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A Study of Connectivity on Dynamic Graphs:
Computing Persistent Connected Components

Mathilde Vernet Yoann Pigné Eric Sanlaville

Abstract

This work focuses on connectivity in a dynamic graph. An undirected
graph is defined on a finite and discrete time interval. Edges can appear and
disappear over time. The first objective of this work is to extend the notion
of connected component to dynamic graphs in a new way. Persistent con-
nected components are defined by their size, corresponding to the number of
vertices, and their length, corresponding to the number of consecutive time
steps they are present on. The second objective of this work is to develop
an algorithm computing the largest, in terms of size and length, persistent
connected components in a dynamic graph. PICCNIC algorithm (PersIstent
Connected CompoNent InCremental Algorithm) is a polynomial time algo-
rithm of minimal complexity. Another advantage of this algorithm is that it
works online: knowing the evolution of the dynamic graph is not necessary
to execute it. PICCNIC algorithm is implemented using the GraphStream
library and experimented in order to carefully study the outcome of the al-
gorithm according to different input graph types, to verify the theoretical
complexity, and to confirm its feasibility for graphs of large size.

1 Introduction
In static graphs, connectivity is measured thanks to the computation of connected
components. The problem of graph connectivity is relevant to many applications
and contexts, such as communication networks, logistic networks or social net-
works. Furthermore, when a graph can be decomposed into several connected
components, many problems can be decomposed too and solved separately on
the different components. For instance, coloring problems, matching problems or
vehicle routing problems can be decomposed.

In some cases, connectivity is also a necessary condition that needs to be
checked before solving a problem. Flows, for example, cannot be computed if
the source and sink do not belong to the same connected component.
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Furthermore, time is an important issue that needs to be taken into account
in many fields. Indeed, the interactions between entities are not necessarily static,
and their nature might not be constant over time either. Static graphs do not allow
the modeling of interactions which are evolving over time. The logical extension
of graphs allowing this is then dynamic graphs. In a dynamic graph, vertices and
edges can be present or absent depending on time. Every piece of information
carried by vertices or edges can also be time-dependent.

The issue addressed in this paper is connectivity in a dynamic graph. Several
questions are answered. First, what does connected component mean in a dynamic
graph? And second, how can connectivity be measured in a dynamic context? We
propose an extension of connected components in dynamic graphs, called Persis-
tent Connected Components (PCC). This new definition takes into account the
whole temporal dimension of the graph. Space and time are considered. PCCs are
defined by their number of vertices, similarly to connected components in static
graphs, but also by the number of consecutive time steps they are present on. We
propose a polynomial time algorithm computing non-dominated PCCs in a dy-
namic graph and the associated Pareto front. This algorithm is studied together
with experiments that show tractability even for large graphs on a long time hori-
zon. The experiments were carried on with different graph types in order to study
the impact of the graph structure on the results.

Section 2 presents the main concepts of dynamic graphs necessary for this work,
and related works. Section 3 presents the persistent connected components (PCC).
Section 4 introduces the algorithm designed to detect PCCs in a dynamic graph.
An experimental study is presented in Section 5 and concluding remarks are given
in Section 6.

2 Main concepts and state of the art
Dynamic graphs, also known in the literature as dynamic networks, time varying
graphs (Casteigts et al., 2012), evolving graphs (Xuan et al., 2003), temporal graphs
(Michail, 2016) or temporal networks (Holme, 2015), have been studied mostly in
the past 20 years. Holme (2015) made an extended survey.

When we consider a graph and its evolution over time, we work on a dynamic
graph. The dynamicity can be on vertices, edges or both. The presence of vertices
or edges can be modified during the interval on which the graph is studied. All
the information carried by vertices or edges can also be time-dependent (costs,
capacities, storage, etc.).

Definition 1. A study interval T = {1 . . . T} is a discrete set of T time steps.
The end of this interval, noted T , is called the time horizon.
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Definition 2. A t-graph, noted Gi, i ∈ T , is a static graph corresponding to the
dynamic graph G at a given time step i.

Definition 3. A dynamic graph G is simply noted G = (Gi)i∈T and is defined on
a study interval T = {1 . . . T}. It is a succession of t-graphs Gi = (V,Ei), i ∈ T ,
such that all t-graphs are defined over the same vertex set.

Note that these definitions, close to the literature, allow to isolate a vertex
by removing its adjacent edges. In terms of connectivity, this is equivalent to
removing this vertex.

A compact representation of a dynamic graph can be given. See for example
Figure 1a where the labels on edges represent their times of presence. Figures 1b
to 1e show the succession of static graphs.

Xuan et al. (2003) extend the definition of paths to dynamic graphs. The
equivalent, in a dynamic graph, of a path in a static graph is a journey. A journey
from a vertex u to a vertex v in a dynamic graph starts from u at time step istart
and ends on v at time step iend. It is a succession of paths Pi in static graphs Gi.
Pistart starts on vertex u in Gistart . Piend

ends on vertex v in Giend
. Path Pi in Gi,

istart ≤ i ≤ iend, ending on a vertex w enforces path Pi+1 to start on the same
vertex w in Gi+1. A similar definition is used in the work of Kempe et al. (2002) in
which the edges of the graph appear exactly once. In the following of the section,
a focus is made on connectivity issues for dynamic graphs.

In static graphs, a connected component is a maximal set of vertices that are
connected through edges in the graph. In other words, for two vertices u and v
in the component, there exists a path between u and v in the graph. In directed
graphs, the definition can be extended in two different ways, strongly and weakly
connected components whether there exists a directed path from u to v and one
from v to u or only one of those paths.

In dynamic undirected graphs, the existence of a journey from a vertex u to
another vertex v does not imply the existence of a journey from v to u. Because
of the edges time of presence, journeys are directed in dynamic graphs. In Figure
1, there is a journey from vertex 2 to vertex 3 going through edge (2, 4) at time
step 2 and edge (4, 3) at time step 3. There is no journey from vertex 3 to vertex
2.

Based on the definition of journeys from Xuan et al. (2003), Bhadra and Fer-
reira (2003) give a definition of strongly connected components in a dynamic di-
rected graph. Their definition can also be applied to undirected graphs. Such a
component is a maximal set of vertices such that for all vertices u and v in the
component, there exists a journey from u to v and a journey from v to u in the
graph. A distinction is made between closed strongly connected components and
open strongly connected components. In the former, the journeys must cross ver-
tices inside the component only whereas in the latter, journeys can cross vertices
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outside the component. In Figure 1, {1, 2, 4} is an open strongly connected com-
ponent. There exists a journey, both ways, between each pair of vertices. The
journey from vertex 4 to vertex 1 goes through vertex 3 which is not in the com-
ponent, because there exists no journey from vertex 3 to vertex 2. Bhadra and
Ferreira also prove that the problem of finding a connected component (open or
closed) of size k for a given value k is NP-Complete.

This definition implicates an interesting feature. Unlike static graphs, in dy-
namic graphs, connected components do not partition the vertices. Strongly con-
nected components in dynamic graphs can overlap, as a vertex can be a part of
two distinct components. In Figure 2, {1, 2, 3, 4} is a closed connected component.
There is a journey both ways between each pair of vertices of the component going
only through vertices of the component. For the same reasons, {4, 5, 6, 7} is also
a closed strongly connected component. Vertex 4 is part of both components.

Jarry and Lotker (2004) use Bhadra and Ferreira’s definition and show that
asking whether a graph is connected or not is NP-hard even for two-layer grids but
is polynomial in the case of trees. They propose an algorithm for this particular
case.

Nicosia et al. (2012) work on connectivity on dynamic graphs using a definition
corresponding to the open strongly connected components of Bhadra and Ferreira
(2003). They propose a way to solve the problem of finding such components in a
graph using a clique search in a static undirected graph, which is not polynomial.

Gómez-Calzado et al. (2015) extend Bhadra and Ferreira’s definition with ∆-
component where the journeys connecting vertices in the component must be at
most ∆ time steps long.

Huyghues-Despointes et al. (2016) also propose an extension to Bhadra and
Ferreira’s definition. They define a δ-component (which they call ∆-component)
to be a set of vertices which are open strongly connected on any time window
of size δ of the dynamic graph. In their definition, the journeys connecting the
vertices of the component can only cross one edge per time step.

All those definitions are based on journeys in the dynamic graph. Some vertices
can be in the same component and never be connected at any time step of the
graph. Vertices 1 and 4 from example in Figure 1 are never directly connected by
an edge or a path in any t-graph.

The main usage of such definitions is message transmission.
Casteigts et al. (2015) work on connectivity in dynamic graphs and define the

τ -interval connectivity (which they call T -interval connectivity). A dynamic graph
is τ -interval connected when the intersection ofGi . . . Gi+τ−1 for all i ∈ [1, T−τ+1],
where T is the time horizon, is a connected graph in the static sense. They propose
algorithms needing O(T ) operations (binary intersection and connectivity test) to
solve this problem. They do not propose a definition of connected component
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Figure 1: Dynamic graph on 4 time steps. Labels on edges of the compact repre-
sentation are the time steps the edges are present on. Each t-graph is represented.
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Figure 2: Dynamic graph on 4 time steps. There are two closed connected com-
ponents: {1, 2, 3, 4} and {4, 5, 6, 7}.
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based on their definition of τ -interval connectivity.
Akrida and Spirakis (2019) present a continuous time model. They define in-

terval temporal networks as graphs for which a set of intervals of availabilities is
defined on each edge. An edge is present during the defined intervals. They pro-
pose a polynomial time algorithm able to give the longest time interval starting
at a given time x and ending before a given time y on which the graph remains
connected. Unlike the work of Casteigts et al. (2015), the connection is not nec-
essarily made using the same edges. They present a second algorithm computing
the sets of vertices of cardinality larger than a given bound that remain connected
for the longest period of time starting at a given time x. This gives connected
components that do not overlap, unlike other definitions found in the literature.
For both algorithms presented, the choice of parameter x determines the outcome
of the algorithm. If the graph starts to remain connected at a later time than x
or if the graph has large components that start being connected later than x then
the algorithms do not detect it.

3 Persistent connected components
This section defines the persistent connected components. We propose a point of
view of connectivity in dynamic graphs, which is not based on journeys, unlike most
of the definitions found in the literature. An example is given and applications are
discussed.

3.1 Definitions and notations

Definition 4. A persistent connected component (PCC) p of G is a set of k vertices
in V that are connected in the graph (either directly or through other vertices
of the graph) for l consecutive time steps. Vertices u1 . . . uk form a persistent
connected component of size k and length l if and only if there exist Gi . . . Gi+l−1
such that u1 . . . uk are in the same connected component in the static sense in each
Gj (i ≤ j < i+ l).
p = (K, k, l, f) where K is the set of its vertices, k is the size of this set, l is the
length of the component, in other words, the number of consecutive time steps the
component is present on, and f is the last one of those time steps.

PCCs are characterized by their size (number of vertices) and length (number
of consecutive time steps). Analogously to the static definition that implies max-
imality regarding to inclusion, we aim at finding the biggest persistent connected
components in terms of size and length. This makes two criteria to optimize, that
is the reason to look for a Pareto front formed by all non dominated PCCs.
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Definition 5. p = (K, k, l, f) is a dominant PCC if and only if for each PCC
p′ = (K ′, k′, l′, f ′) 6= p,

k > k′ ; l ≥ l′ or (1)
l > l′ ; k ≥ k′ or (2)
k = k′ ; l = l′ ; f < f ′ or (3)
k = k′ ; l = l′ ; f = f ′ ; K ≺ K ′ (4)

Condition 3 from definition 5 implies that in the case of two components of
same size and same length, the earliest one is considered dominant. If furthermore
two components have the same size and length and finish at the same time step,
then an arbitrary total order on the vertex subsets shall be used (for instance, the
lexicographic order), this is insured by condition 4.

A PCC (as per Definition 4) is a set of k vertices that stay connected for l
time steps. Therefore, in all of those time steps, for any two vertices in the PCC,
there exists a path between them. A PCC is then always part of an open strongly
connected component (as defined in Section 2). Our definition of connectivity, like
those of Casteigts et al. (2015) and Akrida and Spirakis (2019), is not based on
journeys. Nevertheless, it differs from their definitions. If a graph is τ -interval
connected according to the definition in (Casteigts et al., 2015), then this graph
is necessarily connected over T and it has a persistent connected component com-
posed of the n vertices of the graph and lasting for the whole study interval T . The
reciprocal implication does not hold, because even if a graph remains connected
over T , as the connection might not be achieved with the same edges, then it will
not be τ -interval connected for τ > 1. In (Akrida and Spirakis, 2019), as they
work with a continuous time model, the dynamic graph cannot be described as a
succession of static graphs.

Unlike most problems described in Section 2, the problem of finding undomi-
nated PCCs can be solved polynomially (as proved in section 4.4).

3.2 Applications

Connectivity in a dynamic graph finds applications in many fields. Remember
first that travel times associated to edges are not considered in this model. This is
appropriate when the network’s dynamics is slow compared to the time necessary
to cross an edge.

In communication networks such as ad hoc networks or sensor networks, the
transmission is almost instantaneous. In such networks, a PCC is a subnetwork
that remains connected, which is essential when communications are considered,
see for instance (Koster and Muñoz, 2009).
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In transportation networks, roads availability can be time-dependent. The
unavailability of a road can be temporary, new roads can be built and existing
roads can be closed. Travel time on edges can be negligible compared to the
networks dynamics. A PCC would measure in this case the reachability of different
locations. Démare et al. (2017), for instance, use dynamic graphs to model the
transportation network on the Seine valley.

In social networks, there is no travel time on edges because they represent a
relationship, see the seminal work of Newman (2003). Most works on commu-
nity detections use local edge density, some of them also consider time dimension
(Nguyen et al., 2011). If we consider that a community must verify the connec-
tivity condition between its members during some time interval, then detecting
PCCs, according to our model, will help identify these communities.

3.3 Example

Figure 3 presents a dynamic graph on 4 time steps and 4 vertices. This graph
is not connected through the whole study interval. The t-graphs G1 and G4 are
disconnected and both have two connected components ({1, 2, 3} and {4} in G1

and {1} and {2, 3, 4} in G4). The t-graphs G2 and G3 only have one connected
component containing all vertices.

In this graph, vertices 1, 2 and 3 are connected from time step 1 to time
step 3. It can be noticed that in G2, even though they are connected, they are
not directly connected. Those vertices form a persistent connected component
p1 = ({1, 2, 3}, 3, 3, 3) in the sense of Definition 4.

Vertices 2, 3 and 4 are connected from time step 2 to time step 4 and form a
persistent connected component p2 = ({2, 3, 4}, 3, 3, 4) in the sense of Definition 4.

As the graph is connected from time step 2 to time step 3, vertices 1, 2, 3 and
4 form a persistent connected component p3 = ({1, 2, 3, 4}, 4, 2, 3).

It can be noticed that vertices 2 and 3 stay connected over the whole study
interval, even though they are directly connected only in G3. Therefore vertices 2
and 3 form a persistent connected component p4 = ({2, 3}, 2, 4, 4).

In the sense of Definition 5, component p2 is dominated by p1 (under condition
3) and components p1, p3 and p4 are non-dominated. Those last components are
the ones that we want to find.

Figure 4 shows a representation of the PCCs from the graph of Figure 3. Per-
sistent connected component p1 is represented in orange, p3 is in blue and p4 is in
green. It is clear that PCCs are not disjoint and a vertex can belong to several
PCCs.
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Figure 3: Dynamic graph on 4 time steps.

Figure 4: Visual representation of the persistent connected components of the
graph from Figure 3. Each colored square represent a PCC: it covers the vertices
composing it and all the time steps it is present on.
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4 PICCNIC Algorithm
This section presents the PICCNIC Algorithm (PersIstent Connected CompoNent
InCremental Algorithm) whose goal is to find the Pareto front containing all non
dominated solutions, that is, every dominant PCC.

The algorithm will be presented together with as an execution example. Cor-
rectness and complexity of this algorithm will be proved.

4.1 Presentation

PICCNIC is presented in Algorithm 1. Its objective is, for a given dynamic graph,
to find all dominant persistent connected components in the sense of Definition 5.
This algorithm works incrementally on the time steps and can therefore be used
online.

Several sets of components are used to compute the persistent connected com-
ponents. PCCn contains, at each time step i, the components alive at i. PCCc
keeps the components alive at the previous time step. PCCo contains, at each
time step, the components that just finished. PCCf contains the non dominated
persistent connected components.

Each iteration of the algorithm starts by retrieving all connected components of
t-graph Gi (line 3). We discard components of size 1 because a vertex is necessarily
connected to itself for the whole study interval, so each dynamic graph has n PCCs
of size 1 and length T .

The first step of the algorithm (given in Algorithm 2) aims at finding the new
persistent connected components beginning at i and keeping the components that
are still going on at i.

The second step of the algorithm (given in Algorithm 3) works on the persis-
tent components that are over at the current time step and keeps the dominant
components. It uses Algorithms 4 and 5 to check if one component p1 dominates
another component p2.

Between the first and the second step, Algorithm 1 calls the function SuppressDouble
on the set PCCn. The goal of this function is for the set PCCn to contain no du-
plicate elements, that is, with identical vertex subset.

4.2 Example

Let us look at the execution of PICCNIC Algorithm on example from Figure 3.
In the first iteration, we focus on G1 (see Figure 3b). It has two connected

components: {1, 2, 3} and {4}, but we discard the second one which is a singleton.
We initialize the set of current PCCs PCCc = {({1, 2, 3}, 3, 1, 1)} and the set of
final PCCs PCCf = ∅.
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Algorithm 1 PICCNIC Algorithm
Input: Dynamic Graph G, study interval T = {1, . . . , T}
Output: Dominant persistent connected components
// Loop on the number of instants

1: for all i ∈ {1, . . . , T + 1} do
2: G′ = Gi // Get the graph for the ith time step, void if i = T + 1
3: CC = set of connected components of G′ of size ≥ 2
4: if i=1 then
5: PCCc = CC
6: PCCf = ∅

// All CCs are current PCCs
7: else
8: PCCn = PICCNICStep1(CC,PCCc)
9: SuppressDouble(PCCn)

10: PCCf = PICCNICStep2(PCCn, PCCc)
11: end if
12: end for

return PCCf

In the second iteration, the current t-graph is G2 (see Figure 3c). It has only
one connected component {1, 2, 3, 4}. At the end of the iteration, the set of current
PCCs PCCc = {({1, 2, 3}, 3, 2, 2), ({1, 2, 3, 4}, 4, 1, 2)}. The first component was
already present at the previous time step, therefore its length is now 2. The set
PCCf = ∅, because no component is finished yet.

In the third iteration, the current t-graph is G3 (see Figure 3d). Just like at the
previous time step, it also has only one component. At the end of the iteration,
PCCc = {({1, 2, 3}, 3, 3, 3), ({1, 2, 3, 4}, 4, 2, 3)}. As no component has finished at
time step 3, PCCf is still empty.

In the fourth iteration, the current t-graph is G4 (see Figure 3e). It has two con-
nected components: {1} and {2, 3, 4} and we only consider the second one. At the
end of step 1, PCCn = {({2, 3}, 2, 4, 4), ({2, 3, 4}, 3, 3, 4), ({2, 3, 4}, 3, 1, 4)}. The
first component comes from the component {1, 2, 3} that has been connected since
the first time step. The second component comes from the component {1, 2, 3, 4}
that has been connected since the second time step. The last component comes
from the connected component {2, 3, 4} of t-graph G4.

Function SuppressDouble on PCCn removes ({2, 3, 4}, 3, 1, 4) because another
PCC with the same vertex set and starting earlier is still alive and exists in PCCn.
At the beginning of step 2, PCCn = {({2, 3}, 2, 4, 4), ({2, 3, 4}, 3, 3, 4)} so at the
end of the fourth iteration PCCc = {({2, 3}, 2, 4, 4), ({2, 3, 4}, 3, 3, 4)}.

The set of final PCCs PCCf = {({1, 2, 3}, 3, 3, 3), ({1, 2, 3, 4}, 4, 2, 3)}. Both
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Algorithm 2 PICCNICStep1

Input:CC, PCCc
Output:PCCn, the set of possible new PCCs

1: PCCn = ∅
2: for all c ∈ CC&|c| > 1 do
3: Pers = FALSE // Whether c is already a PCC or not
4: for all p ∈ PCCc do
5: if p = c then
6: Pers = TRUE
7: p′ = p
8: else
9: p′ = p ∩ c

10: end if
11: if |p′| ≥ 2 then
12: l(p′) = l(p) + +
13: f(p′) = i
14: PCCn = PCCn ∪ {p′}
15: end if
16: end for
17: if ¬Pers then
18: PCCn = PCCn ∪ {c}
19: l(c) = 1
20: f(c) = i

// Include new components if not already in
21: end if
22: end for
23: return PCCn
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Algorithm 3 PICCNICStep2

Input:PCCn, PCCc, PCCf
Output:Updated PCCf

1: PCCo = PCCc − PCCn //Set of now finished PCCs, test if removed
2: PCCc = PCCn
3: for all p ∈ PCCo do
4: for all p′ ∈ PCCo&p 6= p′ do
5: if DomLaterEqual(p′, p) then
6: PCCo = PCCo − {p}
7: STOPLOOP
8: else
9: if DomLaterEqual(p, p′) then

10: PCCo = PCCo − {p′}
11: end if
12: end if
13: end for
14: end for
15: for all p ∈ PCCo do
16: for all p′ ∈ PCCf do
17: if DomEarlier(p′, p) then
18: PCCo = PCCo − {p}
19: STOPLOOP // p dominated by some finished PCC
20: else
21: if DomLaterEqual(p, p′) then
22: PCCf = PCCf − {p′}
23: end if
24: end if
25: end for
26: end for
27: PCCf = PCCf ∪ PCCo
28: return PCCf

Algorithm 4 DomEarlier

Input: Two PCCs p1 and p2, f(p1) < f(p2)
Output: TRUE if p1 dominates p2

1: if (k(p1) ≥ k(p2))&(l(p1) ≥ l(p2)) then
2: return TRUE
3: end if
4: return FALSE
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Algorithm 5 DomLaterEqual

Input: Two PCCs p1 and p2, f(p1) ≥ f(p2)
Output: TRUE if p1 dominates p2

1: if (k(p1) > k(p2))&(l(p1) ≥ l(p2)) then
2: return TRUE
3: end if
4: if (k(p1) ≥ k(p2))&(l(p1) > l(p2)) then
5: return TRUE
6: end if
7: if (k(p1) = k(p2))&(l(p1) = l(p2))&(f(p1) = f(p2))&(K(p1) ≺ K(p2)) then
8: return TRUE
9: end if

10: return FALSE

of those components are now finished as vertex 1, which is present in both com-
ponents, is now disconnected in the graph.

In the fifth iteration, there is no current t-graph as T = 4. The second phase
of Algorithm 1, detailed in Algorithm 3, is executed.

At the end of this iteration, PCCf = {({1, 2, 3}, 3, 3, 3), ({1, 2, 3, 4}, 4, 2, 3),
({2, 3}, 2, 4, 4)}. The last component has length 4, indeed, vertices 2 and 3 are
connected over the whole study interval. Remark that ({2, 3, 4}, 3, 3, 4)} has been
eliminated as it is dominated by ({1, 2, 3}, 3, 3, 3).

On graph from Figure 3, there are 3 non-dominated components: one of size 3
and length 3, one of size 4 and length 2 and one of size 2 and length 4.

4.3 Correctness

Theorem 1. PICCNIC provides the set of all dominant persistent connected com-
ponents, in the sense of definition 5, of a dynamic graph G on interval T .

Proof. To prove that the algorithm is correct, we have to show:

1. At any time i ≤ T , any dominant PCC (in the sense of definition 5) finishing
before or at i is present in PCCf ∪ PCCc.

2. At the end of the algorithm, only dominant PCCs are present in PCCf .

At i = 1, the result is trivial, as the set PCCc contains all connected compo-
nents of G at the first instant.

Let us suppose the result is true for some 1 ≤ i ≤ T , and consider iteration
i + 1. Let p = (K, k, l, f) be a dominant PCC at i + 1. Suppose first it is not
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dominant for any θ ≤ i, hence its finishing time f = i + 1. If its length is 1, it is
necessarily a connected component of G for instant number i+1. In the algorithm,
its associated boolean Pers is false and p is directly included in PCCn. Its is the
only PCC with set K therefore it is not removed by SuppressDouble, and it is
put in PCCc. If its length is larger than one, let us first suppose that p ∈ PCCc
at the beginning of the iteration. p must be included into a connected component
of G at i+ 1. Therefore it is put in PCCn, and then in PCCc. Even if it finishes
at i + 1, it is not removed because of the dominance tests as it is by hypothesis
dominant. If p does not belong to PCCc at the beginning of the iteration, it
means at all previous iterations it was not kept by the algorithm (as a component
is never removed from PCCc until it is finished), although it was included into
one connected component of each of the associated graphs. This implies that at
all of these instants, it was strictly included (in terms of vertex sets) into another
PCC, say q, present in PCCc at least at i. If q does not exist, p would have been
added to PCCc before as it would have appeared as intersection of a member of
PCCc with a connected component. The length of q is equal to the length of p
before i + 1 (so that p is not dominated by q at i + 1). PCC q is not included
into a connected component at i + 1 as p is then dominant, and the intersection
of q and some connected component c at i+ 1 is p (a larger intersection implies a
larger subset of q present at i+ 1, but p is dominant).

Therefore p is included into PCCn, then into PCCc during iteration i+ 1. If p
is dominant for θ ≤ i, then by induction hypothesis, p is present at time i. Either
it is finished at i + 1 or earlier and p remains in PCCf (it is not removed by the
algorithm as it is dominant), or it is not and it stays into PCCc: it is included in
one connected component of G, and as it is dominant it cannot be eliminated by
SuppressDouble. By induction, the result is true also for i = T . After the final
step, only dominated PCCs are removed, therefore p is inside the list provided by
the algorithm.

Let us now prove the second part. Suppose there exists some PCC p =
(K, k, l, f) that is present before the final step and which is dominated by some
PCC p′ = (K ′, k′, l′, f ′). We just proved that p′ is kept by the algorithm at T . If
p ∈ PCCc, during the final step it is placed in PCCo as set CC is void. It is then
tested against all other elements of PCCc, then against all elements of PCCf .
Therefore it must be tested against p′ and removed. If p ∈ PCCf and p ∈ PCCc
at T , then for the same reason p will be tested against p′ and eliminated. Suppose
now p, p′ ∈ PCCf . They have been tested together when the latest PCC has
finished (if they finished simultaneously, they are tested together by the algorithm
while in PCCo). Therefore it is impossible that p and p′ are both present.
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4.4 Complexity

In this section, we prove that Algorithm 1 is polynomial.

Lemma 1. At the end of any iteration 1 ≤ i ≤ T , the cardinality of PCCc is
bounded by n − NbCC(Gi), where NbCC(Gi) is the number of connected compo-
nents of the graph G at iteration i.

Proof. PCCc is built from PCCn at the beginning of step 2 of the algorithm
(PCCc = PCCn in Algorithm 3). At this moment, all doubles were removed from
PCCn with SuppressDouble(PCCn) between steps 1 and 2 of Algorithm 1. This
function ensures that only one PCC is present in PCCn with a given vertex set
K.

Let p = (K, k, l, i) and p′ = (K ′, k′, l′, i′) be two elements of PCCn at the end
of iteration i such that K 6= K ′. Let p start before p′. K and K ′ have at least
cardinality 2. Both are necessarily included into one connected component of Gi.

If they are included into two different components, K and K ′ are disjoint.
Suppose now they are included into the same component c of Gi and not

disjoint. If one is not included into the other, K ′′ = K ′ ∪ K is also included
into c. Furthermore, a PCC p′′ associated to K ′′ is present since the iteration θ
where p and p′ were first both present. As p starts before p′, it means p′′ appears
simultaneously with p′. But this is impossible since K ′′ strictly contains K and
K ′. Therefore p′ does not appear. Consequently K ⊂ K ′ (if K ′ ⊂ K p′ cannot be
included into PCCn).

As, in the second step, PCCc = PCCn after deleting the doubles, the vertex
sets of the PCCs present in PCCc are either strictly included or disjoint.

It is easy to verify by induction that the number of such subsets is bounded by
the cardinality of the set minus 1, regardless of the way those subsets are chosen.
Indeed, a subset contains at least 2 elements and the subsets are either disjoint or
strictly included. It is obvious that if the set has 2 elements, at most one subset
is acceptable according to the previous conditions. Now consider a set Ω having
ω elements. Suppose it has ω − 1 subsets, such that this number is maximal (it
is impossible to create another subset without violating the strictly included or
disjoint condition of the subsets). When one element e is added to Ω, we can
either keep the same subsets, and in this case there are still ω − 1 subsets, or we
can create a new subset by making an union between {e} and an existing subset,
and in this case there are ω subsets. As two subsets are either strictly included or
disjoint, we cannot create another subset, regardless of the way the subsets were
initially chosen. We can conclude that a set Ω with ω elements has at most ω − 1
subsets such that each subset has at least cardinality 2 and two subsets are either
strictly included or disjoint.
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Gi is divided into α connected components of size k1, . . . , ki, . . . , kα. Applying
the previous reasoning for each component gives at most ki − 1 subsets in each
component, hence the result.

Lemma 2. At the end of any iteration 1 ≤ i ≤ T , the cardinality of PCCf is
bounded by min(n− 1, i).

Proof. This is trivially true for i = 1, the set is then empty. Now suppose it is true
for some 1 ≤ i ≤ T . Theorem 1 states that two components linked by a dominance
relation cannot be together in PCCf .

Suppose two PCCs p and p′ of same length l are present in PCCf at i. One
of them necessarily dominates the other and is alone in PCCf . Therefore, for a
given 1 ≤ l ≤ T , there is at most one PCC of length l in PCCf , so at most i
elements in PCCf . Conversely, two elements of PCCf must have different sizes,
so they are at most n− 1 (remember singletons are not considered).

Lemma 3. The complexity of one iteration of Algorithm 1, including the final
one, is O(n2).

Proof. Let us first remark that all sets of PCCs considered during one iteration
have at most n elements. This is immediate for PCCc and PCCf from the two
previous lemmas. It is true for PCCn as it is equal to PCCc at the end of the
iteration. It is also true for PCCo as it is included into PCCc from the previous
iteration, and for CC by definition. With adequate data structures for these sets,
all assignment instructions between sets are at most linear in n, and adding or
removing one element from one of these sets is O(1).

The first iteration reduces to the assignment of PCCc which is linear in n. So
let us concentrate on the other iterations, the final one included.

In the first step, the complexity of the first loop on c ∈ CC is bounded by
the number of connected components of G NbCC(Gi), times the size of PCCc
at the end of the previous iteration NbCCi−1(G), therefore it is O(n2). The car-
dinality of the set PCCn is bounded by n − NbCC(Gi−1) + NbCC(Gi), so by
2 · n. SuppressDouble on this set is of course O(n2). Last there is exactly one
assignment between non trivial sets in step one.

In the second step, both loops involve at most two domination tests at inner
iteration, and each test is O(1). It also involves at most the removal of one element
from PCCo or PCCf , which is O(1). The number of inner iterations is at most
|PCCo|2 for the first loop and |PCCo| · |PCCf | for the second loop, therefore both
have a complexity O(n2). Last there are exactly two assignments between non
trivial sets in step 2.

Theorem 2. The complexity of PICCNIC is O(n2 · T ), where n is the number of
vertices and T the time horizon.
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Proof. The proof is immediate from the previous lemma, as the number of itera-
tions is T + 1.

5 Experimental Study
In this section, we propose an experimental study of our algorithm. This is done
using the GraphStream Java library1 (Dutot et al., 2007). The virtual machines
used for this experiment have Intel Core 64 bits processors with 8 cores, 4 MB
cache size, 2 GHz frequency and 96 GB of RAM. The OpenJDK 1.9 Runtime
Environment is used.

We present the experimental settings chosen, the results of PICCNIC Algo-
rithm and its execution time.

5.1 Experiment Settings

5.1.1 Graph Generation

In order to evaluate PICCNIC Algorithm, we test it on randomly generated graphs.
First we generate the structure of the graph (vertices and edges). Then we add
dynamicity to the edges using a Markovian process.

First, an underlying graph (V,E) is generated. Its vertices correspond to the
ones of the dynamic graph G. Its set of edges includes all sets Ei. The underlying
graph is generated using generators from the GraphStream library. We test four
different types of graphs that present specific characteristics:

1. Random graphs, corresponding to the Erdős-Rényi model (Erdős and Rényi,
1960). It is the most common way of randomly generating a graph. Graph-
Stream Random Graph generator is used. This generator adds a vertex and
randomly connects it to the other vertices of the graph. This operation is
repeated for each vertex added.

2. Regular graphs, which are generated using GraphStraem Grid generator.
This generator generates a torus with the given number of vertices.

3. Scale-free graphs, which are used to model many social networks or web net-
works. Graphstream Barabasi-Albert generator is used. This generator adds
a vertex to the graph and connects it to one or several vertices randomly
chosen using Barabasi-Albert’s (Albert and Barabási, 2002) preferential at-
tachment rule. This operation is repeated for each vertex added.

1http://graphstream-project.org
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Figure 5: Markov chain representing the states of an arc and probabilities to go
from one state to the other. State 0 corresponds to the edge being absent and
state 1 corresponds to the edge being present.

4. Random geometric graphs, which are particularly well suited for applications
with explicit space dimension, such as communication networks or logistic
networks. GraphStream’s Random Euclidean graph generator generates ran-
dom geometric graphs using euclidean distance. It randomly places vertices
on a finite space [0, 1]× [0, 1]. Two vertices are connected if their euclidean
distance is below a given threshold.

In the following, we use the name of the generators.
Once the underlying graph is generated, the dynamics are obtained on edges

thanks to a Markov chain. The one used on each edge is presented on Figure 5.
When an edge is present at time step i, it remains present at time step i+ 1 with
probability p. When an edge is absent at time step i, it remains absent at time
step i+ 1 with probability q.

We introduce a new parameter: presence, which represents the presence of
edges over the time study interval and is equal to the stationary probability of
edge presence in the Markov chain, often noted π1 (π1 ∈ [0, 1]).

For a given presence value, there exists many values for p and q. We made
experiments (which we do not detail here because it is out of the scope of this
paper) and they showed that the values chosen for p and q had negligible influence
on the results. Therefore we choose to fix p and q such that p = π1 and q = π0
(π0 = 1− π1) in the described experiments.

5.1.2 Parameter Selection

We plan to evaluate the results of our algorithm as well as its execution time. To
this end, some parameters are fixed and the others vary.

As previously explained, we test four graph generators to generate the structure
of graphs.

The study interval needs to be long enough so we can observe relevant results.
for this reason the number of time steps is fixed to 1000.
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PICCNIC Results PICCNIC Execution Time
Graph Type Barabasi-Albert, random, Barabasi-Albert, random,

random Euclidean, grid random Euclidean, grid
n 1000 100, 250, 400, 550, 700, 850, 1000, 1500,

2000, 2500, 3000, 3500, 4000, 4500
T 1000 1000

Average Degree 4, 8, 12 4
presence 0.7, 0.9 0.9

Table 1: Parameters used for the experiments

Degree Barabasi-Albert Random Random Euclidean Grid
4 0.0221 0,0037 0,5267 0.0000
8 0.0428 0.0084 0.5958 0.0000
12 0.0581 0.0117 0.6040 0.0000

Table 2: Average Clustering Coefficient for each graph type and average degree.

To observe the outcome of the algorithm, the number of vertices is fixed to
1000 in order to deal with large graphs. In order to obtain execution times as a
function of the number of vertices, n takes values in {100, 250, 400, 550, 700, 850,
1000, 1500, 2000, 2500, 3000, 3500, 4000, 4500}.

The graphs are not defined by their number of edges but by their average
degree. We observe the results on graphs with average degrees 4, 8 and 12 and we
observe the execution time on graphs with average degree 4. It should be noted
that grids are only available with average degree 4 and 8.

Values 0.7 and 0.9 are used as presence parameter for the outcome of the
algorithm. Only value 0.9 is taken into account to observe the execution time of
the algorithm.

In order to obtain statistically relevant observations, 10 instances of graphs are
tested for each set of parameters. Table 1 synthesize the parameters values chosen.

Figure 6 presents the degree distribution of vertices from the graphs generated
for the experiment and Table 2 presents their average clustering coefficients (see
(Watts and Strogatz, 1998)).

5.2 PICCNIC Results

Figures 7, 8 and 9 represent the average Pareto fronts obtained with PICCNIC
algorithm for each average degree tested and each type of graphs. Each point
represents the average size of non-dominated PCCs, for each possible length.

It can be noticed that the higher the presence, the higher the fronts. When
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Figure 6: Degree distribution of vertices for each graph type and average degree.

edges have a higher presence, the graph is more connected and thus PCCs are of
bigger size.

By comparing Figure 7 and Figure 9, we can notice that the fronts are higher
on Figure 9. It means that when the average degree is higher, as the graph is more
connected, the PCCs are bigger.

Figure 6 is cropped, indeed, Barabasi-Albert graphs have some vertices with
very high degree. As grids are actually toruses, all vertices have same degree,
exactly the average degree. Both Random and Random Euclidean graphs have a
degree distribution centered on the average degree.

With degree 4 (Figure 7) Random Euclidean graphs do not have components
with a high number of vertices. Those graphs do not have “giant” components.
With degree 8 and 12, the clustering coefficient of Random Euclidean graphs pre-
sented in Table 2 and its degree distribution presented in Figure 6 show that even
though Random Euclidean graphs have many clusters, those clusters are highly
connected to each other, therefore components are easily kept alive from one time
step to the next.

Barabasi -Albert graphs do not have “giant” components. Compared to other
graph types, the size of non-dominated components drops drastically as the length
of the components increases. This can be explained by the degree distribution.
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Figure 7: Average values of Pareto front results of PICCNIC algorithm on graphs
with 1000 vertices, 1000 time steps, average degree 4. On the left are the results
for presence 0.7 and on the right for presence 0.9.
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Figure 8: Average values of Pareto front results of PICCNIC algorithm on graphs
with 1000 vertices, 1000 time steps, average degree 8. On the left are the results
for presence 0.7 and on the right for presence 0.9.
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Figure 9: Average values of Pareto front results of PICCNIC algorithm on graphs
with 1000 vertices, 1000 time steps, average degree 12. On the left are the results
for presence 0.7 and on the right for presence 0.9.
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Figure 6 shows that most vertices of those graphs have small degree. Therefore,
such a graph is easily disconnected in future time steps. So keeping a large com-
ponent alive for a long period of time is very unlikely.

For each presence value and average degree, the front corresponding to random
graphs is above the one corresponding to Barabasi-Albert graphs. For a given
length, a PCC is bigger in random graphs than in Barabasi-Albert graphs. For a
low average degree, the front corresponding to Random Euclidean graphs is lower
than all other types of graphs whereas with high average degree, it is higher than
Barabasi-Albert graphs. PCCs in Random Euclidean graphs are way bigger with
a high average degree. Barabasi-Albert graphs present smaller components than
Random and Random Euclidean graphs because, as previously explained, they
have a majority of vertices with a low degree, therefore there are great chances
that such graph breaks into small components.

The front corresponding to grids in Figure 7 for presence 0.9 is high, meaning
that PCCs have big size and stay for a long period of time steps. Grids present
“giant” components. For presence 0.7, the front drops drastically. PCCs of big
size are short and long PCCs are small. Grids are highly connected and robust to
changes with a high presence value but they are easily disconnected when presence
decreases. In Figure 8, with a presence value 0.9, the graphs are very connected,
therefore grids have only one non-dominated component with almost 1000 vertices
and length 1000.

5.3 PICCNIC Execution Time

To study computation time of the algorithm, we compute it for all four types of
graphs, with 1000 time steps, average degree 4, presence 0.9 and different number
of vertices, from 100 to 4500 (see Table 1).

Figure 10 presents median values of PICCNIC algorithm execution time for
each type of graph. For each, a regression function of the form n2 is also repre-
sented. PICCNIC worst case complexity is n2 · T . In this specific experiment, T
is fixed (to 1000), so the complexity becomes n2, hence the regression function of
the form n2.

For Barabasi-Albert graphs, the R2 value of the regression is 0.984. For grids,
it is 0.979, for Random graphs it is 0.992 and for Random Euclidean graphs it
is 0.997. Those R2 values confirm that the regression of the form n2 fits the
experimental values of computational time. The experimental results fit the worst
case complexity.

With a higher number of vertices, it is getting clearer that the execution of
PICCNIC algorithm takes more time on random Euclidean graphs than on all
other types of graphs and that it is faster on grids than on all other types of
graphs. When compared to Figure 7, it can be noticed that the algorithm on
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Figure 10: Median execution time of PICCNIC algorithm depending on the num-
ber of vertices of the graphs, for each type of graph.

grids, which present big components (lot of vertices for a long period of time),
is executed faster whereas the execution takes more time on random Euclidean
graphs which present small components. Although there is a significant difference
of computation times between each type of graphs, it is still the same order of
magnitude and therefore not an issue in practice.

The computation time of PICCNIC algorithm, between about 692 seconds to
3045 seconds for graphs with 4500 vertices, depending on the graph type, is quite
reasonable and shows that this algorithm can be used in practice.

Computing the whole algorithm in the conditions of the experiment is done in
1000 iterations. On graphs with 1000 vertices, the average computation time of one
iteration is 0.056 second for grids, 0.096 second for Barabasi-Albert graphs, 0.096
second for random graphs and 0.116 second for Random Euclidean graphs. On
graphs with 4500 vertices, the average computation time of one iteration is 0.422
second for grids, 0.853 second for Barabasi-Albert graphs, 1.054 second for random
graphs and 1.577 second for Random Euclidean graphs. Computing one iteration of
the algorithm is possible under a very reasonable time limit, so PICCNIC algorithm
can be used online while the graph changes.
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6 Conclusion
In this paper, we proposed a new definition of connected components in a dynamic
graph. Related problems have been addressed in the literature before but unlike
most of those works, our definition is not based on journeys in a dynamic graph.
Our generalization is quite natural, as the vertices of a PCC associated to an
interval I belong the the same connected component at each time step of this
time interval. Like the extension of connected components found in the literature,
our definition of persistent connected components do not form a partition of the
graph. A notion of dominance between PCCs was introduced.

We presented a polynomial time algorithm computing all non-dominated PCCs
in a dynamic graph. PICCNIC algorithm has complexity O(n2 · T ), with n the
number of vertices and T the time horizon. It is online as it works successively on
each time step of the study interval.

The algorithm computes the length of a PCC using the number of time steps.
But if we consider that a time step in the study interval corresponds to a moment
in time for which the graph changed, then we can imagine a model where the
actual amount of time elapsed between time steps i and i + 1 and j and j + 1 is
not the same. PICCNIC algorithm can easily be modified to compute the length
of a PCC with “real time” instead of number of time steps.

We presented an experimental study. First we executed PICCNIC on different
types of graphs to study the impact of the graph’s structure on PCCs and on its
execution time. Then we showed that PICCNIC’s execution time is consistent with
its theoretical complexity and that its execution time makes it usable in practice
on large graphs.

Let us consider that connected components can be interrupted and start again
later, another natural extension. From definition 4, it would mean that the ver-
tices stay connected directly or indirectly for l time steps that are not necessarily
consecutive. It is not possible to eliminate dominated connected components with-
out considering all the time steps. Therefore, the number of candidate components
might be Θ(2n), and finding non dominated ones is not tractable for medium values
of n.

Finally, this work can be directly extended to directed graphs: vertices in a
strongly persistent connected component must be strongly connected during l con-
secutive time steps. Then, PICCNIC Algorithm should extract strongly connected
components instead of connected components at the beginning of each iteration
and the rest remains unchanged.
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