5 ± 0.5 J).

Table 1 shows the thermodynamic properties per mole of biomass formed during methano-

genesis of M. ruminantium, M. smithii and M. formicium on H2/CO2. These properties are

compared with values found in the literature for other methanogens grown on different

substrates.

Dynamic description of in vitro kinetics

The developed mathematical model was calibrated with the experimental data from in vitro
growth experiments in Balch tubes. Table 2 shows the parameters of the dynamic kinetic

model described in Eqs 2–6. The reported value of μmax for each methanogen corresponds to

Table 1. Gibbs energies, enthalpies and entropies of metabolic processes involving some methanogens growing on different energy sources.

Microorganism Energy substrate Growth conditions ΔGm

kJ / C-mol

ΔHm

kJ / C-mol

TΔSm

kJ / K-1 C-mol

Driving force Reference

M. ruminantium, M. smithii, H2/CO2 anaerobic -1073 -2132 -1059 Enthalpy-driven but Entropy-retarded this work

M. formicium H2/CO2 anaerobic -801 -1605 -804 Enthalpy-driven but Entropy-retarded this work

M. thermo-autotrophicum H2/CO2 anaerobic -802 -3730 -2928 Enthalpy-driven but Entropy-retarded [50]

M. formicium formate anaerobic -880 -613 +267 Enthalpy-driven [23]

M. barkeri methanol anaerobic -570 -420 +150 Enthalpy-driven [23]

M. barkeri acetate anaerobic -366 +145 +511 Entropy-driven but enthalpy-retarded [51]

https://doi.org/10.1371/journal.pone.0226243.t001
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the average value obtained from three heat flux-time curves. From Table 2, it is concluded that

M. smithii exhibited the highest growth rate constant, followed by M. ruminantium and finally

M. formicium. In terms of the affinity constant Ks, while M. smithii and M. ruminantium are of

the same order, the affinity constant for M. formicium is lower in one order of magnitude.

Fig 3 displays the dynamics of the compounds in the methanogenesis for the three metha-

nogens. The data of the figure is available at https://doi.org/10.5281/zenodo.3469655. Experi-

mental data are compared against the model responses. Table 3 shows standard statistics for

model evaluation. The model captures efficiently the overall dynamics of the methanogenesis.

Hydrogen and methane are very well described by the model with average concordance corre-

lation coefficients (CCC) of 0.98 and 0.97 respectively. For carbon dioxide, CCC = 0.95.

Fig 4 displays the dynamics for the methanogens as measured by the 16S rRNA gene, as

well as the dynamics of biomass as predicted for the model. As observed, the microbes follow a

typical Monod-like trajectory.

Table 2. Parameters of the model of in vitro methanogenesis. The value reported μmax for each methanogen is the mean value obtained from three heat flux-time

curves.

Parameter Definition Value

kLa (h-1) Liquid–gas transfer constant 8.33

KH;CO2
(M/bar) Henry’s law coefficient of carbon dioxide 0.0246

kd (h-1) Death cell rate constant 8.33x10-4

M. smithii M. ruminantium M. formicium
Ks (mol/L) Affinity constant 0.028 0.042 0.011

μmax (h-1) Maximum specific growth rate constant 0.12 0.07 0.046

Y (mol biomass /mol H2) Microbial biomass yield factor 0.006 0.006 0.007

https://doi.org/10.1371/journal.pone.0226243.t002

Fig 3. Assessment of model performance. Top plots: dynamics of methanogenesis by M. ruminantium (�), M. smithii
(�) and M. formicium (□). Experimental data (�,�,□) are compared against model predicted responses: dotted blue lines

(M. ruminantium), solid red lines (M. smithii) and dashed black lines (M. formicium). Bottom plots: summary

observed vs predicted variables. The solid red line is the isocline.

https://doi.org/10.1371/journal.pone.0226243.g003
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Discussion

Our objective in this work was to quantitatively characterize the dynamics of hydrogen utiliza-

tion, methane production, growth and heat flux of three hydrogenotrophic methanogens by

integrating microbiology, thermodynamics and mathematical modelling. Our model develop-

ments were instrumental to quantify energetic and kinetic differences between the three

methanogens studied, strengthening the potentiality of microcalorimetry as a tool for charac-

terizing the metabolism of microorganisms [52]. This modelling work provides estimated

parameters that can be used as prior values for other modelling developments of gut

microbiota.

Energetic and kinetic differences between methanogens

Methanogenesis appears as a simple reaction described by a single substrate kinetic rate on H2.

The microcalorimetry approach we applied revealed that this simplicity is only apparent and

that hydrogenotrophic methanogens exhibit energetic and kinetic differences. Methanogenesis

is indeed a complex process that can be broken down in several stages. The dominant meta-

bolic phase is represented by one peak that occurs at different times. The magnitude of the

peak differs between the methanogens and also the slope of the heat flux trajectories. For M.

smithii and M. formicium the main peak was preceded by a small increase in heat flux which

translates in a metabolic activity that remains to be elucidated. For M. ruminantium, we do not

Table 3. Statistical indicators for model evaluation.

Hydrogen Methane Carbon dioxide

CCC� r2 CVRMSE
�� CCC� r2 CVRMSE

�� CCC� r2 CVRMSE
��

M. smithii 0.99 0.98 16 0.96 0.94 18 0.93 0.84 6

M. ruminantium 0.97 0.95 11 0.96 0.93 20 0.99 0.98 2

M. formicium 0.99 0.98 13 0.98 0.96 17 0.92 0.86 8

Mean 0.98 0.97 13 0.97 0.94 18 0.95 0.89 5

� CCC: Lin’s concordance correlation coefficient.

�� CVRMSE: coefficient of variation of the root mean squared error.

https://doi.org/10.1371/journal.pone.0226243.t003

Fig 4. Dynamics of methanogens as measured by 16S rRNA gene copies (circles) and biomass concentrations (solid line) predicted by the model.

https://doi.org/10.1371/journal.pone.0226243.g004
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know whether the small peak exists since the initial part of the curve is missing. For M. smithii
and M. formicium, it was observed a metabolic event after the main peak around 60 h for M.

smithii and 140h M. formicium. This peak could be representing cell lysis process [38]. The

return time of the heat flux to the zero baseline was also different. The energetic difference is

associated with kinetic differences that translate into specific kinetic parameters, namely affin-

ity constant (Ks) and maximum growth rate constant (μmax). Previously, energetic differences

between methanogens have been ascribed to the presence or absence of cytochromes [15].

These differences are translated into different yield factors, H2 thresholds, and doubling times.

The kinetic differences revealed in this study for three cytochrome-lacking methanogens indi-

cate that factors other than the presence of cytochromes might play a role in the energetics of

methanogenesis. Interestingly, calorimetric experiments showed that M. ruminantium was

metabolically active faster than the other methanogens, characteristic that could explain the

predominance of M. ruminantium in the rumen [53]. Looking at the expression of the affinity

constant (Eq (8)), the differences between the affinity constants among the methanogens can

be explained by the differences between the by the harvest volume vharv and the yield factors.

Note that in the kinetic function developed by Desmond-Le Quéméner and Bouchez [26], the

maximum growth rate did not have any dependency on the energetics of the reaction. Our

experimental study revealed that μmax is species-specific and reflects the dynamics of the heat

flux of the reaction at the exponential phase. This finding suggests that a further extension of

the kinetic model developed by Desmond-Le Quéméner and Bouchez [26] should include the

impact of energetics on μmax. Since our study is limited to three species, it is important to con-

duct further research on other methanogens to validate our findings. In this same line, to

enhance the evaluation of the predictive capabilities of our model, a further model validation is

required with independent data set under different experimental conditions (e.g. continuous

mode operation) to those used in this study.

Energetic analysis

Regarding the energetic information for different methanogens summarized in Table 1, it is

observed that the thermodynamic behaviour of the three methanogens is analogous to that

observed for Methanobacterium thermoautotrophicum [50]. The values reported in Table 1

show indeed that the methanogenesis on H2/CO2 is characterized by large heat production.

The growth is highly exothermic, with a ΔHm value that largely exceeds the values found when

other energy substrates are used. The enthalpy change ΔHm, which is more negative than the

Gibbs energy change ΔGm, largely controls the process. Growth on H2/CO2 is also character-

ized by a negative entropic contribution TΔSm which, at first sight, may look surprising since

entropy increases in most cases of anaerobic growth [54]. However, this can be understood if

one remembers that TΔSm corresponds in fact to the balance between the final state and the

initial state of the process, that is

TDSm ¼
ð1 � 10YÞ

4Y
TDSc þ TDSa ¼

ð1 � 10YÞ
4Y

TðSfinal � SinitialÞc þ TðSfinal � SinitialÞa

Methanogenesis on H2/CO2 is particular because the final state of its catabolic reaction (1

mol CH4 + 2 mol H2O) involves a smaller number of moles than the initial state (4 mol H2 + 1

mol CO2), which results in a significant loss of entropy during the process. For spontaneous

growth in such a case, the ΔHm must not only contribute to the driving force but must also

compensate the growth-unfavourable TΔSm, which means that ΔHm must be much more neg-

ative than ΔGm [55]. For this reason, methanogenesis on H2/CO2, which is accompanied by a

considerable decrease of entropy and a large production of heat, has been designed as an
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entropy-retarded process [50]. More generally, von Stockar and Liu [55] noticed that when the

Gibbs energy of the metabolic process is resolved into its enthalpic and entropic contributions,

very different thermodynamic behaviours are observed depending on the growth type. These

thermodynamic behaviours are: aerobic respiration is clearly enthalpy-driven (ΔHm� 0

and TΔSm > 0), whereas fermentative metabolism is mainly entropy-driven (ΔHm < 0 and

TΔSm� 0). Methanogenesis on H2/CO2 is enthalpy-driven but entropy-retarded (ΔHm� 0

and TΔSm < 0), whereas methanogenesis on acetate is entropy-driven but enthalpy-retarded

(ΔHm > 0 and TΔSm� 0). In the present case, the highly exothermic growth of M. ruminan-
tium, M. smithii and M. formicium on H2/CO2 is largely due to the considerable decrease of

entropy during the process: in fact, 50% of the heat produced here serves only to compensate

the loss of entropy. A proportion of 80% was found for M. thermoautotrophicum [50], which

results from the fact that their TΔSm and ΔHm values are, respectively, 2.7 and 1.7 times larger

than ours. This difference might be due to the differences in the temperature of the studies,

namely 39˚C in our study vs 60˚C in the study by Schill et al. [50].

Do our results inform on ecological questions such as species coexistence?

The competitive exclusion principle [56] states that coexistence cannot occur between species

that occupy the same niche (the same function). Only the most competitive species will sur-

vive. Recently, by using thermodynamic principles, Großkopf & Soyer [27] demonstrated the-

oretically that species utilizing the same substrate and producing different compounds can

coexist by the action of thermodynamic driving forces. Since in our study the three methano-

gens perform the same metabolic reactions, the thermodynamic framework developed

Großkopf & Soyer [27] predicts, as the original exclusion principle [56], the survival of only

one species. By incorporating thermodynamic control on microbial growth kinetics, Lynch

et al [57] showed theoretically that differentiation of ATP yields can explain ecological differ-

entiation of methanogens over a range of liquid turnover rates. This theoretical work predicts

that for a fixed liquid turnover rate, only one species survives. For the continuous culture of

microorganisms, it has been demonstrated that at the equilibrium (growth rate equals the dilu-

tion rate) with constant dilution rates and substrate input rates, the species that has the lowest

limiting substrate concentration wins the competition. From Eq (12), the number of moles of

hydrogen of the species n�g;H2 ;i
at the steady state is

n�g;H2 ;i
¼

Ks;i � Vg

logðmmax;i=DiÞ

Using the model parameters of Table 2, we studied in silico three possible competition sce-

narios, assuming a constant environment (constant dilution rate D). Two dilution rates were

evaluated: D = 0.021 h-1 (retention time = 48 h) and D = 0.04 h-1 (retention time = 25 h). A

retention time of 48 h corresponds to values measured in small ruminants [58] and to

humans as we used in our gut model [19]. For higher retention times, the results obtained for

48 h hold. For D = 0.021 h-1, we obtained that n�g;H2 ;Ms ¼ 0:32 mmol; n�g;H2 ;Mr = 0.68 mmol,

n�g;H2 ;Mf ¼ 0:28 mmol, where the subindex Ms, Mr, Mf stand for M. smithii, M. ruminantium
and M.formicium. From these results, it appears that under a constant environment, M. for-
micium will win the competition. Since n�g;H2 ;Ms < n�g;H2 ;Mr, M. ruminantium will be extin-

guished before M. smithii. For D = 0.04 h-1, we obtained that n�g;H2 ;Ms ¼ 0:49 mmol,
n�g;H2 ;Mr ¼ 1:42 mmol, n�g;H2 ;Mf ¼ 1:57 mmol, and thus M. smithii wins the competition. To

win the competition, M. ruminantium requires longer retention times than its competitors.

Retention times of digesta longer than 48 h are physiologically uncommon, thus the presence
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of M. ruminantium in the gut ecosystem can be explained, for example, from known adhe-

sion properties (both M. ruminantium and M. smithii genes encode adhesin-like proteins

[59,60]. To illustrate these aspects, we built a multiple-species model with the three methano-

gens using Eqs (12) and (14). The parameter b was set to 0.5 h-1 and the hydrogen flux pro-

duction qH2
rate was set to 0.02 mol/min. Fig 5A displays the dynamics of the three

methanogens for the first scenario (D = 0.021 h-1). It is observed that at 50 d only M. formi-
cium survives. This result, however, is not representative of what occurs in the rumen where

the three methanogens coexist [5,61]. It is intriguing that in our toy model it is M. formicium
that wins the competition, bearing in mind that M. ruminantium and M. smithii are more

abundant than M. formicium [5,53]. Fig 5 shows that selective conditions favour the survival

of one species. Similar results can be obtained for the human gut by including the effect of

pH on microbial growth [22] and setting the gut pH to select one of the species.

On the basis of the competitive exclusion principle, it is thus intriguing that having a very

specialized function, methanogens are a diverse group that coexist. Gut ecosystems, therefore,

exhibit the paradox of the plankton introduced by Hutchinson (1961) that presents the coexis-

tence of species all competing for the same substrate in a relatively isotropic or unstructured

environment [62]. In the case of the rumen, our modelling work suggests that in addition to

kinetic and thermodynamic factors, other forces contribute to the ecological shaping of the

methanogens community in the rumen favouring the microbial diversity. Indeed, methano-

genic diversity in the rumen results from multiple factors that include pH sensitivity, the asso-

ciation with rumen fractions (fluid and particulate material), and the endosymbiosis with

rumen protozoa [5,53]. For the human gut, ecological factors enable methanogens to coexist

to a competitive environment where hydrogenotrophic microbes (acetogens, methanogenic

Fig 5. Possible competition scenarios between M. ruminantium (blue dashed line), M. smithii (red solid line) and M. formicium (black dotted

line) in a hypothetical constant environment. A. At constant dilution rate of 0.021 h-1, M. formicium displaces the other two methanogens. B. With a

constant dilution rate of 0.04 h-1, M. smithii wins the competition. At constant environmental conditions, only one species wins and displaces the other

methanogens.

https://doi.org/10.1371/journal.pone.0226243.g005
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archaea and sulfate-reducing bacteria) utilize H2 via different pathways [63–65]. Both in the

human gut and in the rumen, microbes grow in association with biofilms that form a polymer-

based matrix that provides nutritional and hydraulic advantages for microbial growth and

resistance to shear forces [19,66]. Indeed, in our modelling work of human gut fermentation

[19], we suggested that, from the different actions the mucus has on colonic fermentation, the

mechanism of promoting conditions for microbial aggregation appears as the most relevant

factor for attaining the high microbial density and the high level of fibre degradation charac-

teristic of the human gut. Altogether, these factors result in nonlinear behaviours, spatial and

temporal variations that promote coexistence and diversity, that, as discussed in dedicated lit-

erature on microbial ecology [67–71], render the classical formulation of the competitive

exclusion principle [56,72] inapplicable to gut ecosystems.

Finally, mathematical modelling is expected to enhance our understanding of gut ecosys-

tems [66,73]. It is then key that in addition to metabolic aspects, mathematical models of gut

fermentation incorporate the multiple aspects that shape microbial dynamics to provide accu-

rate predictions and improve insight on gut metabolism dynamics and its potential modula-

tion. For ruminants, the development of precision livestock technologies provides promising

alternatives for integrating real-time data of key animal phenotypes such as feeding behaviour

with mathematical models for estimating methane emissions [74] and rumen function indica-

tors at large scale. These tools will be instrumental to support livestock management decisions

and guide timely interventions. Similarly, for humans, mathematical models coupled with

electronic technologies for online monitoring of gut function [75] might facilitate the diagno-

sis and the design of personalized therapies for gastrointestinal diseases.
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