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Acoustic interaction between 3D fabricated cubic
bubbles†

Thomas Combriat,a Philippine Rouby-Poizat,a Alexander A. Doinikov,a Olivier Stephan,a

and Philippe Marmottanta∗

Spherical bubbles are notoriously difficult to hold in specific arrangements in water and tend to
dissolve over time. Here, using stereolithographic printing, we built an assembly of millimetric cu-
bic frames overcoming these limitations. Indeed, each of these open frames holds an air bubble
when immersed into water, resulting in bubbles that are stable for long times and still able to oscil-
late acoustically. Several bubbles can be placed in any wanted spatial arrangement thanks to the
fabrication process. We show that bubbles are coupled acoustically when disposed along lines,
planes or 3D arrangement, and that their collective resonance frequency is shifted to much lower
values, especially for 3D arrangements where bubbles have higher number of close neighbours.
Considering that these cubic bubbles behave acoustically as spherical bubbles of the same vol-
ume, we develop a theory allowing to predict the acoustical emission of any arbitrary group of
bubbles, in agreement with experiments.

1 Introduction
Acoustic metamaterials present extraordinary properties such as
negative index of refraction, or enhanced absorption, giving the
hope to create invisibility cloaks around an object or vanish-
ing echoes from it. Typically, such metamaterials contain sub-
wavelength resonators that give them unique properties in term
of effective density or compressibility? ? . Gas bubbles are good
candidates to be these sub-wavelength resonators, because of
their remarkable resonance, explained by the much greater com-
pressibility the gas they contain compared to the surrounding liq-
uid. A small amount of bubbles have huge acoustic effect on
sound propagation? , that can be experienced in every day life
with the hot chocolate effect? , where tiny bubbles change dra-
matically the frequency of sound when tickling the mug. Bubbles
can be arranged in static configurations within a solid material,
embedded in a aqueous gel? or silicone elastomer? ? with spe-
cific positions and sizes. Free gas bubbles in water can be trapped
under a net, but with random positions? . Bubbles then give su-
per absorption properties to these materials? ? .

Here we would like to introduce meta-materials with gas bub-
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bles in water in order to have less viscous friction as possible and
still being able to control precisely their sizes and positions. This
would provide interesting underwater applications for providing
surfaces that could be totally absorbant or acoustically transpar-
ent to ultrasonic waves. On a more fondamental level, it is of
importance to characterize the resonance of groups of interacting
bubbles.

Thanks to the recent evolution of 3D-printing technics we have
shown in a previous work? , that it is possible to (i) maintain
the position of a gas bubble in water, (ii) stabilise its size, using a
single cubic frame where a bubble is trapped.

The present manuscript proposes to incorporate cubic bubbles
as building blocks to be arranged into a metamaterial. Our pur-
pose is to find how bubbles couple acoustically to each other, and
then to investigate what are the fundamental laws dictating the
resonance as a function of the spatial arrangement of bubbles.

2 Methods
We built open cubic frames (external size 3mm) supported by a
loose scaffold (see Fig. 1). This structure was fabricated with a
stereolithographic (SLA) 3D-printer (Titan from Kudo3D, “Hard
and Tough” type resin, 50 µm resolution). The faces of the cube
have square openings 1.94±0.05mm in height and 1.75±0.05mm
in width (slightly smaller than the 2 mm in design). The ac-
tual dimensions of the cubic frames were determined by taking
photographs of several structures using a macroscope (Leica Z6).
The frames were silanized (30 minutes of vapour-phase deposi-
tion of trichloro(perfluoro-octyle)silane) in order to make them
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Fig. 1 Left: acoustical setup with: (1) the sample, (2) the loudspeaker,
(3) the hydrophone and (4) the moving stage. Top right: 3D view of a
typical sample, holding a bubble. Bottom right: photography of a real
sample containing a network of 4×4 bubbles.

hydrophobic.
Upon immersion in a water tank, bubbles spontaneously stay

inside the cubic frames, because openings are small enough for
capillary forces to be stronger than gravity and prevent water
from entering. On the opposite, the spaces in the scaffold are
large enough to let water invade the structure. In order to min-
imise the number of parasit bubbles forming outside the cubes,
the number of supporting frames was minimised as much as pos-
sible in the limit of two supports per cube. In particular, these
frames were put in place so that no closed volumes are delim-
ited, giving the “X” shapes that can be seen in Fig. 1 for complex
networks.

Each bubble has flat interfaces located on the same plane
than the external cube faces. The gas volume Vg of these bub-
bles is equal to 17mm3 (using measured dimensions). As pre-
viously shown? they can, with a good approximation, be con-
sidered acoustically equivalent to a spherical bubble of radius
Req = 1.6mm, with the same volume. Because the interfaces are
not curved, the Laplace overpressure inside these bubbles is there-
fore null and bubbles are much more stable over time. We could
study complex arrangements of bubbles as the one shown in Fig. 1
for long times before dissolution, which can occur after a day.

Experiments were performed in a tank (29×29×50cm3) made
of PMMA filled with tap water and a small amount of bleach to
prevent the development of micro-organisms. Experiments were
performed not before a few days after filling the tank in order for
the dissolved gas to reach equilibrium. The sample, denoted (1)
in Fig. 1, stood on a mesh cage placed on a steel plate, denoted
(5) in Fig. 1, in order for the sample to be situated at the middle
of the tank.

The acoustical response of such arrangements was measured
by sending acoustic waves with an underwater speaker, broad-
casting repeated frequency sweeps. Frequency sweeps ranging
from 0.1kHz to 5kHz and lasting 1 second were generated by
an arbitrary waveform generator (Handyscope HS5, TiePie) at a
sampling frequency of 100kHz. After being amplified (amplifier
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Fig. 2 Amplitude and phase of the acoustic signal A recorded near a
single bubble. This signal is the relative difference of the acoustic record-
ing with the recording in the absence of bubbles. Smoothed data (using
Savitzky-Golay filter of order 2 on 25 adjacent points) in black are super-
imposed with the raw data in light grey. The vertical orange line denotes
the resonance based on the criteria cos(ϕ(A)) = 0. Numerical simula-
tion for a bubble of radius R0 = 1.57mm is also shown is dashed purple
line. Inset in top figure: extract of temporal signals V 0

mic without a bubble
(black) and Vmic with (red) a bubble present as a function of the instanta-
neous frequency. Signals envelopes are also shown. The hydrophone is
placed approximately 1cm away from the fixed bubble.

7600M, Krohn Hite Corporation) they were sent to a waterproof
loudspeaker (FR 13 WP, Visaton) denoted (2) in Fig. 1. The sound
was measured by an hydrophone (8103, Brüel & Kjær) denoted
(3) in Fig. 1 and amplified (Nexus Conditioning Amplifier 2692,
Brüel & Kjær). This hydrophone can either be attached to a 3D
moving stage, denoted (4) in Fig. 1 made from scavenged parts
of a 3D printer (Prusa i3 - eMotionTech), allowing to measure
acoustic signals at different positions in the tank, or fixed at a
given position for the whole experiment.

A signal Vmic was recorded by placing a hydrophone in the
vicinity of the structure. An additional recording V 0

mic was also
performed at the same position, in the absence of the structure.
Following Leroy et al.? , we compute the relative bubble contri-
bution using the normalised spectrum

A( f ) =
Ṽmic−Ṽ 0

mic

Ṽ 0
mic

(1)

where Ṽmic and Ṽ 0
mic are the Fourier transforms of the signals ac-

quired and f is the frequency.

3 Acoustical response
The emission spectrum of a single bubble is shown in Fig. 2. It
features a marked resonant behaviour with a maximum of the
amplitude of the normalised emitted pressure |A| and a shift of
its phase with respect to the external exciting field from 0 to π,
meaning a shift from cos(ϕ(A)) = 1 to cos(ϕ(A)) = −1. Experi-
mentally, we will define the resonant frequency by the condition
cos(ϕ(A)) = 0 at resonance. Here it is equal to 2050Hz. This value
is very close to the Minnaert’s prediction? for a spherical bub-

2 | 1–7Journal Name, [year], [vol.],



Fig. 3 Evolution of the resonance frequency of a group of two bubbles
as a function of their spacing d: dots experimental data, purple line: nu-
merical resolution with R0 = 1.65mm, orange line: fit using the analytical

expression (Eq. 30) ωana
0 = ω0/

√
1+ R0

d and the Minnaert relation for the
frequency, giving R0 = 1.65mm.

ble of equivalent gas volume: fMinnaert = A /Req = 2040Hz with
A = 3.24mm/s the Minnaert constant and a radius Req = 1.6mm
for a spherical bubble having the same gas volume than the cu-
bic bubble. The resonance frequency slowly increases with time
(1.7% per hour), which we interpret as a slow dissolution of the
bubble. These bubbles have a good quality factor, around Q = 20,
meaning that the damping ratio δ = 1/Q is around 510−2.

In order to understand the coupling between bubbles, we
started with two identical bubbles. One cubic bubble was placed
at the sample area of the tank and the other was fixed to a 3D
moving stage. Starting from a position of the stage where the
bubbles are in contact the distance d between centers was in-
creased by 0.5mm steps. The hydrophone was placed at the same
height than the bubbles, approximately 1cm away the fixed bub-
ble and outside the way of the moving bubble. Fig. 3 (dots) shows
the experimental values of the resonance frequency of such a sys-
tem with the evolution of the distance d: the resonance frequency
decreases when bubbles are approached to each other, as is the
case for spherical bubbles? .

To go further in the study of the interactions between bubbles,
we performed experiments with various numbers of bubbles ar-
ranged along a 1D line. We varied the number of bubbles from
2 to 8 bubbles, spaced by d = 8mm. Fig. 4 shows that the ex-
perimental resonance frequency diminishes with the number of
bubbles.

2D dimensional networks of identical bubbles were also stud-
ied. Bubbles were arranged in a matrix configuration, the closest
neighbours spaced by 10mm. Similarly to lines of bubbles, it was
found that the resonant frequency decreases with the number of
bubbles present in the system (see Fig. 4). The frequency is more
reduced with an increasing number of bubbles compared to the
linear case because of the larger number of neighbours in 2D ar-
rangements, as this is pinpointed by Fig. 4.

In 3D arrangements the number of neighbours increases dra-
matically. As every bubble will interact with more bubbles one
can expect an even greater reduction of the resonance frequency
compared to 1D/2D geometries. In order to specifically pinpoint

Fig. 4 Evolution of the resonance frequency for lines and matrices of
bubbles with the number of bubbles. Black and dark blue points are the
experimental frequencies for lines of N bubbles and matrices of N ×N
bubbles, respectively. Purple and blue dashed lines are the numerical
predictions for these systems, taking R0 = 1.6mm.

the influence of the dimensions, we have designed arrangements
with a central bubble, surrounded by two neighbours in a line (1D
line called 1+2), four neighbours in a plane (2D cross 1+4), six
neighbours in three directions (3D cross 1+6), see photographs
in Fig. 5a-c.

The table in Fig. 5 shows experimental observations up to a 3D
arrangement of 3×3×3 bubbles. This last system has a resonant
frequency of around 1kHz, which represent a huge reduction of
the resonant frequency, which is 2 times smaller than the resonant
frequency of a single bubble.

4 Modelling
We now attempt to model those observations.

4.1 Bubbles as spherical pulsators

We have previously shown? that the acoustic resonance fre-
quency of a cubic bubble is very close to that of a spherical bubble
of same volume. In addition, the emitted field is spatially very
close to that of a monopole source, provided the distance d of ob-
servation to the cube centre is larger than the cube size. For these
reasons we model bubbles as spherical, and the sound emitted by
each bubble is described as the one emitted by a spherical bubble
whose radius evolves as

Rn(t) = Rn0 +an exp(iωt) (2)

where Rn0 is the bubble radius at rest of bubble n and an is the am-
plitude of pulsation (|an| � Rn0), in response to a driving acoustic
pressure Pac = Pa exp(iωt).

The mechanical equations for the fluid are written in Appendix
A. For simplicity we let the interested reader to look at the deriva-
tion in this Appendix and we give only the end results here. We
find that each bubble, when alone, behaves as an oscillator with
a resonant pulsation frequency ωn and damping ratio δn (given
by Eq. 25 and 26). Note that the resonant frequency is well
approximated by the Minnaert equation fn = ωn/2π = α/Rn for
millimetric bubbles in water, with α = 3.24m/s. Damping is the
consequence of three phenomena: thermal effects, viscosity and
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System f exp
0 (Hz) f num

0 (Hz) f ana
0 (Hz)

1+2 1834±50 1748 1703
1+4 1630±60 1581 1593
1+6 1460±100 1454 1468

3×3×3 1067±100 1002

Fig. 5 Top: Pictures of bubble arrangements: 1 + 2 (a), 1 + 4 (b), 1 + 6
(c) and 3×3×3 (d). The spacing is 8 mm. Bottom: Table presenting the
measured resonance frequencies f exp

0 of these systems, along with the
numerical predictions f num

0 and the value of the analytical expressions
f ana
0 from appendix B using R0 = 1.6mm.

radiation.

4.2 Interactions between pulsators
Each bubble receives the pressure emitted by neighbour bubbles
in addition to the incoming driving field. The model predicts that
bubble oscillators when oscillating with an amplitude an are cou-
pled by the following set of equations:

(ω2−ω
2
n − iω2

δn)an

+
ω2

Rn0

N

∑
m=1
m6=n

R2
m0 exp [−ikdnm]am

dnm
=

Pa

ρ0Rn0
,

(3)

see Appendix A for a full derivation. The coupling term is the
second term on the left hand side. In this equation the distance
between centres of bubbles n and m is noted dnm. The wavevector
is k = ω/c, with c the speed of sound and neglecting here fluid
viscosity. The acoustic pressure received by bubbles is assumed to
be uniform and equal to Pa, and ρ0 is the water density. Inverting
this system of equations provides the value of the amplitudes an.
The pressure emitted by all these bubbles is

pbubbles(rrr, t) =−ρ0c2k2 exp(iωt)
N

∑
n=1

R2
n0an exp [−ikdrn]

drn
(4)

with drn = |rrr− rrrn|, the distance between the microphone of posi-
tion vector rrr and the nth bubble of position vector rrrn.

4.3 Numerical predictions of the acoustic response

Here we assume all bubble to have the same rest radius Rn = R0,
and we will adjust this parameter to describe experiments.

The total acoustic pressure amplitude field received by a micro-
phone is pmic = Pac + pbubbles, while it is p0

mic = Pac in the absence
of bubbles. We can thus model the measured relative spectrum
which writes:

Anum =
pmic− p0

mic

p0
mic

=
pbubbles

Pac
. (5)

This prediction prediction always showed a peak in amplitude
and a change of phase from 0 to π. As in the experiments, we de-
fine the numerical resonant frequency f num

0 as the first frequency
for which which the phase of the response crosses 0, that is the
condition cos(ϕ(Anum)) = 0 at resonance.

4.4 Comparison with experiments

One bubble The model predicts a spectral response Anum( f ) for
single bubbles, in agreement with one bubble experiments when
choosing the parameter R0 = 1.57mm (Fig. 2) close to the ex-
pected value from the gas volume.

Two bubbles We correctly predict the resonance of a couple of
bubbles (Fig. 3) a a function of distance between bubble centers,
with a slightly larger R0 = 1.65mm.

In this special case, it is possible to give a simple analytical pre-
diction (see details in Appendix B, Eq. 30) and it gives a good
agreement with experimental and numerical data as it is shown
in Fig. 3. For small separation distances d in front of the wave-
length (which is around 750mm at 2kHz), Eq. 30 is close to the

expression ωana
0 ' ω0/

√
1+ R0

d , an expression that is classical in

litterature? .
Arrangements in lines or matrices For 1D lines of bubbles and

2D networks (from 2×2 to 6×6) the numerical predictions are in
good agreement with experiments, still taking R0 = 1.6mm, see
figure 4.

Arrangements in volumes We also find a good agreement for
3D grids see the table in Fig. 5. Note that because some of these
systems have a lot of symmetries, their resonant frequency can be
expressed analytically, assuming two groups of bubbles oscillating
with the same amplitude: the central one, and the peripheral ones
see Appendix B for formulas.

5 Conclusion
As a conclusion, we have shown interaction which takes place
between the bubbles downshifts the global resonant frequency
of the system and can be predicted using a model of spherical
bubbles. This interaction has tremendous effects in 3D arrange-
ments, even when bubbles are parted by distances several times
their own sizes (here d/R0 = 5). We found that radius of spheri-
cal bubbles used in the simulations varied between 1.57mm and
1.65mm depending on the experiments, which we believe is due
to imperfections in the fabrication process that changed slightly
the inner gas volume, or to a different attachment of the contact
line during immersion.

Perspectives will be the global study of larger scale metamateri-
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als, with different inter-bubble distances, in order to understand
the transmission and absorption properties. In addition further
work is needed to detect higher order modes where not all bub-
bles oscillate in phase.

Author’s contributions
T. Combriat designed and 3D printed the frames. He built the
tank and a custom made translation stage. He implemented a
computer control of devices to send and record acoustic signals.
He wrote programs to analyse the signals and performed nu-
merical calculations. P. Rouby-Poizat performed acoustic mea-
surements and analysed their spectrum for the different set of
structures. She proposed arrangements with 1+N bubbles. A.
Doinikov wrote the theoretical part. O. Stephan initially proposed
the idea to built many cubic frames. P. Marmottant derived ana-
lytical expression for the case of bubbles having 2,4 and 6 neigh-
bours. He designed and supervised the research. T. C. and P.M.
wrote the manuscript.

Acknowledgments
We acknowledge financial support from the European Commu-
nity’s Seventh Framework Programme (FP7/2007-2013) ERC
Grant Agreement Bubbleboost no. 614655.

Appendix

A Theory for an assembly of bubbles

We have previously shown? that the acoustic resonance fre-
quency of a cubic bubble is very close to that of a spherical bubble
of same volume. In addition, the emitted field is spatially very
close to that of a monopole source, provided the distance d of
observation to the cube centre is larger than the cube size. For
these reasons, we will model bubbles as spherical, which should
be valid if they are sufficiently distant apart.

We consider a cluster of spherical bubbles located arbitrarily in
space. We introduce a global Cartesian coordinate system. The
position vector of an arbitrary space point is denoted by rrr and has
coordinates (x,y,z). The position vector of the centre of the nth

bubble is denoted by rrrn and has coordinates (xn,yn,zn).
The time-varying radius of the nth bubble is represented as

Rn(t) = Rn0 +an exp(iωt) (6)

where Rn0 is the bubble radius at rest and an is the amplitude
of the bubble pulsation. We assume that |an| � Rn0 and solve the
problem in the linear approximation.

The liquid around the bubbles is assumed to be viscous and
compressible. In the linear approximation, the liquid has a ve-
locity v and a perturbed density ρ that obey the following equa-
tions? :

ρ0
∂v
∂ t

= −∇p+η∆v+
(

ζ +
1
3

η

)
∇(∇ ·v) (7)

∂ρ

∂ t
+ ρ0∇ ·v = 0 (8)

p = c2
ρ (9)

where ρ0 is the equilibrium liquid density, p is the perturbed liq-
uid pressure, η and ζ are the shear viscosity and the bulk vis-
cosity, respectively, while c is the speed of sound. These equa-
tions are the linearized version of the compressible Navier-Stokes
equation, the continuity equation and the equation of state of the
liquid.

The liquid motion is assumed to be irrotational with v = ∇φ ,
where φ is the velocity potential. With a time dependence propor-
tional to exp(iωt) the equations (7)-(9) then provide the Helmoltz
equation

∆φ + k2
φ = 0 (10)

where k is given by

k =
ω

c

[
1+

iω
ρ0c2

(
ζ +

4
3

η

)]−1/2
(11)

The velocity potential around the nth bubble is a spherically
symmetric solution of equation (10),

φn(rrr, t) =
An

|rrr− rrrn|
exp(iωt− ik|rrr− rrrn|) . (12)

The velocity is then

vvvn(rrr, t) =−An (1+ ik|rrr− rrrn|)(rrr− rrrn)
|rrr− rrrn|3

×exp(iωt− ik|rrr− rrrn|)

(13)

and the pressure produced by the bubble is

pn(rrr, t) =− iρ0c2k2An

ω|rrr− rrrn|
exp(iωt− ik|rrr− rrrn|) (14)

The influence of bubbles on each other’s pulsation is taken into
account with accuracy up to leading terms with respect to inter-
bubble distances and compressibility effects. Within the frame-
work of this accuracy, from the boundary condition for the liquid
velocity at the surface of the nth bubble, one obtains

An =−iωR2
n0an (15)

To find an, we apply the boundary condition for the normal
stress at the surface of the nth bubble, which is given by

Pgn

(
Rn0

Rn

)3κn

=
2σ

Rn
+P0 +Pac−

N

∑
m=1

(σm)|rrr−rrrn|=Rn
(16)

where Pgn is the equilibrium pressure of the gas inside the nth

bubble, σ is the surface tension, P0 is the equilibrium pressure in
the liquid, Pac = Pa exp(iωt) is the driving acoustic pressure, N is
the number of bubbles and σm(rrr, t) is the normal stress produced
by the mth bubble in the liquid. Note that in Eq. 16, σm(rrr, t) is
taken at the surface of the nth bubble.

In order to take into account deviations from the adiabatic law,
the exponent κn is defined as?

κn = γ(αn + iβn) (17)

where γ is the specific heat ratio of the gas. The quantities αn and
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βn (which are introduced to describe the phase shift between vari-
ations of the gas pressure and the bubble volume, caused by heat
losses) are the real and imaginary part of κn and are calculated
by

αn =
[
(1+ χ

2
n )

(
1+

3(γ−1)(sinhXn− sinXn)
Xn(coshXn− cosXn)

)]−1
(18)

βn = αnχn (19)

where

χn = 3(γ−1)

× Xn(sinhXn + sinXn)−2(coshXn− cosXn)
X2

n (coshXn− cosXn)+3(γ−1)Xn(sinhXn− sinXn)
(20)

Xn = Rn0
√

2ω/Dgn, Dgn = K/ρncpg is the thermal diffusivity of the
gas inside the nth bubble, K is the thermal gas conductivity, cpg

is the specific gas heat at constant pressure, ρn = ρAPgn/PA is the
equilibrium gas density inside the nth bubble and ρA is the gas
density at the atmospheric pressure PA.

The complex exponent κn in Eq. 16 makes it possible to take
account of thermal effects whose contribution to the damping
of bubble oscillations is known to dominate the viscous and ra-
diation contributions over a wide range of bubble radii - from
a few microns to several hundred microns - unless the driving
frequency is considerably above the bubble monopole resonance
frequency? ? ? .

The normal stress produced by the nth bubble is calculated by

σn(rrr, t) =−pn +2η
∂vn

∂ |rrr− rrrn
|+

(
ζ − 2

3
η

)
∇∇∇ · vvvn (21)

where vn = |vvvn|. Substitution of Eq. 13, 14 and 15 into Eq. 21
yields

σn(rrr, t) =−iωR2
n0an

(
iρ0ω

|rrr− rrrn|
+

4ikη

|rrr− rrrn|2
+

4η

|rrr− rrrn|3

)
×exp(iωt− ik|rrr− rrrn|)

(22)

Substituting Eq. 6 and 22 into 16, one obtains

Pgn = P0 +
2σ

Rn0
(23)

(ω2−ω
2
n − iω2

δn)an

+
ω2

Rn0

N

∑
m=1
m6=n

R2
m0 exp(−ikdnm)am

dnm
=

Pa

ρ0Rn0

(24)

which is Eq. 3 in the main text, where we have introduced the
resonance frequency of bubbles (when isolated)

ωn =
1

Rn0

√
3γαnPgn

ρ0
− 2σ

ρ0Pn0
(25)

their damping constant

δn =
ωRn0

c
+

4η

ρ0ωR2
n0

+
(

ωn

ω

)2
χn (26)

and the inter-bubble distances dnm = |rrrn− rrrm|.
It should be noted that we assume the bubble radii to be much

smaller than the acoustic wavelength, kRn � 1. Therefore, terms
of this order are neglected in Eq. (24), whereas the distances be-
tween the bubbles, dnm, can be comparable to and even greater
than the acoustic wavelength. Thus, terms of the order kdnm are
kept in Eq. (24). We also assume the bubble radii to be small com-
pared to the distances between the bubbles, Rn0 � dnm. There-
fore, terms of higher order than Rn0/dnm are omitted in Eq. (24).

The system of equations Eq. (24) is a system of N algebraic
equations in the unknowns an. Its solutions gives the values of an.

The total pressure produced by all bubbles at the point rrr is
calculated by

p(x,y,z, t) =−ρ0c2k2 exp(iωt)
N

∑
n=1

R2
n0an exp [−ikdrn]

drn
(27)

with drn = |rrr− rrrn|.which is Eq. 4 in the main text.

B Analytical predictions for the resonance
frequency of 1+N bubbles

For the specific case of a bubble surrounded by N bubbles at the
same distance d, it is possible to find analytical predictions for the
resonance frequency, still assuming spherical bubbles. We have
tested several configurations.

B.1 Two bubbles: 1+1

Note that for the case a couple of bubbles we can derive an ana-
lytical formula for the resonance frequency. - Eq. (3) writes, in a
matrix form:[ (

ω2−ω2
0 − iω2δ

)
ω2 R0

d e−ikd

ω2 R0
d e−ikd (

ω2−ω2
0 − iω2δ

) ][
a1

a2

]
=

[
Pa

ρR0
Pa

ρR0

]
(28)

where we have introduced ωn = ω0 and δn = δ . The solution is:

a1 = a2 =
Pa/ρR0

ω2
(

1+ R0
d e−ikd

)
−ω2

0 − iω2δ

(29)

This suggests a natural resonance at

ω
ana
0 =

ω0√
1+ R0

d cos(kd)
(30)

B.2 Three aligned bubbles: 1+2

Now, for simplicity we neglect damping factors δ , and we have
assumed the distance d to be extremely small compared to the
wavelength kd � 1 and e−ikd ' 1.

Owing to the symmetry of the network of three aligned bub-
bles, we can assume that the amplitudes of the first and last bub-
bles are equal (a1 = a3), while the amplitude of vibration of the

6 | 1–7Journal Name, [year], [vol.],



central bubble (a2) might be different. Eq. (24) writes[ (
ω2−ω2

0 +ω2 R0
d

)
ω2 R0

d

2ω2 R0
d

(
ω2−ω2

0
) ][

a1

a2

]
=

[
Pa

ρR0
Pa

ρR0

]
(31)

The eigen-values of the matrix on the left-hand side are

ω
± = ω0

√√√√√√1+ R0
4d ±

√
2+ 1

16
R0
d

1+ R0
2d −2

(
R0
d

)2 (32)

the frequency ωana
0 = ω− and corresponds to the mode were all

bubbles oscillate in phase, while ω+ is a higher frequency mode
that is not excited here.

B.3 A cross of bubbles: 1+4
For the case of four peripheral bubbles all in a plane, still assum-
ing they oscillate in phase, Eq. (24) writes[ (

ω2−ω2
0 +ω2 R0

2d (1+2
√

2)
)

ω2 R0
d

4ω2 R0
d

(
ω2−ω2

0
) ][

a1

a2

]
=

[
Pa

ρR0
Pa

ρR0

]
(33)

and has a eigen values given by

ω
± = ω0

√√√√√√1+ R0
4d (1+2

√
2)±

√
4+ (1+2

√
2)2

16
R0
d

1+ R0
2d (1+2

√
2)−4

(
R0
d

)2 (34)

where ωana
0 = ω− gives the first resonance frequency.

B.4 A 3D cross of bubbles: 1+6
For the case of six peripheral bubbles, still assuming they oscillate
in phase, Eq. (24) writes[ (

ω2−ω2
0 +ω2 R0

2d (1+4
√

2)
)

ω2 R0
d

6ω2 R0
d

(
ω2−ω2

0
) ][

a1

a2

]
=

[
Pa

ρR0
Pa

ρR0

]
(35)

with eigenvalues for the frequency

ω
± = ω0

√√√√√√1+ R0
4d (1+4

√
2)±

√
6+ (1+4

√
2)2

16
R0
d

1+ R0
2d (1+4

√
2)−6

(
R0
d

)2 (36)

where ωana
0 = ω− gives the first resonance frequency.
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