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A Study of Connectivity on Dynamic Graphs:
Computing Persistent Connected Components

Mathilde Vernet Yoann Pigné Eric Sanlaville

Abstract
This work focuses on connectivity in a dynamic graph. An undirected

graph is defined on a finite and discrete time interval. Edges can appear and
disappear over time. The first objective of this work is to extend the notion
of connected component to dynamic graphs in a new way. Persistent con-
nected components are defined by their size, corresponding to the number of
vertices, and their length, corresponding to the number of consecutive time
steps they are present on. The second objective of this work is to develop
an algorithm computing the largest, in terms of size and length, persistent
connected components in a dynamic graph. PICCNIC algorithm (PersIstent
Connected CompoNent InCremental Algorithm) is a polynomial time algo-
rithm of minimal complexity. Another advantage of this algorithm is that it
works online: knowing the evolution of the dynamic graph is not necessary
to execute it. PICCNIC algorithm is implemented using the GraphStream
library and experimented in order to carefully study the outcome of the algo-
rithm according to different input graph types, as well as real data networks,
to verify the theoretical complexity, and to confirm its feasibility for graphs
of large size.

1 Introduction
In static graphs, connectivity is measured thanks to the computation of connected
components. The problem of graph connectivity is relevant to many applications
and contexts, such as communication networks, logistic networks or social net-
works. Furthermore, when a graph can be decomposed into several connected
components, many problems can be decomposed too and solved separately on
the different components. For instance, coloring problems, matching problems or
vehicle routing problems can be decomposed.

In some cases, connectivity is also a necessary condition that needs to be
checked before solving a problem. Flows, for example, cannot be computed if
the source and sink do not belong to the same connected component.
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Furthermore, time is an important issue that needs to be taken into account
in many fields. Indeed, the interactions between entities are not necessarily static,
and their nature might not be constant over time either. Static graphs do not allow
the modeling of interactions which are evolving over time. The logical extension
of graphs allowing this is then dynamic graphs. In a dynamic graph, vertices and
edges can be present or absent depending on time. Every piece of information
carried by vertices or edges can also be time-dependent.

The issue addressed in this paper is connectivity in a dynamic graph. Several
questions are answered. First, what does connected component mean in a dynamic
graph? And second, how can connectivity be measured in a dynamic context? We
propose an extension of connected components in dynamic graphs, called Persis-
tent Connected Components (PCC). This new definition takes into account the
temporal dimension of the graph, space and time being considered simultaneously.
PCCs are defined by their number of vertices, similarly to connected components
in static graphs, but also by the number of consecutive time steps they are present
on. We propose a polynomial time algorithm computing non-dominated PCCs
in a dynamic graph and the associated Pareto front. This algorithm is studied
together with experiments that show tractability even for large graphs on a long
time horizon. The experiments were carried on with different graph types in order
to study the impact of the graph structure on the results. There were also exper-
iments made on large size real instances in order to verify the applicability of our
algorithm on real data.

Section 2 presents the main concepts of dynamic graphs necessary for this
work, and related works. Section 3 presents the persistent connected components
(PCC). Section 4 introduces the algorithm designed to detect PCCs in a dynamic
graph. The experimental study is presented in Section 5 and concluding remarks
are given in Section 6.

2 Main concepts and state of the art
Dynamic graphs, also known in the literature as dynamic networks, time varying
graphs (Casteigts et al., 2012), evolving graphs (Xuan et al., 2003), temporal graphs
(Michail, 2016) or temporal networks (Holme, 2015), have been studied mostly in
the past 20 years. Holme (2015) made an extended survey.

When we consider a graph and its evolution over time, we work on a dynamic
graph. The dynamicity can be on vertices, edges or both. The presence of vertices
or edges can be modified during the interval on which the graph is studied. All
the information carried by vertices or edges can also be time-dependent (costs,
capacities, storage, etc.).
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Definition 1. A study interval T = {1 . . . T} is a discrete set of T time steps.
The end of this interval, noted T , is called the time horizon.

Definition 2. A t-graph, noted Gi, i ∈ T , is a static graph corresponding to the
dynamic graph G at a given time step i.

Definition 3. A dynamic graph G is simply noted G = (Gi)i∈T and is defined on
a study interval T = {1 . . . T}. It is a succession of t-graphs Gi = (V,Ei), i ∈ T ,
such that all t-graphs are defined over the same vertex set.

Note that these definitions, close to the literature, allow to isolate a vertex
by removing its adjacent edges. In terms of connectivity, this is equivalent to
removing this vertex.

A compact representation of a dynamic graph can be given. See for example
Figure 1a where the labels on edges represent their times of presence. Figures 1b
to 1e show the succession of static graphs.

Xuan et al. (2003) extend the definition of paths to dynamic graphs. The
equivalent, in a dynamic graph, of a path in a static graph is a journey. A journey
from a vertex u to a vertex v in a dynamic graph starts from u at time step istart
and ends on v at time step iend. It is a succession of paths Pi in static graphs Gi.
Pistart starts on vertex u in Gistart . Piend

ends on vertex v in Giend
. Path Pi in Gi,

istart ≤ i ≤ iend, ending on a vertex w enforces path Pi+1 to start on the same
vertex w in Gi+1. A similar definition is used in the work of Kempe et al. (2002) in
which the edges of the graph appear exactly once. In the following of the section,
a focus is made on connectivity issues for dynamic graphs.

In static graphs, a connected component is a maximal set of vertices that are
connected through edges in the graph. In other words, for two vertices u and v
in the component, there exists a path between u and v in the graph. In directed
graphs, the definition can be extended in two different ways, strongly and weakly
connected components whether there exists a directed path from u to v and one
from v to u or only one of those paths.

In dynamic undirected graphs, the existence of a journey from a vertex u to
another vertex v does not imply the existence of a journey from v to u. Because
of the edges time of presence, journeys are directed in dynamic graphs. In Figure
1, there is a journey from vertex 2 to vertex 3 going through edge (2, 4) at time
step 2 and edge (4, 3) at time step 3. There is no journey from vertex 3 to vertex
2.

Based on the definition of journeys from Xuan et al. (2003), Bhadra and Fer-
reira (2003) give a definition of strongly connected components in a dynamic di-
rected graph. Their definition can also be applied to undirected graphs. Such a
component is a maximal set of vertices such that for all vertices u and v in the
component, there exists a journey from u to v and a journey from v to u in the
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graph. A distinction is made between closed strongly connected components and
open strongly connected components. In the former, the journeys must cross ver-
tices inside the component only whereas in the latter, journeys can cross vertices
outside the component. In Figure 1, {1, 2, 4} is an open strongly connected com-
ponent. There exists a journey, both ways, between each pair of vertices. The
journey from vertex 4 to vertex 1 goes through vertex 3 which is not in the com-
ponent, because there exists no journey from vertex 3 to vertex 2. Bhadra and
Ferreira also prove that the problem of finding a connected component (open or
closed) of size k for a given value k is NP-Complete.

This definition implicates an interesting feature. Unlike static graphs, in dy-
namic graphs, connected components do not partition the vertices. Strongly con-
nected components in dynamic graphs can overlap, as a vertex can be a part of
two distinct components. In Figure 2, {1, 2, 3, 4} is a closed connected component.
There is a journey both ways between each pair of vertices of the component going
only through vertices of the component. For the same reasons, {4, 5, 6, 7} is also
a closed strongly connected component. Vertex 4 is part of both components.

Jarry and Lotker (2004) use Bhadra and Ferreira’s definition and show that
asking whether a graph is connected or not is NP-hard even for two-layer grids but
is polynomial in the case of trees. They propose an algorithm for this particular
case.

Nicosia et al. (2012) work on connectivity on dynamic graphs using a definition
corresponding to the open strongly connected components of Bhadra and Ferreira
(2003). They propose a way to solve the problem of finding such components in a
graph using a clique search in a static undirected graph, which is not polynomial.

Gómez-Calzado et al. (2015) extend Bhadra and Ferreira’s definition with ∆-
component where the journeys connecting vertices in the component must be at
most ∆ time steps long.

Huyghues-Despointes et al. (2016) also propose an extension to Bhadra and
Ferreira’s definition. They define a δ-component (which they call ∆-component)
to be a set of vertices which are open strongly connected on any time window
of size δ of the dynamic graph. In their definition, the journeys connecting the
vertices of the component can only cross one edge per time step.

All those definitions are based on journeys in the dynamic graph. Some vertices
can be in the same component and never be connected at any time step of the
graph. Vertices 1 and 4 from example in Figure 1 are never directly connected by
an edge or a path in any t-graph.

The main usage of such definitions is message transmission.
Casteigts et al. (2015) work on connectivity in dynamic graphs and define the

τ -interval connectivity (which they call T -interval connectivity). A dynamic graph
is τ -interval connected when the intersection ofGi . . . Gi+τ−1 for all i ∈ [1, T−τ+1],
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Figure 1: Dynamic graph on 4 time steps. Labels on edges of the compact repre-
sentation are the time steps the edges are present on. Each t-graph is represented.
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Figure 2: Dynamic graph on 4 time steps. There are two closed connected com-
ponents: {1, 2, 3, 4} and {4, 5, 6, 7}.
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where T is the time horizon, is a connected graph in the static sense. They propose
algorithms needing O(T ) operations (binary intersection and connectivity test) to
solve this problem. They do not propose a definition of connected component
based on their definition of τ -interval connectivity.

Akrida and Spirakis (2019) present a continuous time model. They define in-
terval temporal networks as graphs for which a set of intervals of availabilities is
defined on each edge. An edge is present during the defined intervals. They pro-
pose a polynomial time algorithm able to give the longest time interval starting
at a given time x and ending before a given time y on which the graph remains
connected. Unlike the work of Casteigts et al. (2015), the connection is not nec-
essarily made using the same edges. They present a second algorithm computing
the sets of vertices of cardinality larger than a given bound that remain connected
for the longest period of time starting at a given time x. This gives connected
components that do not overlap, unlike other definitions found in the literature.
For both algorithms presented, the choice of parameter x determines the outcome
of the algorithm. If the graph starts to remain connected at a later time than x
or if the graph has large components that start being connected later than x then
the algorithms do not detect it.

3 Persistent connected components
This section defines the persistent connected components. We propose a point of
view of connectivity in dynamic graphs, which is not based on journeys, unlike most
of the definitions found in the literature. An example is given and applications are
discussed.

3.1 Definitions and notations

Definition 4. A persistent connected component (PCC) p of G is a set of k vertices
in V that are connected in the graph (either directly or through other vertices
of the graph) for l consecutive time steps. Vertices u1 . . . uk form a persistent
connected component of size k and length l if and only if there exist Gi . . . Gi+l−1
such that u1 . . . uk are in the same connected component in the static sense in each
Gj (i ≤ j < i+ l).
p = (K, k, l, f) where K is the set of its vertices, k is the size of this set, l is the
length of the component, in other words, the number of consecutive time steps the
component is present on, and f is the last one of those time steps.

PCCs are characterized by their size (number of vertices) and length (number
of consecutive time steps). Analogously to the static definition that implies maxi-
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mality regarding to inclusion, we define maximality regarding to inclusion of both
vertices and time steps.

Definition 5. A maximal persistent connected component is a PCC which is max-
imal regarding its size and length. For a given maximal PCC p = (K, k, l, f) with
K = {u1, . . . , uk}:

@ p′ = (K ∪ {uk+1}, k + 1, l, f) and (1)
@ p′′ = (K, k, l + 1, f) and (2)
@ p′′′ = (K, k, l + 1, f + 1) (3)

A maximal PCC is a PCC such that its vertex set is not included in a bigger
vertex set connected on the same time steps (condition 1), and the same vertex set
is not connected on the previous time step (condition 2) nor on the next time step
(condition 3). In the following, we will only consider maximal PCCs, therefore by
slight abuse of notation, the term PCC will be used to refer to a maximal PCC.

It should be noted that both directed and undirected graphs can be considered.
In the case of undirected graphs, we consider, for PCCs, a set of k vertices simply
connected. And in the case of directed graphs, we consider a set of k vertices
strongly connected. All the definitions hold.

In static graphs, we can look for the largest connected component. Similarly,
in dynamic graphs, we aim at finding the biggest persistent connected components
in terms of size and length. Hence there are two criteria to optimize, that is the
reason to look for a Pareto front formed by all non dominated PCCs.

Definition 6. p = (K, k, l, f) is a non-dominated PCC if and only if there exists
no PCC p′ = (K ′, k′, l′, f ′) 6= p,

k′ > k ; l′ ≥ l or (4)
l′ > l ; k′ ≥ k or (5)
k′ = k ; l′ = l ; f ′ < f or (6)
k′ = k ; l′ = l ; f ′ = f ; K ′ ≺ K (7)

Condition 6 from definition 6 implies that in the case of two components of
same size and same length, the earliest one is considered dominant. If furthermore
two components have the same size and length and finish at the same time step,
then an arbitrary total order on the vertex subsets shall be used (for instance, the
lexicographic order), this is insured by condition 7.

One may question the extension of the chosen dominance, particularly consid-
ering conditions 6 and 7. The first motivation is the wish to compute some “large”
components, that have a meaning considering the applications (e.g., a subset of
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nodes considered as “safe” when connectivity is considered). Computing all such
large components may not be useful, it may not be practical either. The second
motivation is to provide the Pareto curve itself, considering size and length. In-
deed, this curve provides a characterization of the network, as our experiments
will show. The third motivation is practicality. Thanks to our definition, a set
of at most min(n, T ) PCCs is obtained. If conditions 6 and 7 are relaxed, the
size of the obtained set might grow exponentially with n. A dynamic graph with
this characteristic is easy to build, considering for instance that each Gt connects
exactly one different vertex subset of size n

2
. This entails some complexity issues,

both in time and in space, to compute and to keep the set.
One may object that to get such a large number of PCCs, a number of time

steps exponential in n is needed, which is true. Still, increasing the time horizon
will mechanically increase the set size, which is not true with our definition. Fur-
thermore, another dynamic graph can be built, for which the number of PCCs is
O(n2) when T = O(n). Suppose n = 2 · k, and at each time step t ≤ k, the graph
Gt is composed of k disjoint edges. These edges are different at each time step. To
achieve this, it suffices to consider as edges the node pairs (i, j), i ∈ {1 . . . k}, and j
taken by circular permutation from the set of integers {k+i, k+i+1 . . . , k+i+k−1}.
Hence, after k time steps, exactly k × k PCCs are obtained, all with size 2 and
length 1. In this example, a number of PCCs quadratic in n is obtained in a
number of time steps linear in n. Hence even for small values of T , the number of
PCCs might increase rapidly.

These two examples show that our dominance definition allows to avoid an
explosion on the number of solutions. The experiments presented later in the
paper show that computing these solutions, with the appropriate algorithm, is
possible for large values of n and T .

A PCC (as per Definitions 4 and 5) is a maximal set of k vertices that stay
connected for at most l consecutive time steps. Therefore, in all of those time
steps, for any two vertices in the PCC, there exists a path between them. A
PCC is then always part of an open strongly connected component (as defined in
Section 2). Our definition of connectivity, like those of Casteigts et al. (2015) and
Akrida and Spirakis (2019), is not based on journeys. Nevertheless, it differs from
their definitions. If a graph is τ -interval connected according to the definition in
(Casteigts et al., 2015), then this graph is necessarily connected over T and it has
a persistent connected component composed of the n vertices of the graph and
lasting for the whole study interval T . The reciprocal implication does not hold,
because even if a graph remains connected over T , as the connection might not be
achieved with the same edges, then it will not necessarily be τ -interval connected
for τ > 1. In (Akrida and Spirakis, 2019), as they work with a continuous time
model, the dynamic graph cannot be described as a succession of static graphs.
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Unlike most problems described in Section 2, the problem of finding undomi-
nated PCCs can be solved polynomially (as proved in section 4.4).

3.2 Applications

Connectivity in a dynamic graph finds applications in many fields. Remember
first that travel times associated to edges are not considered in this model. This is
appropriate when the network’s dynamics is slow compared to the time necessary
to cross an edge.

In communication networks such as ad hoc networks or sensor networks, the
transmission is almost instantaneous. In such networks, a PCC is a subnetwork
that remains connected, which is essential when communications are considered,
see for instance (Koster and Muñoz, 2009).

In transportation networks, roads availability can be time-dependent. The
unavailability of a road can be temporary, new roads can be built and existing
roads can be closed. Travel time on edges are often negligible compared to the
networks dynamics. A PCC would measure in this case the reachability of different
locations. Démare et al. (2017), for instance, use dynamic graphs to model the
transportation network on the Seine valley.

In social networks, there is no travel time on edges because they represent a
relationship, see the seminal work of Newman (2003). Most works on commu-
nity detections use local edge density, some of them also consider time dimension
(Nguyen et al., 2011). If we consider that a community must verify the connec-
tivity condition between its members during some time interval, then detecting
PCCs, according to our model, will help identify these communities.

3.3 Example

Figure 3 presents a dynamic graph on 4 time steps and 5 vertices. This graph
is not connected through the whole study interval. The t-graphs G1 and G4 are
disconnected and both have two connected components ({1, 2, 3} and {4, 5} in G1

and {1, 5} and {2, 3, 4} in G4). The t-graphs G2 and G3 only have one connected
component containing all vertices. There are 6 maximal persistent connected com-
ponents in this graph.

Vertices 1 ad 5 are connected from time step 2 to time step 4, even though
they are directly connected with an edge only on time steps 3 and 4. They form
a persistent connected component p1 = ({1, 5}, 2, 3, 4). Similarly, vertices 4 and 5
are connected from time step 1 to time step 3 and therefore they form a persistent
connected component p2 = ({4, 5}, 2, 3, 3). In this graph, vertices 1, 2 and 3 are
connected from time step 1 to time step 3. It can be noticed that in G2, even
though they are connected, they form an independent set. Those vertices form
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Figure 3: Dynamic graph on 4 time steps.

a persistent connected component p3 = ({1, 2, 3}, 3, 3, 3). Vertices 2, 3 and 4
are connected from time step 2 to time step 4 and form a persistent connected
component p4 = ({2, 3, 4}, 3, 3, 4). As the graph is connected from time step 2
to time step 3, vertices 1, 2, 3, 4 and 5 form a persistent connected component
p5 = ({1, 2, 3, 4, 5}, 5, 2, 3). It can be noticed that vertices 2 and 3 stay connected
over the whole study interval, even though they are directly connected only in
G3. Therefore vertices 2 and 3 form a persistent connected component p6 =
({2, 3}, 2, 4, 4). In the sense of Definition 4, p1, . . . , p6 are all persistent connected
components, and they are all maximal in the sense of Definition 5.

In the sense of Definition 6, components p1 and p2 are dominated by both p3
and p4 because of condition (4). Component p4 is dominated by p3 under condition
(6). Components p3, p5 and p6 are non-dominated. Those last components are the
ones that we want to find.

Figure 4 shows a representation of the PCCs from the graph of Figure 3. Per-
sistent connected component p3 is represented in orange, p5 is in blue and p6 is in
green. It is clear that PCCs are not disjoint because a vertex can belong to several
PCCs.
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Figure 4: Visual representation of the persistent connected components of the
graph from Figure 3. Each colored square represent a PCC: it covers the vertices
composing it and all the time steps it is present on.

4 PICCNIC Algorithm
This section presents the PICCNIC Algorithm (PersIstent Connected CompoNent
InCremental Algorithm) whose goal is to find the Pareto front containing all non
dominated solutions, that is, every dominant PCC.

The algorithm will be presented together with as an execution example. Cor-
rectness and complexity of this algorithm will be proved.

4.1 Presentation

PICCNIC is presented in Algorithm 1. Its objective is, for a given dynamic graph,
to find all dominant persistent connected components in the sense of Definition 6
that have size bigger than kmin and length bigger than lmin. The default value of
kmin is 2 because a component of size 1 is not relevant as any vertex is connected
to itself for the whole study interval of the graph. And the default value of lmin is
1 because we consider any set of connected vertices to be relevant. This algorithm
works incrementally on the time steps and can therefore be used online.

We can access the vertex set of a PCC p with K(p). The same way, we can
access the size of a PCC p with k(p), we can access it length with l(p) and its
finish date with f(p).

Several sets of components are used to compute the persistent connected com-
ponents. PCCn contains, at each time step i, the components alive at i. To be
built, it needs PCCt which is a temporary set containing PCCS alive at time step

11



i. PCCc keeps the components alive at the previous time step. PCCo contains,
at each time step, the components that just finished. PCCf contains the non
dominated persistent connected components.

Each iteration of the algorithm starts by retrieving all connected components
of t-graph Gi (line 3). Those components are strongly connected components
in the case of directed graphs, and simple connected components in the case of
undirected graphs. We discard components of size lower than kmin. Default value
is 2 because a vertex is necessarily connected to itself for the whole study interval,
so each dynamic graph has n PCCs of size 1 and length T .

The first step of the algorithm (given in Algorithm 2) aims at finding the new
persistent connected components beginning at i and keeping the components that
are still going on at i. It uses the function AddPCC to add a PCC to a PCC
set by checking that the PCC set does not contain another PCC with the same
vertex. If it does, the PCC with the highest length is kept in the PCC set.

The second step of the algorithm (given in Algorithm 3) works on the persistent
components that are over at the current time step (meaning that their finish date
date is the previous time step) and keeps the dominant components. It uses
Algorithms 4 and 5 to check if one component p1 dominates another component
p2 depending on which one finishes first. Those domination algorithms check the
conditions given in definition 6. The order on the vertex subsets of 2V can be for
example a lexicographical order.

4.2 Example

Let us look at the execution of PICCNIC Algorithm on example from Figure 3.
We consider persistent connected component of size at least 2 and length at least
1 (kmin = 2, lmin = 1).

In the first iteration, we focus on G1 (see Figure 3b). It has two connected
components: {1, 2, 3} and {4, 5}. We initialize the set of current PCCs PCCc =
{({1, 2, 3}, 3, 1, 1), ({4, 5}, 2, 1, 1)} and the set of final PCCs PCCf = ∅.

In the second iteration, the current t-graph is G2 (see Figure 3c). It has only
one connected component {1, 2, 3, 4, 5}. At the end of the iteration, the set of
current PCCs PCCc = {({1, 2, 3}, 3, 2, 2), ({4, 5}, 2, 2, 2), ({1, 2, 3, 4, 5}, 5, 1, 2)}.
The first and second components were already present at the previous time step,
therefore their length is now 2 and the last component appeared at this time step.
The set PCCf = ∅, because no component is finished yet.

In the third iteration, the current t-graph is G3 (see Figure 3d). Just like the
previous time step, it also has only one component. All components present before
grow older. At the end of the iteration, PCCc = {({1, 2, 3}, 3, 3, 3), ({4, 5}, 2, 3, 3), ({1, 2, 3, 4, 5}, 5, 2, 3)}.
As all the component present before are still there, no component has finished and
PCCf is still empty.
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Algorithm 1 PICCNIC Algorithm
Input: Dynamic Graph G, study interval T = {1, . . . , T}, lower bound on the
size of PCCs kmin, lower bound on the length of PCCs lmin
Output: Dominant persistent connected components
// Loop on the number of instants

1: for all i ∈ {1, . . . , T + 1} do
2: G′ = Gi // Get the graph for the ith time step, void if i = T + 1
3: CC = set of connected components of G′ of size ≥ kmin
4: if i=1 then
5: PCCc = {p = (K, k, l, f)|K ∈ CC, k = |K|, l = 1, f = 1} // for the

next iteration
6: PCCf = ∅

// All CCs are current PCCs
7: else
8: PCCn = PICCNICStep1(CC,PCCc, kmin)
9: PCCf = PICCNICStep2(PCCn, PCCc, PCCf , lmin)

10: PCCc = PCCn // for the next iteration
11: end if
12: end for

return PCCf
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Algorithm 2 PICCNICStep1

Input:CC, PCCc, kmin
Output:PCCn, the set of possible new PCCs

1: PCCn = ∅
2: for all c ∈ CC AND |c| ≥ kmin do
3: Pers = FALSE // Whether c is already a PCC or not
4: PCCt = ∅ // Contain PCCs for which the vertex set is in c
5: for all p ∈ PCCc do
6: // Compare each static connected component c
7: // with the set of vertices K(p) from each persistent connected compo-

nent p
8: if K(p) = c then
9: Pers = TRUE

10: K(p′) = K(p)
11: k(p′) = |K(p′)|
12: else
13: K(p′) = K(p) ∩ c
14: k(p′) = |K(p′)|
15: end if
16: if k(p′) ≥ kmin then
17: // Keep only the PCCs large enough
18: l(p′) = l(p) + 1
19: f(p′) = i
20: AddPCC(PCCt; p

′)
21: end if
22: end for
23: if ¬Pers then
24: // If the vertex set c is not the vertex set of an existing PCC
25: p′′ = {c, |c|, 1, i}
26: AddPCC(PCCt; p

′′) // Include new components that are not already in
PCCt

27: end if
28: PCCn = PCCn ∪ PCCt
29: end for
30: return PCCn
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Algorithm 3 PICCNICStep2

Input:PCCn, PCCc, PCCf , lmin
Output:Updated PCCf

1: PCCo = PCCc \ PCCn //Set of now finished PCCs
2: for all p ∈ PCCo do
3: if l(p) < lmin then
4: // Keep only the PCCs lasting enough time
5: PCCo = PCCo − {p}
6: STOPLOOP
7: end if
8: for all p′ ∈ PCCo AND p 6= p′ do
9: // Compare PCCs that just ended to keep only the dominating ones

10: if DomLaterEqual(p′, p) then
11: PCCo = PCCo − {p}
12: STOPLOOP
13: else
14: if DomLaterEqual(p, p′) then
15: PCCo = PCCo − {p′}
16: end if
17: end if
18: end for
19: end for
20: for all p ∈ PCCo do
21: for all p′ ∈ PCCf do
22: // Compare PCCs that just ended with non-dominated PCCs in PCCf
23: // to keep only the dominating ones
24: if DomEarlier(p′, p) then
25: PCCo = PCCo − {p}
26: STOPLOOP // p dominated by some finished PCC
27: else
28: if DomLaterEqual(p, p′) then
29: PCCf = PCCf − {p′}
30: end if
31: end if
32: end for
33: end for
34: PCCf = PCCf ∪ PCCo
35: return PCCf

15



Algorithm 4 DomEarlier

Input: Two PCCs p1 and p2 such that f(p1) < f(p2)
Output: TRUE if p1 dominates p2

1: if (k(p1) ≥ k(p2)) AND (l(p1) ≥ l(p2)) then
2: return TRUE
3: end if
4: return FALSE

Algorithm 5 DomLaterEqual

Input: Two PCCs p1 and p2 such that f(p1) ≥ f(p2)
Output: TRUE if p1 dominates p2

1: if (k(p1) > k(p2)) AND (l(p1) ≥ l(p2)) then
2: return TRUE
3: end if
4: if (k(p1) ≥ k(p2)) AND (l(p1) > l(p2)) then
5: return TRUE
6: end if
7: if (k(p1) = k(p2)) AND (l(p1) = l(p2)) AND (f(p1) = f(p2)) AND (K(p1) ≺
K(p2)) then

8: return TRUE
9: end if

10: return FALSE
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In the fourth iteration, the current t-graph is G4 (see Figure 3e). It has two
connected components: {1, 5} and {2, 3, 4}. In the first step, we consider first
the static component c = {1, 5}. We add component ({1, 5}, 2, 3, 4) to PCCt by
intersecting {1, 5} and the PCC ({1, 2, 3, 4, 5}, 5, 2, 3)}. Component c with length
1 and finish date 4 is not added to PCCt with function AddPCC because PCCt
already contains a PCC with the same vertex set and higher length. All PCCs
from PCCt are added to PCCn. Then we consider the second static component
c = {2, 3, 4}. We add component ({2, 3}, 2, 4, 4) to PCCt by intersecting c and
({1, 2, 3}, 3, 3, 3). We add component ({2, 3, 4}, 3, 3, 4) to PCCt by intersecting c
and ({1, 2, 3, 4, 5}, 5, 2, 3). Th component c with length 1 and finish date 4 is not
added to PCCt with function AddPCC because PCCt already contains a PCC
with the same vertex set and higher length. All PCCs from PCCt are added to
PCCn. At the end of step 1, PCCn = {({1, 5}, 2, 3, 4), ({2, 3}, 2, 4, 4), ({2, 3, 4}, 3, 3, 4)}.
At the beginning of step 2, PCCo = {({1, 2, 3}, 3, 3, 3), ({4, 5}, 2, 3, 3), ({1, 2, 3, 4, 5}, 5, 2, 3)}.
The second PCC is dominated by the first one so it is deleted. At the end of the
fourth iteration, PCCf = {({1, 2, 3}, 3, 3, 3), ({1, 2, 3, 4, 5}, 5, 2, 3)} and PCCc =
{({1, 5}, 2, 3, 4), ({2, 3}, 2, 4, 4), ({2, 3, 4}, 3, 3, 4)}.

In the fifth iteration, there is no current t-graph as T = 4. The second phase
of Algorithm 1, detailed in Algorithm 3, is executed. At the beginning of step
2, PCCo = {({1, 5}, 2, 3, 4), ({2, 3}, 2, 4, 4), ({2, 3, 4}, 3, 3, 4)}. The first compo-
nent is dominated by the second one, and the third component is dominated by
the component ({1, 2, 3}, 3, 3, 3) present in PCCf , so only the second component
is added to PCCf . At the end of this iteration, PCCf = {({1, 2, 3}, 3, 3, 3),
({1, 2, 3, 4, 5}, 5, 2, 3), ({2, 3}, 2, 4, 4)}. The last component has length 4, indeed,
vertices 2 and 3 are connected over the whole study interval.

On graph from Figure 3, there are 3 non-dominated components: one of size 3
and length 3, one of size 5 and length 2 and one of size 2 and length 4.

4.3 Correctness

Theorem 1. PICCNIC provides the set of all dominant persistent connected com-
ponents, in the sense of definition 6, of a dynamic graph G on interval T .

Proof. To prove that the algorithm is correct, we have to show that:

1. At any time i ≤ T , any dominant PCC (in the sense of definition 6) finishing
before or at i is present in PCCf ∪ PCCc.

2. At the end of the algorithm, only dominant PCCs are present in PCCf .

Let us prove the first part. At i = 1, the result is trivial, as the set PCCc
contains all connected components of G at the first instant.
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Let us suppose the result is true for some 1 ≤ i ≤ T , and consider iteration
i + 1. Let p = (K, k, l, f) be a dominant PCC at i + 1. Suppose first it is not
dominant for any θ ≤ i, hence its finishing time f = i + 1. If its length is 1, it is
necessarily a connected component of G for instant number i+1. In the algorithm,
its associated boolean Pers is false and p is directly included in PCCt, then in
PCCn, then in PCCc. Its is the only PCC with set K therefore it is not removed
by SuppressDouble, and it is put in PCCc. If its length is larger than one, let us
first suppose that p ∈ PCCc at the beginning of the iteration. p must be included
into a connected component of G at i+1. Therefore it is put in PCCt and function
AddPCC makes sure that the oldest PCC is kept in PCCt. It is then added to
PCCn and then to PCCc. Even if p finishes at i+ 1, it is not removed because of
the dominance tests as it is by hypothesis dominant. If p does not belong to PCCc
at the beginning of the iteration, it means at all previous iterations it was not kept
by the algorithm (as a component is never removed from PCCc until it is finished),
although it was included into one connected component of each of the associated
graphs. This implies that at all of these instants, p was strictly included (in terms
of vertex sets) into another PCC, say q, present in PCCc at least at i. If q does
not exist, p would have been added to PCCc before as it would have appeared as
intersection of a member of PCCc with a connected component. The length of q
is equal to the length of p before i+ 1 (so that p is not dominated by q at i+ 1).
PCC q is not included into a connected component at i+ 1 as p is then dominant,
and the intersection of q and some connected component c at i + 1 is p (a larger
intersection implies a larger subset of q present at i+ 1, but p is dominant).

Therefore p is included into PCCt, then PCCn and into PCCc during iteration
i + 1. If p is dominant for θ ≤ i, then by induction hypothesis, p is present at
time i. Either it is finished at i + 1 or earlier and p remains in PCCf (it is not
removed by the algorithm as it is dominant), or it is not and it stays into PCCc:
it is included in one connected component of G. By induction, the result is true
also for i = T . After the final step, only dominated PCCs are removed, therefore
p is inside the list provided by the algorithm.

Let us now prove the second part. Suppose there exists some PCC p =
(K, k, l, f) that is present before the final step and which is dominated by some
PCC p′ = (K ′, k′, l′, f ′). We just proved that p′ is kept by the algorithm at T .
If p ∈ PCCc, during the final step it is placed in PCCo as set CC is void. It
is then tested against all other elements of PCCc, then against all elements of
PCCf . Therefore it must be tested against p′ and removed. If p ∈ PCCf and
p ∈ PCCc at T , then for the same reason p′ will be tested against p, and p will be
eliminated. Suppose now p, p′ ∈ PCCf . They have been tested together when the
latest PCC has finished (if they finished simultaneously, they are tested together
by the algorithm while in PCCo). Therefore it is impossible that p and p′ are both
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present.

4.4 Complexity

In this section, we prove that Algorithm 1 is polynomial.

Lemma 1. At the end of any iteration 1 ≤ i ≤ T , the cardinality of PCCc is
bounded by n − NbCC(Gi), where NbCC(Gi) is the number of connected compo-
nents of the graph G at iteration i.

Proof. PCCt is built for each static connected component of Gi. It does not
contain doubles, meaning that it does not contain two PCCs that have the same
vertex set. the function AddPCC makes sure of that. All the elements from PCCt
are then added to PCCn. The intersection between a PCC from PCCc and a static
connected component can produce the same vertex set only when we consider the
same static component. When we switch the current static component c, the
intersections will necessarily give different vertex set. Therefore, the new PCCs
added to PCCt and then to PCCn do not contain the same vertices as PCCs
present in PCCn. Therefore, there are no doubles in PCCn. s PCCn is built from
PCCn a tthe end of each iteration, it does not contain doubles either.

Let p = (K, k, l, i) and p′ = (K ′, k′, l′, i′) be two elements of PCCn at the end
of iteration i such that K 6= K ′. Let p start before p′. K and K ′ have at least
cardinality kmin. Both are necessarily included into one connected component of
Gi.

If they are included into two different components, K and K ′ are disjoint.
Suppose now they are included into the same component c ofGi and not disjoint

(K ∩K ′ 6= ∅). If one is not included into the other, K ′′ = K ′ ∪K is also included
into c. Furthermore, a PCC p′′ associated to K ′′ is present since the iteration θ
where p and p′ were first both present. As p starts before p′, it means p′′ appears
simultaneously with p′. But this is impossible since K ′′ strictly contains K and
K ′. Therefore p′ does not appear. Consequently K ⊂ K ′ (if K ′ ⊂ K p′ cannot be
included into PCCn). And we can say that the vertex sets of the PCCs present in
PCCc are either strictly included or disjoint.

It is easy to verify by induction that the number of such subsets is bounded by
the cardinality of the set minus 1, regardless of the way those subsets are chosen.
Indeed, a subset contains at least 2 elements (because kmin ≥ 2) and the subsets
are either disjoint or strictly included. It is obvious that if the set has 2 elements, at
most one subset is acceptable according to the previous conditions. Now consider
a set Ω having ω elements. Suppose it has ω − 1 subsets, such that this number
is maximal (it is impossible to create another subset without violating the strictly
included or disjoint condition of the subsets). When one element e is added to Ω,
we can either keep the same subsets, and in this case there are still ω− 1 subsets,
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or we can create a new subset by making an union between {e} and an existing
subset, and in this case there are ω subsets. As two subsets are either strictly
included or disjoint, we cannot create another subset, regardless of the way the
subsets were initially chosen. We can conclude that a set Ω with ω elements has
at most ω − 1 subsets such that each subset has at least cardinality 2 and two
subsets are either strictly included or disjoint.

Gi is divided into α connected components of size κ1, . . . , κi, . . . , κα. Applying
the previous reasoning for each component gives at most κi − 1 subsets in each
component, hence the result.

Lemma 2. At the end of any iteration 1 ≤ i ≤ T , the cardinality of PCCf is
bounded by min(n− 1, i).

Proof. This is trivially true for i = 1, the set is then empty. Now suppose it is true
for some 1 ≤ i ≤ T . Theorem 1 states that two components linked by a dominance
relation cannot be together in PCCf .

Suppose two PCCs p and p′ of same length l are present in PCCf at i. One
of them necessarily dominates the other and is alone in PCCf . Therefore, for a
given 1 ≤ l ≤ T , there is at most one PCC of length l in PCCf , so at most i
elements in PCCf . Conversely, two elements of PCCf must have different sizes,
so they are at most n− 1 (remember singletons are not considered).

Lemma 3. The complexity of one iteration of Algorithm 1, including the final
one, is O(n2).

Proof. Let us first remark that all sets of PCCs considered during one iteration
have at most n elements. This is immediate for PCCc and PCCf from the two
previous lemmas. It is true for PCCn as it is equal to PCCc at the end of the
iteration. It is also true for PCCo as it is included into PCCc from the previous
iteration, and for CC by definition. With adequate data structures for these sets,
like binary search trees, adding or removing one element from one of these sets is
done in O(log(n)) and operations of comparison and intersections can be done in
time linear in n.

The first iteration reduces to the assignment of PCCc which is done in time
n · log(n). So let us concentrate on the other iterations, the final one included. In
each iteration of the algorithm, the static connected components of graph Gi are
computed. This is done in time O(m+ n), which is bounded by O(n2).

The first step of the algorithm (given in Algorithm 2) contains a loop on the
set of connected components CC (|CC| 6 n) of Gi in which there is a loop on the
set PCCc (|PCCc| 6 n). Each element of each set has also its size bounded by n
but the elements from CC form a partition of graph’s vertices. So a set Cα of CC
has size κα such that

∑
α κα = n. The comparisons (line 8 of algorithm 2) and the
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intersections (line 13 of algorithm 2) between c from the set CC and p from the set
PCCc are made in time O(min

{
|c| ; |p|

}
). For each component Cα of CC, each

one of these operations costs O(n ·κα). The total costs O(n · (κ1 + · · ·+κ|CC|)), so
O(n2). With the same reasoning as for lemma 1, we obtain that the PCCs in PCCt
are either disjoint or strictly included into one another. They only contain vertices
from the current component Cα of size κα. This set does not contain doubles as
the role of function AddPCC is to add a PCC to PCCt without creating doubles.
Therefore, the size of PCCt is bounded by κα. We stated earlier that adding an
element to PCCt could be done in time logarithmic regarding the size of the set.
The function AddPCC compares the lengths of identical vertex sets of PCC in
constant time, so adding a PCC to PCCt with function AddPCC can be done in
time log(κα). Instruction line 20 costs O(log(κα)) for each p in PCCc. So this
instruction costs O(n · log(κα)) for each Cα in CC. for the whole algorithm it
costs O(n · (log(κ1) + · · ·+ log(κ|CC|))). As log(κα) < κα, the total complexity of
instruction line 20 is bounded by O(n2). Instruction line 26 costs O(log(κα)) for
each Cα in CC. For the whole algorithm, it costs O(

∑
α log(κα)), which is bounded

by O(n). Instruction line 28 adds all the elements from PCCt to PCCn. The size
of PCCn is bounded by n so adding one element is done in time O(log(n)). As the
set PCCt contains at most κα elements, adding them all costs O(κα · log(n)) for
each component Cα in CC. For the whole algorithm, it costs O(

∑
α κα · log(n))

which is bounded by O(n log(n)). In total, algorithm 2 costs O(n2).
In the second step of the algorithm (given in algorithm 3), both loops contain

at most two domination tests made in an inner loop in constant time. This step of
PICCNIC also deletes elements from PCCo or PCCf . As the size of each one of
these sets is bounded by n, it is not possible to delete more than n elements. So
the deletion operations costs O(n · log(n)) in total. the number of inner loops is at
most |PCCo|2 for the first loop and |PCCo| · |PCCf | for the second one. so both
loops have complexity O(n2). This step also contains operations of differences and
unions of PCC sets outside any loop. These operations are done in O(n log(n)).
Overall, the complexity of algorithm 3 is also O(n2).

Finally, the instruction line 10 of algorithm 1 is done in constant time. There-
fore, one iteration of PICCNIC costs O(n2).

Theorem 2. The complexity of PICCNIC is O(n2 · T ), where n is the number of
vertices and T the time horizon.

Proof. The proof is immediate from the previous lemma, as the number of itera-
tions is T + 1.
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4.5 Finding all maximal PCCs

The PICCNIC algorithm (given in algorithm 1) identifies all non dominated per-
sistent connected components in the sense of definition 6 in polynomial time with
complexity O(n2 ·T ). One can also use a slightly modified version of PICCNIC to
retrieve every maximal persistent connected component (in the sense of definition
5) in a given dynamic graph.

If we do not compare the PCCs in the second step to delete dominated com-
ponents, then PICCNICStep2 can be reduced to the given algorithm 6. All the
proofs still hold, and this new version of PICCNIC gives all maximal persistent
connected component in time O(n2 · T ).

Algorithm 6 PICCNICAlternativeStep2

Input:PCCn, PCCc, PCCf , lmin
Output:Updated PCCf

1: PCCo = PCCc \ PCCn //Set of now finished PCCs
2: for all p ∈ PCCo do
3: if l(p) < lmin then
4: PCCo = PCCo − {p}
5: STOPLOOP
6: end if
7: end for
8: PCCf = PCCf ∪ PCCo
9: return PCCf

5 Experimental Study
In this section, we propose an experimental study of our algorithm. This is done
using the GraphStream Java library1 (Dutot et al., 2007). The virtual machines
used for this experiment have Intel Core 64 bits processors with 8 cores, 4 MB
cache size, 2 GHz frequency and 96 GB of RAM. The OpenJDK 1.9 Runtime
Environment is used.

We tested our algorithm both on randomly generated graphs and on graphs
from real world instances. In the first case, we generated undirected graphs, and
in the second case the graphs from real instances are directed. We present both
situations next.

1http://graphstream-project.org
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5.1 Random graphs

Let us first focus on the experiments made on random graphs. We start by pre-
senting the experimental settings chosen for this experiment, then we present the
results of PICCNIC Algorithm, and finally we present its execution times.

5.1.1 Experiment Settings

Graph generation In order to evaluate PICCNIC Algorithm, we test it on ran-
domly generated graphs. We do not aim at focusing on too sophisticated graph
generation models because our first objective in this part is to verify the tractabil-
ity of the approach on different classes of dynamic graphs, without focusing on
specific applications. The second objective is to provide preliminary results on the
pareto curve of the obtained PCCs, and to show the impact of the input graph
classes. That is the reason a handcrafted generator was proposed in order to test
various dynamic graph families, even though there is a large literature on various
generative models, see the seminal paper from Holme (2015) and the more recent
survey (Gauvin et al., 2020) on randomized reference models. The proposed gen-
erator is a link-driven model with memory mechanism (Karsai et al., 2014) which
can be seen as a simplified version of link-node memory models (see for instance
(Vestergaard et al., 2014)). Thanks to our model, the edge presence rate is a
feature which is maintained over the whole study interval of the dynamic graph.
First we generate the structure of the graph (vertices and edges). Then we add
dynamicity to the edges using a Markovian process.

First, an underlying graph (V,E) is generated. Its vertices correspond to the
ones of the dynamic graph G. Its set of edges includes all sets Ei. The underlying
graph is generated using generators from the GraphStream library. We test four
different types of graphs that present specific features:

1. Random graphs, corresponding to the Erdős-Rényi model (Erdős and Rényi,
1960). It is the most common way of randomly generating a static graph.
GraphStream Random Graph generator is used. This generator adds a vertex
and randomly connects it to the other vertices of the graph. This operation
is repeated for each vertex added.

2. Regular graphs, which are generated using GraphStream Grid generator.
This generator generates a torus with the given number of vertices, all with
the same degree.

3. Scale-free graphs, which are used to model many social networks or web net-
works. Graphstream Barabasi-Albert generator is used. This generator adds
a vertex to the graph and connects it to one or several vertices randomly
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Figure 5: Degree distribution of vertices for each graph type and average degree.

chosen using Barabasi-Albert’s (Albert and Barabási, 2002) preferential at-
tachment rule. This operation is repeated for each vertex added.

4. Random geometric graphs, which are particularly well suited for applications
with explicit space dimension, such as communication networks or logis-
tic networks. GraphStream’s Random Euclidean graph generator randomly
places vertices on a finite space [0, 1] × [0, 1]. Two vertices are connected if
their euclidean distance is below a given threshold.

Figure 5 presents the degree distribution of vertices from these graphs and
Table 1 presents their average clustering coefficients (see (Watts and Strogatz,
1998)). Figure 5 is cropped, indeed, Barabasi-Albert graphs have some vertices
with very high degree. As grids are actually toruses, all vertices have same degree,
exactly the average degree. Both Random and Random Euclidean graphs have a
degree distribution centered on the average degree. In the following, we use the
name of the generators.

Once the underlying graph is generated, the dynamics are obtained on edges
thanks to a Markov chain. The one used on each edge is presented on Figure 6.
When an edge is present at time step i, it remains present at time step i+ 1 with
probability p. When an edge is absent at time step i, it remains absent at time
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Degree Barabasi-Albert Random Random Euclidean Grid
4 0.0221 0,0037 0,5267 0.0000
8 0.0428 0.0084 0.5958 0.0000
12 0.0581 0.0117 0.6040 0.0000

Table 1: Average Clustering Coefficient for each graph type and average degree.

0 1q

1-q

p

1-p

Figure 6: Markov chain representing the states of an arc and probabilities to go
from one state to the other. State 0 corresponds to the edge being absent and
state 1 corresponds to the edge being present.

step i+ 1 with probability q.
We introduce a new parameter: the presence. It is equal to the stationary

probability of edge presence in the Markov chain, often noted π1 (π1 ∈ [0, 1]). It
is asymptotically equal to the rate of presence of each edge over the time study
interval.

For a given presence value, there exist many values for p and q. We made
experiments (which are not detailed here because it is out of the scope of this
paper) and they showed that the values chosen for p and q had negligible influence
on the results. Therefore we choose to fix p and q such that p = π1 and q = π0
(π0 = 1− π1) in the described experiments.

Parameter Selection We plan to evaluate the results of our algorithm as well
as its execution time. To this end, some parameters are fixed and the others vary
for each experiment.

We considered PCCs of size larger than 2 and of length at least 1. In the
algorithm, we have kmin = 2 and lmin = 1, which are the default values.

The study interval needs to be long enough so we can observe relevant results.
For this reason the number of time steps is fixed to 1000.

To observe the outcome of the algorithm, the number of vertices is fixed to
1000 in order to deal with rather large graphs. In order to obtain execution times
as a function of the number of vertices, n takes values in {100, 250, 400, 550, 700,
850, 1000, 1500, 2000, 2500, 3000, 3500, 4000, 4500}. These values are enough to
obtain good insight on the shape of the execution time curves.

Results are obtained from underlying graphs with average degrees 4, 8 and 12.
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PICCNIC Results PICCNIC Execution Time
Graph Type Barabasi-Albert, random, Barabasi-Albert, random,

random Euclidean, grid random Euclidean, grid
n 1000 100, 250, 400, 550, 700, 850, 1000, 1500,

2000, 2500, 3000, 3500, 4000, 4500
T 1000 1000

Average Degree 4, 8, 12 4
presence 0.7, 0.9 0.9

Table 2: Parameters used for the experiments

Execution times are obtained from underlying graphs with average degree 4. It
should be noted that grids are only available with degree 4 and 8.

Values 0.7 and 0.9 are used as presence parameter for the outcome of the
algorithm. Only value 0.9 is taken into account to observe the execution time of
the algorithm (results were found to be very similar for value 0.7).

In order to obtain statistically relevant observations, 10 instances of graphs
are tested for each set of parameters. Table 2 synthesizes the parameters values
chosen.

5.1.2 PICCNIC Results

Figures 7, 8 and 9 represent the average Pareto fronts obtained with PICCNIC
algorithm for each average degree tested and each type of graphs. Each point
represents the average size of non-dominated PCCs, for each possible length.

It can be noticed that the higher the presence, the higher the fronts. When
edges have a higher presence, the graph is more connected and thus PCCs are of
bigger size.

By comparing Figure 7 and Figure 9, we can notice that the fronts are higher
on Figure 9. It means that when the average degree is higher, as the graph is more
connected, the PCCs are bigger.

With degree 4 (Figure 7) Random Euclidean graphs do not have components
with a high number of vertices. Those graphs do not have “giant” components.
With degree 8 and 12, the clustering coefficient of Random Euclidean graphs pre-
sented in Table 1 and its degree distribution presented in Figure 5 show that even
though Random Euclidean graphs have many clusters, those clusters are highly
connected to each other, therefore components are easily kept alive from one time
step to the next.

Barabasi -Albert graphs do not have “giant” components. Compared to other
graph types, the size of non-dominated components drops drastically as the length
of the components increases. This can be explained by the degree distribution.
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Figure 7: Average values of Pareto front results of PICCNIC algorithm on graphs
with 1000 vertices, 1000 time steps, average degree 4. On the left are the results
for presence 0.7 and on the right for presence 0.9.
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Figure 8: Average values of Pareto front results of PICCNIC algorithm on graphs
with 1000 vertices, 1000 time steps, average degree 8. On the left are the results
for presence 0.7 and on the right for presence 0.9.
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Figure 9: Average values of Pareto front results of PICCNIC algorithm on graphs
with 1000 vertices, 1000 time steps, average degree 12. On the left are the results
for presence 0.7 and on the right for presence 0.9.
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Figure 5 shows that most vertices of those graphs have small degree. Therefore,
such a graph is easily disconnected in future time steps. So keeping a large com-
ponent alive for a long period of time is very unlikely.

For each presence value and average degree, the front corresponding to random
graphs is above the one corresponding to Barabasi-Albert graphs. For a given
length, a PCC is bigger in random graphs than in Barabasi-Albert graphs. For a
low average degree, the front corresponding to Random Euclidean graphs is lower
than all other types of graphs whereas with high average degree, it is higher than
Barabasi-Albert graphs. PCCs in Random Euclidean graphs are way bigger with
a high average degree. Barabasi-Albert graphs present smaller components than
Random and Random Euclidean graphs because, as previously explained, they
have a majority of vertices with a low degree, therefore there are great chances
that such graph breaks into small components.

The front corresponding to grids in Figure 7 for presence 0.9 is high, meaning
that PCCs have big size and stay for a long period of time steps. Grids present
“giant” components. For presence 0.7, the front drops drastically. PCCs of big
size are short and long PCCs are small. Grids are highly connected and robust to
changes with a high presence value but they are easily disconnected when presence
decreases. In Figure 8, with a presence value 0.9, the graphs are very connected,
therefore grids have only one non-dominated component with almost 1000 vertices
and length 1000.

5.1.3 PICCNIC Execution Time

To study computation time of the algorithm, we compute it for all four types of
graphs, with 1000 time steps, underlying graph average degree 4, presence 0.9 and
different number of vertices, from 100 to 4500 (see Table 2).

Figure 10 presents median values of PICCNIC algorithm execution time for
each type of graph. For each, a regression function of the form n2 is also repre-
sented. PICCNIC worst case complexity is n2 · T . In this specific experiment, T
is fixed (to 1000), so the complexity becomes n2, hence the regression function of
the form n2.

For Barabasi-Albert graphs, the R2 value of the regression is 0.984. For grids,
it is 0.979, for Random graphs it is 0.992 and for Random Euclidean graphs it
is 0.997. Those R2 values confirm that the regression of the form n2 fits the
experimental values of computational time. The experimental results fit the worst
case complexity.

With a higher number of vertices, it is getting clearer that the execution of
PICCNIC algorithm takes more time on random Euclidean graphs than on all
other types of graphs and that it is faster on grids than on all other types of
graphs. When compared to Figure 7, it can be noticed that the algorithm on
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Figure 10: Median execution time of PICCNIC algorithm depending on the num-
ber of vertices of the graphs, for each type of graph.

grids, which present big components (lot of vertices for a long period of time),
is executed faster whereas the execution takes more time on random Euclidean
graphs which present small components. This is consistent with the theoretical
observations: the complexity factor is the number of components in the different
sets. Although there is a significant difference of computation times between each
type of graphs, the order of magnitude remains the same.

The computation time of PICCNIC algorithm, between about 692 seconds to
3045 seconds for graphs with 4500 vertices, depending on the graph type, is quite
reasonable and shows that this algorithm can be used in practice for rather large
graph sizes. The next section confirms that for real very large graphs.

Computing the whole algorithm in the conditions of the experiment is done in
1000 iterations. On graphs with 1000 vertices, the average computation time of one
iteration is 0.056 second for grids, 0.096 second for Barabasi-Albert graphs, 0.096
second for random graphs and 0.116 second for Random Euclidean graphs. On
graphs with 4500 vertices, the average computation time of one iteration is 0.422
second for grids, 0.853 second for Barabasi-Albert graphs, 1.054 second for random
graphs and 1.577 second for Random Euclidean graphs. Computing one iteration of
the algorithm is possible under a very reasonable time limit, so PICCNIC algorithm
can be used online while the graph changes.
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5.2 Real instances

Let us now present the experiments made on real instances. We start by presenting
the data we used, then we present how the dynamic graphs were built based on
this data, and then we present the results of PICCNIC Algorithm.

5.2.1 Data used

We used data from the Stanford Network Analysis Projet (SNAP)(Leskovec and
Krevl, 2014). This dataset collection offers a large choice of real networks, including
temporal networks. We focused on two specific networks.

The first one we worked on is the Stack Overflow temporal network. In this
network, each node is a user of the forum Stack Overflow. This network is directed
and an arc either represents a user answering another user’s question, or a user
commenting another user’s question or answer. All those interactions happen at a
specific time over 2 774 days. There are 2 601 977 nodes and 63 497 050 temporal
arcs in this network.

The second network we worked on is the Wikipedia’s Talk page temporal net-
work. A node is a user, and an arc represents a user editing another user’s talk
page. Those interactions happen at a specific time over 2 320 days. There are
1 140 149 nodes and 7 833 140 temporal edges in this network.

5.2.2 Building dynamic graphs from real data

In order to use this data, we had to build dynamic graphs from it. We first had
to determine how much real time a time step in the graph represents. We set this
amount of time to one day. It means that all the interactions happening the same
day appear as arcs in the same t-graph. Similarly, we had to determine how much
time we consider an interaction to last. We call this parameter the event duration.
We tested several values (see Section 5.2.3). As a time step is one day, we set
the event duration to several days. It means that when there is an interaction
between two users, we consider that those users are in contact for several days.
We considered PCCs lasting at least one time step (lmin = 1 in the algorithm),
and bigger than 100 (kmin = 100 in the algorithm).

One can wonder what a PCC means in this context, and more specifically, what
it means for a set of vertices to be in the same PCC. Both datasets used for this
experiment represent the interactions between users of a forum. If two vertices
are in the same PCC, it means that the corresponding users have been interacting
with each other for a certain amount of time. So a PCC represents a group of users
interacting with each other during a period of time. Either on StackOverflow of
Wikipedia’s Talk Page, it can be inferred that those users are interested in the
same subjects.
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5.2.3 PICCNIC results

Figure 11 shows the Pareto fronts of non-dominated PCCs obtained from the
Wikipedia’s Talk Page and from the StackOverflow network. We tested different
values of event duration: from 5 to 100 days for Wikipedia’s Talk Page and from
5 to 30 days on StackOverflow forum.

In both cases, it can be noticed that the longer we consider an interaction to
last, the bigger (in terms of number of vertices) and the longer (in terms of time
steps) the PCCs. On Figure 11, the sizes of PCCs are plotted along the Y-axis on a
logarithmic scale. The shapes of the Pareto fronts indicate that the biggest PCCs
do not last for a long time and the smallest ones last way longer. The fronts drop
fast, which is consistent with what we could notice on the previous experiment
with the randomly generated graphs.

PICCNIC Algorithm’s computation time does not clearly depends on the event
duration parameter. The algorithm is executed on the Wikipedia network in about
5 to 7 hours. It is executed on the StackOverflow network in about 55 to 60 hours,
moreover, 400 GB of RAM were necessary to run the experiment on this last
dataset.

PICCNIC Algorithm successfully identifies the major groups of users interact-
ing with each other along time. This is computed in a large but reasonable amount
of time considering the time horizon.

6 Conclusion
In this paper, we proposed a new definition of connected components in a dynamic
graph, namely the persistent connected component. Related problems have been
addressed in the literature before but unlike most of those works, our definition
is not based on journeys in a dynamic graph and does not use travel time but
instantaneous connection between vertices. Our generalization is quite natural, as
the vertices of a PCC associated to an interval I belong to the same connected
component at each time step of this time interval. Like the extension of connected
components found in the literature, our definition of persistent connected com-
ponents does not form a partition of the graph. A notion of dominance between
PCCs was also introduced.

We presented a polynomial time algorithm computing all non-dominated PCCs
in a dynamic graph. PICCNIC algorithm has complexity O(n2 · T ), with n the
number of vertices and T the time horizon. It is online as it works successively on
each time step of the study interval.

The algorithm computes the length of a PCC using the number of time steps.
But if we consider that a time step in the study interval corresponds to a time
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Figure 11: Results of PICCNIC Algorithm on the dynamic graph of Wikipedia’s
Talk Page on the left and on the dynamic graph of StackOverflow forum on the
right. Each event duration tested is represented by one Pareto Front.
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when the graph changes, then we can use a model where the actual amount of time
elapsed between time steps i and i+ 1 and j and j + 1 is not the same. PICCNIC
algorithm can easily be modified to compute the length of a PCC with “real time”
instead of number of time steps.

We presented an experimental study. In the first experiments, we executed
PICCNIC on different types of graphs to study the impact of the graph’s structure
on PCCs and on its execution time. Then we showed that PICCNIC’s execution
time is consistent with its theoretical complexity and that its execution time makes
it usable in practice on rather large graphs. In the second experiment, we ran our
algorithm on instances made of real data with millions of vertices and arcs. This
experiment showed that PICCNIC Algorithm can be used on such real large data.
Indeed, its execution time remains quite small with regard to their time horizon.

Another natural extension of connected components seems worth to be inves-
tigated. Let us consider that connected components can be interrupted and start
again later. From definition 4, it would mean that the vertices stay connected
directly or indirectly for l time steps that are not necessarily consecutive. Unfor-
tunately, it is not possible to eliminate dominated connected components without
considering all the time steps. Therefore, the number of candidate components
might be Θ(2n), and finding non dominated ones is not tractable for medium
values of n.
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