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Introduced by Tate in [Ta71], Tate algebras play a major role in the context of analytic geometry over the -adics, where they act as a counterpart to the use of polynomial algebras in classical algebraic geometry. In [CVV19] the formalism of Gröbner bases over Tate algebras has been introduced and effectively implemented. One of the bottlenecks in the algorithms was the time spent on reduction, which are significantly costlier than over polynomials. In the present article, we introduce two signature-based Gröbner bases algorithms for Tate algebras, in order to avoid many reductions. They have been implemented in S M . We discuss their superiority based on numerical evidence.

INTRODUCTION

For several decades, many computational questions arising from geometry and arithmetics have received much attention, leading to the development of more and more efficient algorithms and software. A typical example is the development of the theory of Gröbner bases, which provides nowadays quite efficient tools for manipulating ideals in polynomial algebras and, eventually, algebraic varieties and schemes [START_REF] Wieb | The Magma algebra system. I. The user language[END_REF][START_REF] Daniel | Macaulay2, a software system for research in algebraic geometry[END_REF][START_REF] Sagemath | the Sage Mathematics Software System (Version 8.6)[END_REF][START_REF] Decker Wolfram | S 4-1-2 -A computer algebra system for polynomial computations[END_REF]. At the intersection of geometry and number theory, one finds -adic geometry and, more precisely, the notion of -adic analytic varieties first defined by Tate in [START_REF] John | Rigid analytic spaces[END_REF] (see also [START_REF] Jean | Rigid analytic geometry and its applications[END_REF]), which plays an important role in many modern theories and achievements (e.g.adic cohomologies [START_REF] Stum | Rigid Cohomology[END_REF], -adic modular forms [START_REF] Fernando | Arithmetic of -adic Modular Forms[END_REF]).

The main algebraic objects upon which Tate's geometry is built are Tate algebras and their ideals. In an earlier paper [START_REF] Xavier | Gröbner bases over Tate algebras[END_REF], the authors started to study computational aspects related to Tate algebras, introduced Gröbner bases in this context and designed two algorithms (adapted from Buchberger's algorithm and the F4 algorithm, respectively) for computing them.

In the classical setting, the main complexity bottleneck in Gröbner bases computations is the time spent reducing elements modulo the basis. The most costly reductions are typically reductions to 0, because they require successively eliminating all terms from the polynomial; yet their output has little value for the rest of the algorithm. Fortunately, it turns out that many such reductions can be predicted in advance (for example those coming from the obvious equality -= 0) by keeping track of some information on the module representation of elements of an ideal, called their signature. This idea was first presented in Algorithm F5 [START_REF] Faugère | A new efficient algorithm for computing Gröbner bases without reduction to zero (F5)[END_REF] and led to the development of many algorithms showing different ways to define signatures, to use them or to compute them. The interested reader can look at [START_REF] Christian | A survey on signature-based algorithms for computing Gröbner bases[END_REF] for an extensive survey.

The Tate setting is not an exception to the wisdom that reductions are expensive. The situation is actually even worse since reductions to 0 are theorically the result of an infinite sequence of reduction steps converging to 0. In practice, the process actually stops because we are working at finite precision; however, the higher the precision is, the more expensive the reductions to 0 are, for no benefit. This observation motivates investigating the possibility of adding signatures to Gröbner bases algorithms for Tate series.

Our contribution. In this paper, we present two signature-based algorithms for the computation of Gröbner bases over Tate algebras. They differ in that they use different orderings on the signatures.

Our first variant, called the PoTe (position over term) algorithm, is directly adapted from the G2V algorithm [START_REF] Shuhong | A new incremental algorithm for computing Groebner bases[END_REF]. It adopts an incremental point of view and uses the so-called cover criterion [START_REF] Shuhong | A new framework for computing Gröbner bases[END_REF] to detect reductions to 0. A key difficulty in the Tate setting is that the usual way to handle signatures assumes the constant term 1 to be the smallest one. However, this assumption fails in the Tate setting. We solve this issue by importing ideas from the paper [L+18], in which the case of local algebras is addressed.

In the classical setting, incremental algorithms have the disadvantage of sometimes computing larger Gröbner bases for intermediate ideals, only to discard them later on. In order to mitigate this misfeature, the F5 algorithm uses a signature ordering taking into account the degree of the polynomials first, in order to process lower-degree elements first. In the Tate setting, the degree no longer makes sense and a better measure of progression of the algorithms is the valuation. Nonetheless, in analogy with the classical setting, an incremental algorithm could perform intermediate computations to high valuation and just discard them later on. The second algorithm we will present, called the VaPoTe (valuation over position over term) algorithm, uses an analogous idea to that of F5 to mitigate this problem.

Organization of the article. In Section 2, we recall the basic definitions and properties of Tate algebras and Gröbner bases over them, together with the principles of the G2V algorithm. Sections 3 and 4 are devoted to the PoTe and the VaPoTe algorithms respectively: they are presented and their correctness and termination are proved. Finally, implementation, benchmarks and possible future improvements are discussed in Section 5.

Notations. Throughout this article, we fix a positive integer and use the short notation X for ( 1 , . . . , ). Given i = ( 1 , . . . , ) ∈ N , we shall write X i for 1 1 • • • .

INGREDIENTS

In this section, we present the two main ingredients we are going to mix together later on. They are, first, the G2V [START_REF] Shuhong | A new incremental algorithm for computing Groebner bases[END_REF] and GVW [START_REF] Shuhong | A new framework for computing Gröbner bases[END_REF] signature-based algorithms, and, second, the Tate algebras and the theory of Gröbner bases over them as developed in [START_REF] Xavier | Gröbner bases over Tate algebras[END_REF].

The G2V algorithm

In what follows, we present the G2V algorithm which was designed by Gao, Guan and Volny IV in [START_REF] Shuhong | A new incremental algorithm for computing Groebner bases[END_REF] as an incremental variant of the classical F5 algorithm. Our presentation includes the cover criterion which was formulated later on in [START_REF] Shuhong | A new framework for computing Gröbner bases[END_REF] by Gao, Volny IV and Wang. The incremental point of view is needed for the application we will discuss in Section 4. Moreover we believe that it has two extra advantages: first, it leads to simplified notations and, more importantly, it shows clearly where intermediate interreductions are possible. Let be a field and [X] denote the ring of polynomials over with indeterminates X. We endow [X] with a fixed monomial order ≤ . Let 0 be an ideal in [X]. Let 0 be a Gröbner basis of 0 with respect to ≤ . Let ∈ [X]. We aim at computing a GB of the ideal

= 0 + . Let ⊂ [X] × [X]
be the [X]-sub-module defined by the ( , ) such that -∈ 0 . The leading monomial ( ) of is the signature of ( , ).

Definition 2.1 (Regular reduction). Let 1 = ( 1 , 1 ) and 2 = ( 2 , 2 ) be in . We say that 1 is top-reducible by 2 if (1) either 2 = 0 and

( 2 ) divides ( 1 ), (2) or 1 2 ≠ 0,

( 2 ) divides ( 1 ) and:

( 1 ) ( 2 ) • ( 2 ) ≤ ( 1 ).
The corresponding top-reduction is

= 1 -2 = ( 1 -2 , 1 -2 )
where =

( 1 )

( 2 ) is the first case and =

( 1 )

( 2 ) in the second case. This top-reduction is called regular when

( 1 ) > ( 2 ), that is when the signature of the reduced pair agrees with that of 1 ; it is called super otherwise. Definition 2.2 (Strong Gröbner basis). A finite subset of is called a strong Gröbner basis (SGB, for short) of if any nonzero ( , ) ∈ is top-reducible by some element of .

The G2V strategy derives the computation of a Gröbner basis through the computation of an SGB. They are related through the following proposition. P 2.3. Suppose that = {( 1 , 1 ), . . . , ( , )} is an SGB of . Then:

(1) { s.t. ( , 0) ∈ } is a Gröbner basis of ( 0 : ).

(2) { s.t. ( , ) ∈ for some } is a Gröbner basis of .

To compute an SGB, we rely on J-pairs instead of S-polynomials.

Definition 2.4 (J-pair). Let 1 = ( 1 , 1 ) and 2 = ( 2 , 2 ) be two elements in such that 1 2 ≠ 0. Let = lcm( ( 1 ), ( 2 )) and set = / ( ) for ∈ {1, 2}. Then:

• if 1 ( 1 ) < 2 ( 2 ), the J-pair of ( 1 , 2 ) is 2 2 , • if 1 ( 1 ) > 2 ( 2 ), the J-pair of ( 1 , 2 ) is 1 1 , • if 1 ( 1 ) = 2
( 2 ), the J-pair of ( 1 , 2 ) is not defined.

Definition 2.5 (Cover). We say that = ( , ) is covered by ⊂ if there is a pair ( , ) ∈ such that ( ) divides ( ) and:

( ) ( ) • ( ) < ( ).
T 2.6 (C T ). Let be a finite subset of such that:

• contains (1, ); • the set { ∈ [X] : (0, ) ∈ } forms a Gröbner basis of 0 .

Then is an SGB of iff every J-pair of is covered by . This theorem leads naturally to the G2V algorithm (see [GGV10, Fig. 1]) which is rephrased hereafter in Algorithm 1 (page 4). We underline that, in Algorithm 1, the SGB does not entirely appear. Indeed, we remark that one can always work with pairs ( ( ), ) in place of ( , ), reducing then drastically the memory occupation and the complexity. The algorithm maintains two lists and which are related to the SGB in construction as follows: ∪ ( × {0}) is equal to the set of all ( ( ), ) when ( , ) runs over the SGB. The criterion coming from the cover theorem is implemented on lines 10 and 11: the first (resp. the second) statement checks if ( , ) is covered by an element of (resp. an element of × {0}).

Syzygies. The G2V algorithm does not give a direct access to the module of syzygies of the ideal. However, it does give access to a GB of ( 0 : ) (see Proposition 2.3), from which one can recover partial information about the syzygies, as shown below.

Definition 2.7. Given 1 , . . . , ∈ [X], we define

( 1 , . . . , ) = ( 1 , . . . , ) ∈ [X] s.t. =1 = 0 .
L 2.8. Let 1 , . . . , generate 0 and let 1 , . . . , generate ( 0 : ). For ∈ {1, . . . , }, we write

- = ,1 1 + • • • + , ( , ∈ [X])
and define = ( ,1 , . . . , , , ) ∈ ( 1 , . . . , , ). Then

( 1 , . . . , , ) = ( ( 1 , . . . , ) × {0}) + 1 , . . . , .

P .

Let ( 1 , . . . , , ) ∈ ( 1 , . . . , , ). Then ∈ ( 0 : ) and we can write = =1

. Then the syzygy ( 1 , . . . , , ) -

=1

has its last coordinate equal to 0 and thus belongs to ( ( 1 , . . . , ) × {0}), which is enough to conclude.

Tate algebras

Definitions. We fix a field equipped with a discrete valuation val :

→ Z ⊔ {+∞}, normalized by val( × ) = Z.
We assume that is complete with respect to the distance defined by val. We let • be the subring of consisting of elements of nonnegative valuation and be a uniformizer of , that is an element of valuation 1. We set = • / • . The Tate algebra {X} is defined by:

{X} := i∈N i X i s.t. i ∈ and val( i ) -------→ |i|→+∞ +∞
Series in {X} have a natural analytic interpretation: they are analytic functions on the closed unit disc in . We recall that {X} is equipped with the so-called Gauss valuation defined by:

val i∈N i i = min i∈N val( i ).
Series with nonnegative valuation form a subring {X} • of {X}. The reduction modulo defines a surjective homomorphism of rings {X}

• → [X].
Terms and monomials. By definition, an integral Tate term is an expression of the form X i with ∈ • , ≠ 0 and i ∈ N . Integral Tate terms form a monoid, denoted by {X} • , which is abstractly isomorphic to ( • \{0}) × N . We say that two Tate terms X i and X j are equivalent when val( ) = val( ) and i = j. Tate terms modulo equivalence define a quotient T{X} • of {X} • , which is isomorphic to N × N . The image in T{X} • of a term ∈ {X} • is called the monomial of and is denoted by mon( ).

We fix a monomial order ≤ on N and order T{X} • ≃ N × N lexicographically by block with respect to the reverse natural ordering on the first factor N and the order ≤ on N . Pulling back this order along the morphism mon, we obtain a preorder of {X} • that we shall continue to denote by ≤. The leading term of a Tate series = i X i ∈ {X} • is defined by:

( ) = max i∈N i i ∈ {X} • .
We observe that the i i 's are pairwise nonequivalent in {X} • , showing that there is no ambiguity in the definition of ( ). The leading monomial of is by definition ( ) = mon( ( )).

Gröbner bases. The previous inputs allow us to define the notion of Gröbner bases for an ideal of {X} • .

Definition 2.9. Let be an ideal of {X} The explicit computation of such a GB is of course a central question. It was addressed in [START_REF] Xavier | Gröbner bases over Tate algebras[END_REF], in which the authors describe a Buchberger algorithm and an F4 algorithm for this task. The aim of the present article is to improve on these results by introducing signatures in this framework and eventually design F5-like algorithms for the computation of GB over Tate algebras.

Important remarks. For the simplicity of exposition, we chose to restrict ourselves to the Tate algebra {X} and not consider the variants {X; r} allowing for more general radii of convergence. However, using the techniques developed in [START_REF] Xavier | Gröbner bases over Tate algebras[END_REF] (paragraph General log-radii of Section 3.2), all the results we will obtain in this article can be extended to {X; r}.

In practice, the elements of need to be truncated to fit in the memory of the computer; when doing so, we say that we are working at finite precision. We refer to [START_REF] Xavier | Gröbner bases over Tate algebras[END_REF] (see in particular Theorem 3.8 and comments around it) for a thorough study of the behaviour of GB with respect to finite precision computations.

POSITION OVER TERM

The goal of this section is to adapt the G2V algorithm to the setting of Tate algebras. Although all definitions, statements and algorithms are formally absolutely parallel to the classical setting, proofs in the framework of Tate algebras are more subtle, due to the fact that the orderings on Tate terms are not well-founded but only topologically well-founded. In order to accomodate this weaker property, we import ideas from [L+18] where the case of local rings is considered.

The PoTe algorithm

We fix a monomial order ≤ of N and write ≤ for the term order on {X} • it induces. We consider an ideal 0 in {X} • along with a GB 0 of 0 . Let ∈ {X} • . We are interested in computing a GB of = 0 + . Mimicking what we have recalled in §2.1, we introduce the {X} • -sub-module ⊂ {X} • × {X} • consisiting of pairs ( , ) such that -∈ 0 . The definitions of regular reduction (Definition 2.1), strong Gröbner bases (Definition 2.2), J-pair (Definition 2.4) and cover (Definition 2.5) extend verbatim to the context of Tate algebras, with the precaution that the leading monomial is now computed with respect to the order ≤ as explained in Section 2.2. P 3.1. Suppose that = {( 1 , 1 ), . . . , ( , )} is an SGB of . Then:

(1) { s.t. ( , 0) ∈ } is a Gröbner basis of ( 0 : ).

(2) { s.t. ( , ) ∈ for some } is a Gröbner basis of .

P

. Let be an SGB of M. Let ℎ ∈ ( 0 : ). Then ℎ ∈ 0 and (ℎ, 0) ∈ . By definition, since is an SGB of , there exists ( , 0) ∈ such that ( ) divides (ℎ). This implies the first statement of the proposition. Let now ℎ ∈ . If (ℎ) ∈ 0 , there exists a pair (0, ℎ ′ ) ∈ with (ℎ) = (ℎ ′ ). This pair is divisible by some (0, ) ∈ , proving that ( ) divides (ℎ ′ ) = (ℎ) in this case. We ℎ ∈ 0 ) must satisfy ( ) ≥ (ℎ)/ ( ). We can then choose a series ∈ {X} • such that ( , ℎ) ∈ and ( ) is minimal for this property. Moreover, since is an SGB, the pair ( , ℎ) has to be top-reducible by some ( , ) ∈ . If ≠ 0, we deduce that ( ) divides (ℎ). Otherwise, letting = ( )/ ( ), we obtain ( -, ℎ) ∈ with ( -) < ( ), contradicting the minimality of ( ). As a conclusion, we have shown that ( ) divides (ℎ) in all cases, which readily implies (2).

T 3.2 (C T

). Let be a finite subset of such that:

• contains (1, );

• the set { ∈ {X} • : (0, ) ∈ } forms a Gröbner basis of 0 . Then is an SGB of iff every J-pair of is covered by .

The proof of Theorem 3.2 is presented in Section 3.2 below. Before this, let us observe that Theorem 3.2 readily shows that the G2V algorithm (see Algorithm 1) extends verbatim to Tate algebras. The resulting algorithm is called the PoTe 1 algorithm. The correctness of the PoTe algorithm is clear thanks to Theorem 3.2. Its termination is not a priori guaranteed because the call to regu-lar_reduce may enter an infinite loop (see [CVV19, Sec. 3.1]). However, if we assume that all regular reductions terminate (which is guaranteed in practice by working at finite precision), the PoTe algorithm terminates as well thanks to the Noetherianity of {X} • .

1 PoTe means "Position over Term". 

Proof of the cover theorem

significant consequences on the order in which the inputs are processed, implying possibly important differences in the behaviour of the algorithms.

The VaPoTe algorithm has a couple of interesting features. First, if we stop the execution of the algorithm at the moment when we first reach a series of valuation greater than on line 4, the value of GBasis is a GB of the image of = 1 , . . . , in {X} • / {X} • . In other words, the VaPoTe algorithm can be used to compute GB of ideals of {X} • /( ) ≃ • [X]/( ) (for our modified order) as well.

Secondly, Algorithm 2 remains correct if the reduction on line 12 is interrupted as soon as the valuation rises. The property allows for delaying some reductions, which might be expensive at one time but cheaper later (because more reductors are available). It also has a theoretical interest because the reduction process may a priori hang forever (if we are working at infinite precision); interrupting it prematurely removes this defect and leads to more satisfying termination results.

Proof of correctness and termination

We introduce some notation. For a series ∈ {X} • , we write ( ) = -val( ) (which has valuation 0 by construction) and define ( ) as the image of ( ) in {X} • / {X} • ≃ [X]. More generally if is a subset of {X} • , we define ( ) and ( ) accordingly.

We consider 1 , . . . , ∈ {X} • and write for the ideal of {X} • they generate. For an integer , we set = ∩( {X} • ). Clearly +1 ⊂ for all . Let ¯ be the image of - in [X]; we have a canonical isomorphism ¯ ≃ / +1 . Besides, the morphism → +1 , ↦ → induces an inclusion ¯ ↩→ ¯ +1 . Hence, the ¯ 's form a nondecreasing sequence of ideals of

[X].
We define all as the set of all series that are popped from on line 13 during the execution of Algorithm 2. Since the algorithm terminates when is empty, all is also the set of all series that have been in at some moment. For an integer , we define

> = ∈ all s.t. val( ) > .
and similarly and ≤ . Let also be the first time we enter in the while loop on line 3 with ⊂ {X} • . If this event never occurs, is defined as the time the algorithm exits the main while loop. We finally let GBasis be the value of the variable GBasis at the checkpoint . L 4.1. Between the checkpoints and +1 : (1) the elements popped from are exactly those of , and (2) the "reduction modulo +1 " of the VaPoTe algorithm behaves like the G2V algorithm, with input polynomials ( ) and initial value of GBasis set to (GBasis ).

P

. We observe that, after the time , only elements with valuation at least +1 are added to . The first statement then follows from the fact that the elements of have been popped by increasing valuation. The second statement is a consequence of (1) together with the fact that all and manipulated by Algorithm 2 between the times and +1 have valuation .

Since the G2V algorithm terminates for polynomials over a field, Lemma 4.1 ensures that each checkpoint is reached in finite time if the call to regular_reduce does not hang forever. This latter property holds when we are working at finite precision and is also guaranteed if we interrupt the reduction as soon as the valuation raises.

We are now going to relate the ideals ¯ with the sets , ≤ and > . For this, we introduce the syzygies between the elements of ( ≤ ). More precisely, we set:

= ( ) ∈ ≤ s.t. ∈ ≤ ( ) ≡ 0 (mod ) .
and let ¯ be the image of under the projection {X} • → [X]; in other words, ¯ is the module of syzygies of the set ( ≤ ), i.e. ¯ = ( ( ≤ )) with the notation of Definition 2.7. We also define a linear mapping :

( {X} • ) ≤ → {X} • by : ( ) ∈ ≤ ↦ → ∈ ≤ ( ).
By definition, takes its values in the ideal generated by ( ≤ ) and ( ) ⊂ {X} • . P 4.2. For any integer , the following holds:

(a) The family

(GBasis +1 ) is a GB of ¯ . (b) ( ) ⊂ • ( ≤ ), - > . (c) +1 = +1 • ( ≤ +1 ), > +1 .
(d) ¯ +1 = ( ≤ +1 ) .

P

. When < 0, we have = 0 and +1 = , so that the proposition is obvious. We now consider a nonnegative integer and assume that the proposition holds for -1. By the induction hypothesis, we know that (GBasis ) is a GB of ¯ -1 . It then follows from Lemma 4.1 that (GBasis +1 ) is a GB of the ideal generated by ¯ -1 and ( ), which is equal to ¯ by the induction hypothesis. The assertion (a) is then proved.

Between the checkpoints and +1 , each signature added to on line 14 corresponds to a family ( ) ∈ ≤ for which the sum equals the element 0 added to on the same line. Rescaling the 's, we cook up an element ∈ with the property that ( ) = -0 . Let ⊂ be the set of those elements. From Proposition 2.3 and Lemma 2.8, we derive that ¯ is generated by ¯ -1 (viewed as a submodule of ¯ by filling new coordinates with zeroes) and . Thus:

( ) = -1 ( -1 ) + ( ), • ( ≤ ) ⊂ -1 ( -1 ) + - > , • ( ≤ )
. The assertion (b) now follows from the induction hypothesis, once we have observed that > -1 = ( ) ∪ > . Let us now prove (c). Let ℎ ∈ +1 . Then ℎ ∈ and we can use the induction hypothesis to write

ℎ = ∈ ≤ ( ) + ∈ >
for some , ∈ {X} • . Reducing modulo +1 , we find that the family ( ) ∈ ≤ belongs to . From (b), we deduce that

∈ ≤ ( ) ∈ • ( ≤ ), - > .
We then conclude by noticing that > = +1 ( +1 ) ∪ > +1 . Finally, (d) follows from (c) by dividing by +1 and reducing modulo .

Termination. Since [X] is noetherian, the sequence of ideals ( ¯ ) is eventually constant. This implies that GBasis cannot grow indefinitely; in other words, the final value of GBasis is reached in finite time. However, the reader should be careful that this does not mean that Algorithm 2 terminates. Indeed, once the final value of GBasis has been computed, one still has to check that the remaining series in reduce to zero; this is achieved by performing divisions and can hang forever if we are working at infinite precision. Nevertheless, this misfeature seems very difficult to avoid since, when working at infinite precision, the input series contain themselves an infinite number of coefficients and any modification on one of them could have a strong influence on the final result.

Correctness. Let be the output of Algorithm 2, that is the limit of the ultimately constant sequence (GBasis ). For a positive integer , we define ≤ as the set of ∈ with val( ) ≤ . Since only elements of valuation at least +1 are added to GBasis after the checkpoint +1 , we deduce that ≤ = GBasis +1 . Hence, by Proposition 4.2, ( ≤ ) is a GB of ¯ for all ≥ 0. We are going to show that this sole property implies that is indeed a GB of . For this, we consider ∈ . We write = val( ), so that ( ) is the image in [X] of -. Moreover, we know that ( ( )) is divisible by ( ( )) for some ∈ ≤ , i.e. there exists i ∈ N such that ( ( )) = X i • ( ( )). This readily implies that

( ) = -val( ) • X i • ( ), showing that ( ) divides 
( ) in T{X} • given that val( ) ≤ . We have then proved that the leading monomial of any element of is divisible by some ( ) with ∈ , i.e. that is a GB of .

IMPLEMENTATION

We have implemented both the PoTe and VaPoTe algorithms in S M 3 . Our implementation includes the following optimization: at the end of the loop (i.e. after line 20), we minimize and reduce the current GB in construction. This operation is allowed since all signatures are discarded after each iteration of the loop. Similarly, we reduce each new series popped from on line 4 before proceeding it. These ideas were explored in the algorithm F5-C [EP10] and, as mentioned before, were one of the main motivations for adopting an incremental point of view.

Our implementation is also able to compute GB of ideals in {X}. For this, we simply use a reduction (for no extra cost) to the case of {X} • (see [CVV19, Proposition 2.23]). We also normalize the signatures in to be monic after each iteration of the main loop; in the PoTe algorithm, this renormalization gives a stronger cover criterion and thus improves the performances.

As mentioned in Section 4.1, Algorithm 2 remains correct if the reductions are interrupted as soon as the valuation rises. This can be done in the reduction step before processing the next , before adding elements to the SGB, as well as in the inter-reduction step. Delaying reductions could be interesting, for instance, if the input 3 https://trac.sagemath.org/ticket/28777 ideal is saturated: indeed, in this case, the algorithm never considers elements with positive valuation and delayed reductions do not need to be done afterwards. On the other hand, performing more reductions earlier leads to shorter reducers and potentially faster reductions later. In practice, in our current implementation, we have observed all possible scenarios: interrupting the reductions can make the computation faster, slower, or not make any significant difference.

Some timings

Numerous experimentations on various random inputs show that the VaPoTe algorithm performs slightly better than the PoTe algorithm on average. Besides, both PoTe and VaPoTe algorithms usually perform much better than Buchberger algorithm, although we observed important variations depending on the input system. As mentioned in the introduction, Tate algebras are the building blocks of -adic geometry. One can then cook up interesting systems associated to meaningful geometrical situations. As a basic example, let us look at torsion points on elliptic curves.

We recall briefly that (a certain class of) elliptic curves over = Q are in one-to-one correspondence with a parameter lying in the open unit disc [START_REF] John | A review of non-Archimedean elliptic functions, in Elliptic curves, modular forms and Fermat's last theorem[END_REF]. The parametric equation of these curves is 2 + = 3 + 4 ( ) + 6 ( ) with:

4 ( ) = 5 ∞ =0 3 1 - , 6 ( ) = ∞ =0 7 5 + 5 3 12 1 - .
In order to fit with the framework of this article, we only consider parameters in the closed unit disc of radius | | and perform the change of variables = . Given an auxiliary prime number ℓ, we consider the ℓ-th division polynomial Φ ℓ ( , ) ∈ { } • [ ] associated to the Weierstrass form of the above equation. By definition, its roots are the abscissas of ℓ-torsion points of the Tate curve. We now fix and ℓ and consider the system in 3 variables Φ ℓ ( , 1 ) = Φ ℓ ( , 2 ) = 0. Its solutions parametrize the pairs of elliptic curves sharing a common ℓ-torsion point. Computing a GB of it then provides information about torsion points on -adic elliptic curves. Related (but more sophisticated) computations are likely to appear in the study of the arithmetics of -adic modular forms [START_REF] Fernando | Arithmetic of -adic Modular Forms[END_REF] or the development of -adic analogues and refinements of Tate's isogeny Theorem [START_REF] John | Endomorphisms of abelian varieties over finite fields[END_REF].

Table 1 shows the timings obtained for computing a GB of the above systems for different values of , ℓ and different precisions. We clearly see on these examples that both PoTe and VaPoTe outperform the Buchberger algorithm.

Towards further improvements

Faster reductions. Observing how our algorithms behave, one immediately notices that reductions are very slow. It is not that surprising since our reduction algorithm is currently very naive. For this reason, we believe that several structural improvements are quite possible. An idea in this direction would be to store a wellchosen representative sample of reductions and reuse them later on. Typically, we could cache the reductions of all terms of the form 2 1 1 • • • 2 (with respect to the current GB in construction) and use them to emulate a fast exponentation algorithm in the quotient ring {X} • / . Another attractive idea for accelerating reduction is to incorporate Mora's reduction algorithm [START_REF] Ferdinando | An algorithm to compute the equations of tangent cones[END_REF][START_REF] Thomas | Standard bases in mixed power series and polynomial rings over rings[END_REF] in our framework. Let us recall that Mora's algorithm is a special method for reducing terms with respect to local or mixed orders (i.e. orders for which there exist terms < 1), avoiding infinite loops in the reduction process. In our framework, infinite loops of reductions cannot arise since the computations are truncated at a given precision. Nevertheless, we believe that Mora's algorithm can still be used to short-circuit some reductions.

The situation for Tate terms is actually significantly simpler than that of general local orders. Indeed, Mora's reduction algorithm roughly amounts to add to our list of reductors each time we encounter a remainder (including itself) in the reduction process. We believe that this optimization, if it is carefully implemented, could already have some impact on the performances. Besides, observing that the equality = + also reads = (1 -) -1 , we realize that Mora reductions of a Tate series are somehow related to its Weierstrass decomposition. Moreover, at least in the univariate case, it is well known that Weierstrass decompositions can be efficiently computed using a well-suited Newton iteration. It could be interesting to figure out whether this strategy extends to multivariate series and, more generally, to the computation of arbitrary Mora reductions.

Using overconvergence properties. In a different direction, we would like to underline that the orderings we are working with are by design block orders (comparing first the valuation). However, in the classical setting, we all know that graded orders often lead to much more efficient algorithms. Unfortunately, in the setting of this article, the very first definition of a Tate series already forces us to give the priority to the valuation in the comparison of terms; otherwise, the leading term would not be defined in general.

Nonetheless, we emphasize that even if graded orders do not exist over {X}, they do exist over some subrings. Precisely, recall that, given a tuple r = ( 1 , . . . , ), we have defined 4 : {X; r} := This valuation defines a new term ordering ≤ r . We observe that, from the point of view of {X}, it really looks like a graded order: the quantity val r ( ) plays the role of (the opposite of) a "total degree" which mixes the contribution of the valuation and that of the classical degree.

In light of the above remarks, we formulate the following question. Suppose that we are given an ideal ⊂ {X} • (say, of dimension 0) generated by some series 1 , . . . , . If we have the promise that the 's all overconverge, i.e. all lie in {X; r} for a given r, can we imagine an algorithm that computes a GB of taking advantage of the term ordering ≤ r ? As an extreme case, if we have the promise that all the 's are polynomials (that is = +∞ for all ), can one use this assumption to accelerate the computation of a GB of ?

Algorithm 1 :

 1 G2V (resp. PoTe) algorithm input : 1 , . . . , in [X] (resp. {X} • ) output : a GB of the ideal generated by the 's 1 ← ( 1 , . . . , ) 0, ) : ∈ GBasis} ∪ {(1, )} 6 ← { ( ) : ∈ GBasis} 7 ← {J-pair((1, ), (0, )) : ∈ GBasis} 8 while ≠ ∅ do 9 pop ( , ) from , with smallest 10 if ( , ) is covered by then continue 11 if is divisible by some ∈ then continue 12 0 ← regular_reduce ( , , ) 13 if 0 = 0 then 14 add to 15 else 16 for ( , ) ∈ do 17 if J-pair(( , 0 ), ( , )) is defined then 18 add J-pair(( , 0 ), ( , )) to 19 add ( , 0 ) to 20 GBasis ← { : ( , ) ∈ } 21 return GBasis now suppose that (ℎ) ∉ ( 0 ). This assumption implies that any ∈ {X} • with ( , ℎ) ∈ (i.e.

Algorithm 2 :

 2 VaPoTe algorithm input : 1 , . . . , in {X} • output : a GB of the ideal generated by the 's 1 ← ( 1 , . . . , ) 2 GBasis ← ∅ 3 while ≠ ∅ do 4 pop from , with smallest valuation 5 ← {(0, ) : ∈ GBasis} ∪ {(1, )} 6 ← { ( ) : ∈ GBasis} 7 ← {J-pair((1, ), (0, )) : ∈ GBasis} 8 while ≠ ∅ do 9 pop ( , ) from , with smallest 10 if ( , ) is covered by then continue 11 if is divisible by some ∈ then continue 12 0 ← regular_reduce ( , , ) 13 if val( 0 ) > val( ) then 14 add to ; add 0 to 15 else 16 for ( , ) ∈ do 17 if J-pair(( , 0 ), ( , )) is defined then 18 add J-pair(( , 0 ), ( , )) to 19 add ( , 0 ) to 20 GBasis ← { : ( , ) ∈ } 21 return GBasis

  i∈N i X i s.t. i ∈ and val( i )r•i -------→ |i|→+∞ +∞ where r•i denotes the scalar product of the vectors r and i. When the 's are all nonnegative, {X; r} embeds naturally into {X}; precisely, elements in {X; r} are those series that overconverges over the polydisk of polyradius (| | -1 , . . . , | | -). Moreover, the 4 We refer to [CVV19] for more details algebra {X; r} is equipped with the valuation val r defined by: val r i∈N i X i = min i∈N val( i )r•i.

  A classical argument shows that any GB of an ideal generates . The following theorem is proved in [CVV19, Theorem 2.19]. Every ideal of {X} • admits a GB.

	T	2.10.

• . A family ( 1 , . . . , ) ∈ is a Gröbner basis (in short, GB) of if, for all ∈ , there exists ∈ {1, . . . , } such that ( ) divides ( ).

Table 1 :

 1 Timings for the computation of GBs related to the torsion points on the Tate curve (all times in seconds)

	Parameters		Buchberger PoTe VaPoTe
	= 5,	ℓ = 5, prec = 12	87.9	72.2	19.2
	= 11,	ℓ = 5, prec = 12	321	30.5	28.9
	= 57637, ℓ = 5, prec = 12	83.2	13.3	13.3
	= 7,	ℓ = 7, prec = 9	62.3	45.3	27.7
	= 11,	ℓ = 7, prec = 9	168	36.0	28.5

VaPoTe means "Valuation over Position over Term"

ANR grant CLap-CLap, referenced ANR-18-CE40-0026-01. The third author is supported by the FWF grant P31571-N32.

Throughout this subsection, we consider a finite set satisfying the assumptions of Theorem 3.2.

We first assume that is an SGB of . Let 1 , 2 ∈ and write = ( , ) for ∈ {1, 2}. We set = lcm( ( 1 ), ( 2 )) ∈ T{X} • and = / ( ). If

( 1 1 ) = ( 2 2 ), the -pair of ( 1 , 2 ) is not defined and there is nothing to prove. Otherwise, if (resp. ) is the index for which ( ) is maximal (resp. ( ) is minimal), the -pair of ( 1 , 2 ) is , which is regularly topreducible by . Continuing to apply regular top-reductions by elements of as long as possible, we reach a pair ( 0 , 0 ) ∈ which is no longer regularly top-reducible by any element of and for which

Since is an SGB of , ( 0 , 0 ) must be super top-reducible by some pair ( , ) ∈ . By definition of super top-reducibility, ( ) divides

) and then that ( , ) covers . We now focus on the converse and assume that each -pair of is covered by . We define: = ( , ) ∈ , top-reducible by no pair of and assume by contradiction that is not empty. L 3.3. The set does not contain any pair of the form ( , ) with = 0 or ( ) ∈ ( 0 ).

P

. By our assumptions, if ( ) ∈ ( 0 ), is reducible by some with (0, ) ∈ . In particular, ( , ) is top-reducible by (0, ) and cannot be in . If = 0, then ∈ 0 and we are reduced to the previous case. L 3.4. Let 0 = ( 0 , 0 ) ∈ . Then there exists a pair

( 1 ), and 1 ( 1 ) is minimal for this property. Furthermore, 1 1 is not regularly top-reducible by .

P

. We have already noticed that 0 ≠ 0. Since (1, ) ∈ , there exists a pair in satisfying the first condition. Since is finite, there exists one that further satisfies the minimality condition.

We assume by contradiction that 1 1 is regularly top-reducible by . Consider 2 = ( 2 , 2 ) ∈ be a regular reducer of 1 1 , in particular there exists a term 2 such that 2 ( 2 ) = 1 ( 1 ), and 2 ( 2 ) < 1 ( 1 ). The J-pair of 1 and 2 is then defined and equals • ( 1 , 1 ) with dividing 1 . Write 1 = ′ 1 for some term ′ 1 . By hypothesis, this J-pair is covered, so there exists = ( , ) ∈ and a term such that • ( ) = • ( 1 ) and • ( ) < • ( 1 ). As a consequence:

1 contradicts the minimality of 1 .

Let be the minimal valuation of a series for which ( , ) ∈ . We make the following additional assumption: < +∞. In other words, we assume that contains at least one element of the form ( , ) with ≠ 0. We set:

L 3.5. The set = { ( ) : ( , ) ∈ 1 } admits a minimal element.

P

. We assume by contradiction that does not have a minimal element. Thus, we can construct a sequence ( , ) ≥1 with values in 1 such that ( ) is strictly decreasing. As a consequence, in the Tate topology, converges to 0. Hence, for large enough, val( ) > = val( ). From 1 ⊂ , we get -∈ 0 and ( ) = ( -) ∈ ( 0 ). By Lemma 3.3, this is a contradiction.

Let 2 be the subset of 1 consisting of pairs ( , ) for which ( ) is minimal. Note that by Lemma 3.3, this minimal value is nonzero.

) and ( 2 , 2 ) in 2 , and assume that the leading terms are not equivalent, that is

( 1 ) ≠ ( 2 ). Without loss of generality, we can assume that

( 1 ) > ( 2 ). By construction of 2 ,

( 1 ) = ( 2 ), that is ( 1 ) = ( 2 ) for some ∈ , val( ) = 0. Since 1 and 2 are nonzero, we can write 1 =

( 1 ) + 1 and 2 = ( 2 ) + 2 . Eliminating the leading terms, we obtain a new element ( ′ , ′ ) = ( 1 -2 , 1 -2 ). By assumption, ( ′ ) = ( 1 ), and ( ′ ) < ( 1 ). Observe that ( ′ , ′ ) cannot be top-reduced by as otherwise, ( 1 , 1 ) would also be top-reducible by . Hence ( ′ , ′ ) ∈ 1 , contradicting the minimality of ( 1 ).

Let now 0 = ( 0 , 0 ) ∈ 2 . From Lemma 3.4, there exists 1 = ( 1 , 1 ) ∈ and a term such that ( 1 ) = ( 0 ) and 1 is not regular top-reducible by . We define * = ( * , * ) = 0 -1 = ( 0 , 0 ) -( 1 , 1 ).

We remark that ( * ) < ( 0 ). Moreover ( 0 ) ≠ ( 1 ) since otherwise 0 would be top-reducible by 1 , contradicting the fact that 0 ∈ .

We first examine the case where

Let us prove first that * ∉ . We argue by contradiction. From * ∈ , we would derive val( * ) ≥ = val( 0 ) and then val( * ) = val( 0 ) since the inequality in the other direction holds by assumption. We conclude by noticing that ( * ) < ( 0 ) contradicts the minimality of ( 0 ). So * ∉ , i.e. * is top-reducible by . Let

and thus cannot be in either. We iterate this process until we can only find a reductor = ( , 

Thus regularly top-reduces 0 , which contradicts 0 ∈ . As a conclusion, in both cases, we have reached a contradiction. This ensures that = +∞. In particulier, contains an element 0 of the form ( 0 , 0). Let 1 = ( 1 , 1 ) ∈ be given by Lemma 3.4. If 1 = 0, this pair would be a reducer of ( 0 , 0) ∈ , which is a contradiction. So 1 ≠ 0. Set = ( )

Then

( * ) < ( 0 ) and ( * ) = ( 1 ). From 1 ≠ 0, we deduce * ∉ . So * is top-reducible by 2 = ( 2 , 2 ) ∈ , meaning that there exists a term 1 such that 1

( 2 ) = ( * ) = ( 1 ) and 1

( 2 ) ≤ ( * ) < ( 1 ). So 2 is a regular top-reducer of 1 , which contradicts Lemma 3.4.

Finally, we conclude that is empty. By construction, is an SGB of .

VALUATION OVER POSITION OVER TERM

In this section, we design a variant of the PoTe algorithm in which, roughly speaking, signatures are first ordered by increasing valuations.

The VaPoTe algorithm

The VaPoTe 2 algorithm is Algorithm 2 (page 4). It is striking to observe that it looks formally very similar to the PoTe Algorithm (Algorithm 1) as they only differ on lines 3-4 and, more importantly, on lines 13-14. However, these slight changes may have