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BANDWIDTH EXTENSION OF MUSICAL AUDIO SIGNALS WITH NO SIDE INFORMATION
USING DILATED CONVOLUTIONAL NEURAL NETWORKS

Mathieu Lagrange, Félix Gontier

LS2N, CNRS, Centrale Nantes

ABSTRACT

Bandwidth extension has a long history in audio pro-
cessing. While speech processing tools do not rely on side
information, production-ready bandwidth extension tools of
general audio signals rely on side information that has to be
transmitted alongside the bitstream of the low frequency part,
mostly because polyphonic music has a more complex and
less predictable spectral structure than speech.

This paper studies the benefit of considering a dilated
fully convolutional neural network to perform the bandwidth
extension of musical audio signals with no side information
on the magnitude spectra. Experimental evaluation using
two public datasets, medley-solos-db and gtzan, respectively
of monophonic and polyphonic music demonstrate that the
proposed architecture achieves state of the art performance.

Index Terms— Artificial audio bandwidth extension,
deep neural network, musical audio processing

1. INTRODUCTION

Bandwidth extension has a long standing history in telecom-
munication where the bitrate allowed by the given application
may be reduced [1]. In that case, it is often beneficial to pre-
serve a good perceptual quality in the lower frequencies, for
example to preserve intelligibility in speech applications. It is
thus useful to consider a processing unit on the receiver that
is able to produce a wide-band signal in order to improve per-
ceived quality given the narrow band signal consisting of the
lower frequencies, typically up to 4 kHz for speech.

Many techniques have been introduced for speech, and
most of them operate on the magnitude spectra, where the
spectral envelope of the narrow band signal is used to pre-
dict the spectral envelope of the higher frequencies. Recent
approaches consider deep neural networks to do so [2]. This
approach assumes a source-filter model for speech produc-
tion and requires some integration of two processing units,
one responsible for the narrow band signal decoding and one
responsible for the bandwidth extension. Extension on the
magnitude spectra using a deep neural architecture has been
proposed in [3]. Recurrent neural networks [4] or Wavenet
architectures can also be considered [5]. In this case, the
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network directly predicts the wide band speech signal, given
some information provided by the conditioning stack that pro-
cesses the narrow band signal. This approach is very flexible,
but still computationally demanding.

Due to interoperability requirements in telephony, the
bandwidth extension process in speech is done without any
side information. That is, the processing unit on the decoder
side has to predict the higher frequency signal given some
static knowledge and the lower frequency signal only.

In general audio coding, bandwidth extension has been
introduced in the beginning of the millennium [6]. General
audio coding is more complex than speech coding due to the
variety of physical sources that may produce the signal that
has to be encoded. Due to this, and the ability to control the
whole transmission stack for most use cases, some side in-
formation is considered to perform the bandwidth extension
process. This side information is computed using the wide
band signal at the encoder side and transmitted within the bit-
stream. In [6], the main concept introduced is called spec-
tral band replication (SBR) where the lower frequencies of
the magnitude spectra are duplicated and transposed. Due to
the typical exponential decay of magnitude with respect to the
frequency, the overall magnitude of the transposed spectra has
to be adjusted.

Some post processing steps can be undertaken to further
improve the perceptual quality. As the encoder has access to
the SBR prediction and the reference high frequency spectra,
it is able to adapt to some special cases where considering
the high frequency spectrum as the low frequency one will
fail. For example, some high frequency tones that are per-
ceptually salient may not be be recreated using the replica-
tion process. In this case, an additional processing unit can
be considered to produce salient sinusoidal components [7].
The lower frequencies may have strong harmonics and the
higher ones only noise like components. In this case, an in-
verse filtering is applied [8]. Extension for low delay applica-
tions have been proposed [9], as well as the application of the
phase vocoder [10] to reduce unpleasant roughness typically
introduced when considering SBR tools [11].

Learning approaches, such as non-negative matrix fac-
torization [12], and deep learning approaches [13] have sev-
eral benefits compared to algorithmic approaches discussed
above. First, there may be no need for side information if the
capacity of the model is sufficient to encode the rich relation-



ship between the lower frequencies and the higher frequencies
of the spectrum and if those encoded relationships are generic
enough to produce satisfying results for real use case scenar-
ios. Secondly, the relationships encoded by the model being
non explicit, there is less chance of reaching a ’glass-ceiling”
in terms of perceptual quality.

To investigate further in this direction, we consider in this
paper a deep convolutional network that operates in the mag-
nitude spectrum. The model is described in Section 2. Its
performance is evaluated using an experimental protocol de-
scribed in Section 3 on two public datasets: the medley-solos-
db and the gtzan datasets'. Outcomes of the performance
analysis are described in Section 4 and discussed in Section
5.

Our main findings are that: 1) use of dilated convolutional
filters lead to architectures that are less sensitive to the tuning
of the other meta-parameter and reduce the complexity of the
model while preserving a receptive field adapted to the task at
hand, 2) compressive architectures like autoencoders do not
perform favorably compared to a fully convolutional neural
network without compression.

2. MODEL

The aim of a bandwidth extension system is to predict the high
frequency part of the spectrum. In this paper, we consider au-
dio data represented as magnitude spectra. The input and the
output of the model consist in 128x10 (frequency x time) ma-
trices that respectively represent the low frequency and high
frequency parts of the audio for an approximate duration of
160ms (more details are provided in Section 3).

The architecture is a fully convolutional neural network
[14] with L layers followed by rectified linear units (ReLU)
activations, as described in Figure 1. The number of out-
put convolution channels C' is the same for all hidden lay-
ers. Convolution kernels also share the same size (K, Ky)
in the time and frequency dimensions respectively. To keep
the shape of magnitude spectra constant throughout the net-
work, representations at the input of each layer are padded
by replicating their boundary values depending on the ker-
nel size. Dilated convolutions are considered to artificially
increase the receptive field of the model [15], allowing it to
capture patterns on larger scales without added parameters.
From a signal processing standpoint, this procedure is equiv-
alent to applying the convolution on a down-sampled version
of the input. A fixed dilation ratio D is used in the frequency
dimension for hidden layers, and no dilation is used in the in-
put and output layers of the network. As a result each hidden
layer increases the receptive field by D(K —1) frequency bins
compared to K — 1 without dilation.

'The code is  available at https://github.com/
mathieulagrange/paperBandwidthExtensionCnn and some
audio examples can be listened to at https://mathieulagrange.
github.io/paperBandwidthExtensionCnn/demo.
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Fig. 1. Proposed deep convolutional neural network architec-
ture for bandwidth extension.

The model is trained using the mean squared error (MSE)
loss function. Optimization is performed using the Adam [16]
algorithm with minibatches of 64 examples and a learning rate
of 0.001.

Reverting to the time domain requires the estimation of
the phase information for higher frequencies whose magni-
tude have been predicted. Several methods proposed in the
literature are considered. For evaluation purposes, the phase
can be the original phase, termed oracle in the following, the
low frequency phase as proposed in [13] and a flipped version
of the low frequency phase as proposed in [3], termed mirror
in the following. The latter gave consistently better results, so
only the results achieved using this method are reported.

3. EXPERIMENTAL PROTOCOL

3.1. Datasets

Two datasets are considered in this study to evaluate the per-
formance of the proposed model, the medley-solos-db dataset
[17], and the grzan dataset [18]. The first has 21572 mono-
phonic audio clips of about 3 seconds, for a total duration of
about 18 hours. The second comprises 100 polyphonic pop
songs of 30 seconds each for each of the 10 musical gen-
res represented, for a total duration of about 8 hours. The
medley-solos-db dataset is already split into “training”, and
“test” datasets, they are considered as is in this study. The
gtzan dataset is split in a train set and a test set using the fol-
lowing procedure. For each genre, the first 70 songs are put
in the train set and the remaining 30 in the test set.

For both datasets, the audio data is resampled to 8kHz and
converted to spectral data using a short-term Fourier trans-
form (STFT) with frame size of 256 samples, hop size of 128
samples and a Hann window. Extracts are further split into
“textures” of 10 frames, processed as individual examples.

The resulting spectra are split into 2 parts, the low fre-
quency one, that serves as input to the different models and
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the high frequency one that serves as reference for training
the models and computing the evaluation metrics.

3.2. Metrics

Three metrics are considered. The first metric is the average
loss on the test set used to get a global understanding of the
behavior of the predictors in the spectral domain. The second
metric is the average signal-to-reconstruction ratio (SRR),
computed in the time domain. Complex spectral values are
computed for each batch of textures using the original phase
for the low frequency part and one of several estimates for the
high frequency part. The time domain signal is obtained by
performing an inverse STFT on the complex spectra with the
oracle phase and the mirror phase.

As it will be discussed in Section 4, loss of phase cor-
respondence between the predicted and reference complex
spectra lead to the SRR being no longer relevant as a per-
formance metric. Ultimately, subjective evaluation by means
of listening tests performed by humans is desirable. However,
setting up those tests is time consuming and considering the
whole datasets as stimuli is impractical. This issue is left for
future research.

A good alternative is the use of objective metrics based on
perceptual models that have been proposed and used with suc-
cess in many audio signal processing tasks, such as PEMO-Q
[19] which introduces perceptual similarity measures based
on a psychoacoustically validated, quantitative model of the
peripheral auditory processing. In this paper, the P.SM; met-
ric is considered.

3.3. Baselines

Three baselines are considered. The first is a simplified ver-
sion of the SBR technique, where the high frequency part is
simply the low frequency part whose amplitudes are scaled.
This baseline requires some side information, that is the am-
plitude scaling factor defined as the ratio of average amplitude
between the high frequency part and the low frequency one,
computed for each texture.

The second and the third ones are reimplementations of
the deep architectures presented in [13]. The cnn bottleneck
encoder part consists in two convolutional layers with filters
of size (1, F') and (T, 1) that independently summarize infor-
mation in the frequency and time dimensions of the input data
respectively. A fully connected layer is then applied to extract
a code of 64. The decoder part mirrors these processing steps
to recover a spectrum with the original input size. This model
is implemented as described in [13], though with different fil-
ter sizes as F' = 128 and T' = 10 to match the data format
considered in this study. The cnn stride2 autoencoder adopts
a different strategy where frequency patterns information is
extracted at multiple scales using strided convolutions. The
first four layers operate independently on each time frame,
and are followed by two convolutional layers with square ker-
nels. The number of channels increases linearly with each

Table 1. Spectral loss on the testing set for the proposed ar-
chitecture with L = 7 and C' = 64.

K dilation (D) medley-solos-db glzan

13 1 0.237 £0.014  0.109 £0.020
17 1 0.226 £0.016  0.105 +0.021
13 2 0.226 £0.017  0.102 +0.021
17 2 0.218 £0.019  0.102 +0.022

Table 2. Spectral loss on the testing set for the proposed ar-
chitecture with K = 17 and C = 64.

L dilation (D) medley-solos-db gizan

5 1 0.240 +£0.013  0.110 £0.017
6 1 0.231 £0.016  0.107 +0.021
7 1 0.226 £0.016  0.105 +0.021
5 2 0.228 £0.015  0.102 +£0.019
6 2 0.225 £0.019  0.102 +0.022
7 2 0.218 £0.019  0.102 £0.022

additional layer. In this study, the first two layers are removed
to account for the difference in the size of the frequency di-
mension in considered spectra.

Additionally, two anchors are considered: the oracle pre-
dictor that “’predicts” the actual high frequency spectral pat-
tern and the null predictor that outputs a vector of zeros.

4. EXPERIMENTS

The experiments reported here are conducted in order to study
two main design issues for the task at hand: 1) the impact of
the dilation on the other meta parameters, and 2) the impact
of the compression used in the design of autoencoders.

The dilation parameter D is a very interesting feature of
convolutional networks as it allows us to expand the receptive
field without increasing the model complexity. The other pa-
rameters that control its size are K the size of the filters, and
L the number of layers. As can be seen on Table 1, D = 2 al-
lows us to reduce the loss and also to reduce the gain achieved
by increasing K. The effect is more important on the gtzan
dataset. Table 2 shows the same effect of D on L.

Increasing further the dilation factor to D = 3 is not ben-
eficial, as the receptive field is sufficiently large with D = 2.
Indeed, with D = 2, K = 17, L = 6, it lead to a receptive
field size of 89 where the input and output of the predictor
is of size 64. This setting with C' = 64 is selected for the
remaining of the experiments.

Compared to the two encoder-decoder baselines, the pro-
posed approach compares favorably in terms of spectral loss,
see Table 3. An advantage of considering spectral bandwidth
extension as task is the ease of fine grain performance anal-
ysis. Contrary to classification pipelines, the input and the
output of the network are equivalent in terms of physical in-
terpretation. It allows us to visually interpret the behavior
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Fig. 2. Examples of predictions for (a) the medley-solos-db dataset and (b) the grzan dataset. The proposed model handles
correctly the harmonic structures (a) and the average magnitude of more complex spectral shapes (b).

Table 3. Spectral loss over the test set.

method medley-solos-db gtzan

proposed 0.225 +0.019  0.102 £0.022
cnn bottleneck  0.241 +0.011 0.107 +0.017
cnn stride2 0.228 +£0.013  0.110 £0.017

of the predictors. As can be seen on Figure 2, the proposed
model handles correctly the harmonic structures and the aver-
age magnitude of more complex spectral shapes.

In order to evaluate the proposed approach in the time do-
main, the SRR is considered. As can be seen on Table 4,
there is a direct inverse correlation between the spectral loss
and the SRR when considering the oracle phase. Consider-
ing the mirror phase strongly reduces the phase correlation
between the reference and the estimate leading to low SRR
even for the oracle magnitude estimator. Though, informal
listening test shows that considering the oracle estimator us-
ing the mirror phase estimate is perceptually more pleasing
than the null predictor. We conclude that the sensitivity of the
SRR to phase shift reduces its usefulness and turn to an ob-
jective perceptual measure to better assess the performance of
the predictors.

As can be seen on Table 5, the proposed approach im-
proves over the baselines in terms of PSM,; (the higher the
better), except for the null baseline on the medley-solosdb.
Whereas the autoencoder architectures appears to perform
similarly in terms of SRR, they have different behavior when
considering the P.S M, metric, the stride being more effective
on monophonic music and the dense being more adapted to
polyphonic music.

S. DISCUSSION

The benefit of considering a dilated fully convolutional neural
network for the task of predicting the high frequency part of
the magnitude spectra given the low frequency part has been
studied. The proposed architecture has been thoroughly eval-

Table 4. SRR achieved by the different methods on the
medley-solosdb and the gtzan datasets using the mirror and
oracle phase estimates.

medley-solos-db gtzan

method mirror oracle mirror oracle
null 12943 12943 | 12943 12943
replicate 10743 11.6+£3 | 108 +£3 13343
cnn bottleneck  10.6 +2 133 £3 | 11.1 £3 15.6 £3
cnn stride2 11243 13943 | 11243 15643
proposed 11.0£2 14343 | 11.3£3 163 43
oracle 10.5 £3 00 10.5 £3 00

Table 5. PSM; in % using the mirror phase estimate.

method medley-solos-db gtzan

null 90.9 £1.6 89.7£2.3
replicate 86.5 £1.4 88.4 +£1.8
cnn bottleneck 86.6 1.5 913 +£1.8
cnn stride2 869 +1.3 90.4 £2.1
proposed 875 %14 91.5 £1.8
oracle 97.2 £0.3 97.2 £0.6

uated in terms of several metrics, from the optimized loss to
an objective perceptual measure.

Considering the Fourier spectrum as input has several
drawbacks. Time/Frequency resolution tradeoffs and the ne-
cessity for phase estimation inherently limit the potential of
the proposed approach. Future work will consider more ad-
vanced phase estimators and study the influence of mismatch
between training and testing audio material.

We also believe that considering this task with varied
learning and testing sets, i.e. predicting the high frequency
spectra of a pop’ song using network trained on ’country’
songs may be of creative interest, to explore the yet to be
defined notion of musical style transfer [20].
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