
HAL Id: hal-02473300
https://hal.science/hal-02473300

Submitted on 10 Feb 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Framework for Semi-Automatic Precision and
Accuracy Analysis for Fast and Rigorous Deep Learning

Christoph Lauter, Anastasia Volkova

To cite this version:
Christoph Lauter, Anastasia Volkova. A Framework for Semi-Automatic Precision and Accuracy
Analysis for Fast and Rigorous Deep Learning. IEEE Symposium on Computer Arithmetic (ARITH),
Jun 2020, Portland, United States. �hal-02473300�

https://hal.science/hal-02473300
https://hal.archives-ouvertes.fr

A Framework for Semi-Automatic Precision and
Accuracy Analysis for Fast and Rigorous Deep

Learning

Christoph Lauter
Department of Computer Science - College of Engineering

University of Alaska Anchorage (UAA)
3211 Providence Dr Anchorage, AK, 99508

christoph.lauter@christoph-lauter.org
ORCID: 0000-0001-7335-8220

Anastasia Volkova
Université de Nantes

CNRS, LS2N F-44000 Nantes, France
anastasia.volkova@univ-nantes.fr

ORCID: 0000-0002-0702-5652

Abstract—Deep Neural Networks (DNN) represent a
performance-hungry application. Floating-Point (FP) and custom
floating-point-like arithmetic satisfies this hunger. While there is
need for speed, inference in DNNs does not seem to have any need
for precision. Many papers experimentally observe that DNNs can
successfully run at almost ridiculously low precision.

The aim of this paper is two-fold: first, to shed some
theoretical light upon why a DNN’s FP accuracy stays high for
low FP precision. We observe that the loss of relative accuracy
in the convolutional steps is recovered by the activation layers,
which are extremely well-conditioned. We give an interpretation
for the link between precision and accuracy in DNNs.

Second, the paper presents a software framework for semi-
automatic FP error analysis for the inference phase of deep-
learning. Compatible with common Tensorflow/Keras models, it
leverages the frugally-deep Python/C++ library to transform a
neural network into C++ code in order to analyze the network’s
need for precision. This rigorous analysis is based an Interval and
Affine arithmetics to compute absolute and relative error bounds
for a DNN. We demonstrate our tool with several examples.

Keywords—deep learning, floating-point arithmetic, error anal-
ysis, interval arithmetic, affine arithmetic

I. INTRODUCTION

The area of Deep Learning (DL) [1], and in particular
learning approaches based on Deep Neural Networks (DNNs),
has seen some remarkable advances in the past decade. Neural
networks are computing systems that can be seen as col-
lections of connected nodes that are called neurons and are
typically organized into sequentially inter-connected layers.
Each layer performs an affine transformation defined by the
layer’s parameters (weights and bias), followed by a non-
linear transformation called activation. DNNs can “learn” to
perform specific tasks by training on examples and then infer
the results for new input data. For example, when given enough
training samples, a classification network can learn the values
of weights and biases for each neuron such that given a new
image it can to distinguish cats from dogs on images.

Many key algorithmic ideas underlying DNNs go back to as
far as late 1960s [2] with a reinstated interest in 1990s [3]. The
huge potential of DNNs is to solve complex problems while

accepting input data in a raw and even heterogeneous form
faced practical difficulties: hardware was not powerful enough,
allowing only small-sized examples. It is not until the 2000s
that some realistic problems could be solved by DNNs. The
best example is the Imagenet [4] image classification problem.
Then a huge wave of results in applying DL to real-world
problems in the areas of computer vision, speech recognition,
language-understanding and navigation in autonomous driving
through reinforcement learning followed. Both increasingly
large datasets and increasingly complex models were critical
for the success. For example, to recognize handwritten digits
using MNIST network neural network is defined using around
0.7 million parameters; the MobileNet network for the Ima-
genet problem requires around 27 million of parameters, while
the BERT network goes up to 345 million parameters to solve
Natural Language Processing problems.

Deep Learning became an extremely computationally-
hungry application in the end of the Moore’s Law era [5], when
again performance improvement in CPUs and even GPUs is
not enough. On the computer arithmetic level, performance can
be improved by reducing the bit-widths of data and operators,
which results in smaller hardware area and memory-access
times, and faster computations. However, a tradeoff must be
found in order to keep the DNN inference accurate.

While DNN training is usually performed in Floating-Point
(FP) arithmetic using uniform float32 or mixed float32/half [6]
precision, inference can be performed in smaller formats,
or even in Fixed-Point arithmetic. There are several new
low-precision FP formats that have been suggested by the
major hardware manufacturers: bfloat16 (Intel [7], ARM [8]),
DLfloat (IBM) [9], MSFP8-11 (Microsoft [10]) and the ded-
icated hardware is on its way. Obviously, FPGAs and ASICs
offer even richer design space.

Existing literature provides a large body of research on
post-training quantization of DNN’s parameters, typically
down to 8-bit (Google’s TPU) and 4-bit integers [11], or even
down to 1 bit, which results in Binary Neural Networks [12],
[13]. Models can even be trained directly to have low-precision
representation of weights and biases [14]–[16].

However, in the existing literature, the impact of rounding

errors due to the precision of the underlying arithmetic has
been, to the best of our knowledge, surprisingly missing. Per-
haps negligible for close-to-float32 precisions, the arithmetic
rounding errors in low-precision implementations can poten-
tially grow and impact the network’s classification choice. The
experimental studies [7], [8], [17] make us think that DNNs
can nevertheless maintain high inference accuracy even with
low-precision FP arithmetic. The first contribution of this paper
is to shed some theoretical light on why this is the case by
having a computer arithmetic look at DNN layers.

A typical study of the impact of rounding errors in DNNs is
based on a comparison with a reference output on a (moderate)
set of testing data. More formal approaches do exist, to analyze
the robustness of DNNs with respect to perturbation of input
parameters, e.g. the SafeAI project1 [18] based on abstract
interpretation or SMT [19]. However, these tools do not
account for FP rounding errors in their analyses. Our second
contribution is to provide an interpretation of the impact of a
precision choice upon the accuracy of a DNN.

Finally, we present a semi-automatic software framework
for an automatic precision and accuracy analysis tool. Our
versatile tool has a front-end accepting DNN models from
common design frameworks such as Tensorflow/Keras, and is
based on a generic error analysis technique, parametrizable by
the target FP precision. The latter feature permits to analyze
the behavior of DNNs upon a variety of target FP formats. In
order to provide both relative and absolute error bounds, we
introduce a combination of Affine and Interval arithmetics.

We start by recalling to the reader the basic notions of Deep
Neural Networks in Section II. Then, in Sections III and IV
we define our arithmetic toolkit and present a theoretical
look at the numerical computations within DNN’s layers,
respectively. We follow by the description of the software tool
and numerical experiments in Section V before concluding and
discussing future research.

II. DEEP NEURAL NETWORKS

The basic computational units of DNNs are neurons, that
can be seen as nodes parameterized by a weight w ∈ R
and a bias b ∈ R. Given an input x ∈ R, it computes an
output y = g(w · x + b), where g : R → R is a non-linear
activation function. Typically, the inputs of a neural Network
are assembled into a vector (e.g. a 32x32 pixel gray-scale
image is a flattened into a 1024x1 vector), hence the per-
layer computations are dot products. In a general case, DNNs
operate on N -dimensional tensors.

Conceptually, DNN layers are divided into the input layer,
the output layer and the intermediate, so-called hidden, layers
as illustrated in Fig. 1. A trained DNN model is defined by its
topology (number/type of layers) and the learned parameters
(weights and biases). Even though classically a network layer
was comprised of a linear computation (e.g. dot product) and a
non-linear activation function, modern literature often speaks
of “activation layer” as an independent entity. Following this
trend, we assume that computational layers are interleaved with
the activation ones.

1http://safeai.ethz.ch

x1

x2

x3

Output

Hidden
layer

Input
layer

Output
layer

Fig. 1. A DNN with 1 hidden layer. Each layer is parametrized by a weight
matrix, a bias vector and an activation function.

Activation layers: There exist a variety of non-linear
activation functions, having different properties, e.g. bound-
ed/unbounded, monotonic, continuously differentiable, etc.
Some of the most common activations over vectors are the
following ones:

• Sigmoid (sigmoid): computes

σ(xi) =
1

1 + e−xi
(1)

• Hyperbolic Tangent (tanh): simply applies tanh(xi)
• Rectified Linear Unit (ReLU):

ReLU(xi) = max{xi, 0}, i = 1, . . . , n. (2)

If the input x is an N -dimensional tensor, all of the above
functions are applied element-wise.
• Softmax activation (Softmax): normalizes x into a prob-

ability distribution over output classes. It is evaluated via

Softmax(xi) =
exi∑n
j=1 e

xj
, i = 1, . . . , n. (3)

If the input x is an N -dimensional tensor, the Softmax
activation is applied along each axis separately.

It should be noted that all of the above functions are bounded,
yielding output values in [0, 1], except for the ReLU, which
results in [0; X̄], i.e. it maintains an upper bound X̄ on the
layer’s input while clipping negative values.

Computational layers: Some of the most common layer
types are:

• Dense layer (Dense): typically accepting an input data
vector x ∈ Rn and parameterized by the weights matrix
A ∈ Rm×n and a bias b ∈ Rm. The output is compute
via y = A · x+ b ∈ Rm. For multidimensional inputs, this
operator extends into a tensor product.
• Convolution2 layer (Conv): its purpose is to extract the

feature maps out of data represented as multi-dimensional
arrays through a linear transformation. This layer is parameter-
ized by a convolution kernel that is convolved with the layer
input to produce a tensor of outputs. The guide [20] offers
a comprehensive description of the convolutional arithmetic
for deep learning. For example, an image is given as a 3D

2Should not be confused with a mathematical definition of convolution.

tensor (rows, cols, axes), where axes provides the number
of color channels. Convolution kernel is also a 3D tensor
of the size (kernel width, kernel height, axes). Convolution
operation consists of the kernel sliding across the input data
when at each location, the product between each element of
the kernel and the input is computed; consequently the results
are summed up to obtain a scalar output in the current location.
The basic arithmetic operation in the convolution layers is
again, the dot product.
• Pooling layer (Pool) : Pooling operations reduce the size

of feature maps by using some function to summarize sub-
regions, such as taking the average or the maximum value. The
basic arithmetic operation in this layer is summation and/or
max function.
• Batch Normalization layer (BatchNormalization): in-

troduced in [21], this technique is used to normalize the input
of the layer and only then apply a dot-product. The idea is
to divide the input data into mini-batches and first perform
per-batch normalization. Let m be a size of a mini-batch
B and x ∈ Rm×d be a d-dimensional input for the batch
normalization layer. Then, the normalization is applied for each
dimension separately via:

x̃
(k)
i =

x
(k)
i − µ

(k)
B√

σ
(k)2

B + ε

, k = 1, . . . , d, i = 1, . . . ,m, (4)

where the mean µB = 1
m

∑m
i=1 xi ∈ Rk and variance

σ2
B = 1

m

∑m
i=1(xi − µB)2 ∈ Rk are computed per mini-batch

B and ε > 0 is a small parameter. After normalization, the
input vector is transformed as follows : y(ki = γ(k)x̃

(k)
i +β(k),

where γ and β are d-dimensional vectors of parameters that
are learned during the optimization.

The continuously updating list of computational layers can be
found in the documentation for the Tensorflow/Keras.

III. ARITHMETIC TOOLKIT

FP operations, such as addition, subtraction, multiplication
or more complex functions like exp, tanh, can necessarily
not be exact: floating-point representation uses finite memory.
Rounding is hence necessary after almost every operation.
These roundings induce error into the computation, affecting
the final result [22]. For a DNN, this means e.g. that the output
class and the attached confidence probability are affected by
rounding error. When confidence is low, that error might have
even toggled the class the DNN output. In order to make DNNs
rigorous, the overall FP rounding error affecting the results
must be analyzed.

The error due to solely one FP operation mainly depends on
the precision k of the FP format used. For binary FP formats –
which we shall focus on in this paper– precision expresses the
number k of bits held in the format’s mantissa. For example,
for the IEEE754-2019 binary32, k = 24 and for IEEE754-
2019 binary64, k = 53. For an IEEE754-2019 FP operation
with precision k that does not overflow nor underflow, i.e.
exceed the format’s exponent range, the following holds for
rounding-to-nearest [22]: let u = 2−k+1. Then, for every FP
input a, b, there exists ε ∈ [−1/2; 1/2] such that

a� b = (a ◦ b) · (1 + ε u) (5)

where � is the FP realization of operation ◦ ∈ {+,−,×, /}.
A similar bound is available for unary operations such as√
, exp, tanh. This representation of the FP rounding error

is also called the first FP error model [23]. Remark that (5)
holds independently of the value of u, i.e. independently of
the chosen precision k. This model therefore allows code to be
analyzed for a given precision so to tailor it for an application.

The difficulty in analyzing a given FP code’s accuracy by
analyzing the total amount of error affecting a result value lies
in the intricate ways the different elementary errors, which
are given by eq. (5). For example, suppose two multiplication
operations are execute one after the other. By applying eq. (5)
twice, we already obtain:

a⊗ (b⊗ c) = (a× b× c) ·
(
1 + ε1 u + ε2 u + ε1 ε2 u

2
)
.

A single scalar product of a DNN’s convolution layer with n
inputs uses n multiplications and n additions, each of which
will result in an error term εi u by application of eq. (5) but will
also combine with all other error terms in the most intricate
way. Manual analysis with this approach is hence completely
intractable. Wilkinson and Higham therefore invented extended
ways of analyzing the combination of elementary errors in
FP code [23], [24]. However, their analysis requires human
insight into the different algorithms used, such as addition of
FP values, scalar products etc. When existing code is to be
analyzed for accuracy automatically using software, Higham’s
approach is hence not usable either.

A workable approach is found with Affine Arithmetic (AA),
as developed e.g. by Putot [25]. Every FP quantity q̂ is
annotated with a bound ε that expresses the quantity’s error
with respect to the mathematically ideal, but unknown quantity
q in a similar manner as in eq. (5) above:

q̂ = q · (1 + ε u) with |ε| ≤ ε. (6)

If q̂ stems from an exact quantity q in a way that involves only
one FP operation, ε is set to 1/2 according to (5). Otherwise,
when q̂ is the result of combining two quantities r̂ and ŝ with
an operation �, the error terms εr and εs as well as the error
term ε� due to the rounding in the operation � are combined
to yield one single new error term ε for q̂ with respect to q. This
combination is specific to each operation type. For example,
for addition, � = ⊕ we obtain:

q̂ = r̂ ⊕ ŝ = (r̂ + ŝ) · (1 + ε� u)

= (r · (1 + εr u) + s · (1 + εs u)) · (1 + ε� u)

= (r + s) ·
(

1 + εr
r

r + s
u + εs

s

r + s
u

)
· (1 + ε� u)

= q · (1 + ε u) , (7)

with

ε =

(
1 + εr

r
r+s u + εs

s
r+s u

)
· (1 + ε�u)− 1

u
. (8)

To annotate q̂ with ε bounding that ε in (8), we need to

• have access to the annotations εr and εs of the operands,
• know a bound on ε�, which is provided by (5) and
• to be able to bound the error amplification (or attenuation)

quantities αr = r
r+s and αs = s

r+s .

For the latter task, to bound αr and αs, we use Interval
Arithmetic (IA), as we shall explain below. We have detailed
only the case of FP addition,� = ⊕. Similar error combination
rules exist for the other operations that occur in DNNs, such
as subtraction, multiplication, division, square root, exp, tanh.

However, the AA approach above is based on a relative
error model: the term ε u describes the relative error of the FP
quantity q̂ with respect to the ideal, unknown quantity q. Such
a relative error bound does not always exist, in which case
relative AA breaks down. An easy-to-understand example is
when the result of an FP addition r̂⊕ ŝ cancels out completely,
amplifying the incoming errors εr u and εs u by an infinite
amount. Typically, in this case, the quantities αr and αs do
not stay bounded as their denominator becomes zero.

A solution to this issue is to use AA not with a relative
error term but with an absolute error term. An FP quantity q̂
is labeled with an absolute error bound δ such that

q̂ = q + δ u with |δ| ≤ δ. (9)

For FP addition, the absolute error terms just add up, plus an
additional absolute error term, which can easily be deduced out
of the relative term given by (5), by multiplying the relative
error bound by an upper bound on the exact result’s absolute
value. Such an upper bound is easy computed using IA

As a matter of course, due to the “there’s no free lunch”-
rule, the ease of use of absolute AA for addition comes with
issues for other operators like division, where amplification
terms similar to αr and αs become unbounded and hurt
absolute AA the same way as addition hurts relative AA.

Our solution to this issue is to maintain both absolute
and relative error “bounds” δ and ε for each quantity q̂ and
to let them become infinite whenever no such bound exists.
Operators like addition, multiplication, division, square root,
exp etc. try to propagate both the absolute and the relative
error bounds whenever possible, using the information in both
bounds when appropriate. This is, addition and subtraction,
which may cancel, propagate the absolute error bound and
may yield an infinite relative error bound. Multiplication,
division and square root start off the relative error bounds and
propagate those. Exponential propagates the entering absolute
error bound as a relative error bound as in

eq+δ u = eq ·
(

1 +
eδ u − 1

u
u

)
.

Logarithm does the inverse, transforming a relative error bound
into an absolute one. The function tanh, used a lot in DNNs
activation layers, can propagate the absolute error with no
amplification factor and may propagate the relative error bound
ε with a small amplification factor of 2.63 whenever ε u ≤ 1/4.
The details of this combined absolute and relative AA (CAA)
go beyond the scope of this paper but we may state:

tanh (q + δ u) = tanh(q) + δ′ u with δ
′

= δ,

tanh (q · (1 + ε u)) = tanh(q) · (1 + ε′ u)

with ε′ = 2.63 ε if ε u ≤ 1/4.

Whenever possible, the proposed CAA improves the one
bound –absolute or relative– of a quantity using the other.
For example, it is often possible to deduce tight relative error

bounds out of absolute when a quantity can be shown never to
be zero. Likewise, an absolute error bound is readily deduced
from the relative one and an upper bound on the quantity.

In order to do so and, as explained above, to be able
to combine the operands’ error terms and to bound absolute
elementary errors using eq. (5), bounds for the quantities
occuring in a computation must be known. We compute these
bounds using Interval Arithmetic (IA) [26]. For IA, each
quantity is replaced by an interval the quantity can be shown
to lie in. Each IA operator working on intervals produces an
interval that surely encompasses all possible images of the
operation and operands in the operand intervals. All roundings
are performed in such a way –viz. outwards– that this enclosure
property is satisfied even in the presence of roundings [26].

Both IA and (absolute, relative or combined) AA are
plagued by a phenomenon called the decorrelation effect [25].
Consider the following code snippet:

y = x;
z = x - y;

While mathematically, z will always be zero, as y = x, and
while even IEEE754-2019 FP code ensures that z will be zero
due to full cancellation of all bits of x and its copy y, IA
and AA will have no global understanding that x and y are
correlated, and –actually– equal. So assuming x to be bounded
by the interval [−1; 1], z will evaluate to the interval [−2; 2]
instead of the interval [0; 0]. For CAA, the issue will be that
the relative error bound ε on ẑ instead of becoming zero as
the errors on x̂ and ŷ cancel out will become infinite due
to the detected “catastrophic” cancellation. The absolute error
bound δ for ẑ will not become zero but the double of the
one on x̂. For all kind of arithmetic techniques, such as IA or
CAA, which only label quantities in code with interval bounds
or absolute and relative error bounds but which do not gain
any global understanding of the code, the decorrelation effect
has no simple solution. It depends on the application whether
or not the decorrelation effect occurs and whether or not its
consequences are bearable or not for that type of application.
As we shall see in more detail in Section IV, in code for DNNs,
the decorrelation effect does occur, typically in precisely the
way illustrated with the code sequence above. It does not occur
in its even more intractable appearances, like in cases when
y = sinx and z = x − y, where y and x are correlated for
small x, as the Taylor series of sin starts with x− 1/6x3.

For the easy case when two variables in code correlate
because they are copies on of the other –as in the example
code illustrated above– a simple solution to overcome the
decorrelation effect in CAA (and IA) exists: all FP quantities
analyzed by CAA are labeled with a unique identifier that
relates to their moment of creation in the execution of the
program. This identifier is never repeated for any other FP
quantity but for assignment, where the identifier does get
copied. Subtraction (and division) operations in CAA can
then start by checking whether the identifier of both operands
happens to be the same. If it does, both operands are correlated
as they are copies one of each other. Interval bounds of [0; 0]
and CAA error bounds of δ = 0 and ε = 0 can then
be returned. This solution is crude but addresses all simple
decorrelation cases found in DNNs code.

Yet another issue with code analysis with CAA and IA
comes in the form of if statements depending on FP vari-
ables –which are to be analyzed– and, generally, control flow
depending on FP variables [25]. FP code might take the one
or the other branch by evaluating a comparison like x < y
to a boolean, which, of course, might be falsed due to the
errors on x and y. In contrast, CAA and IA, which replace x
and y by whole classes (intervals resp. abstract approximate
quantities with bounded error measured in units of u), cannot
even evaluate the expression to a unique boolean in cases
where the intervals for x and y intersect or where the errors
make the boolean answer not unique. Some approaches for
this control flow issue have been proposed [27].

Fortunately, in code for DNNs, this issue is virtually absent.
Code for DNNs, in inference mode, does not contain control
flow in the form of loops that depend on FP values. In other
words, no iterative FP techniques are used. All control flow for
loops comes from the DNN’s configuration and the respective
dimensions of the manipulated tensors. As we shall see in
more detail in Section IV, the only if statements in DNNs
that depend on FP values are encountered in activation layers
such as pooling or softmax layers. This is due to the very
nature of DNNs: in order to make training possible, from a
bird-view perspective, DNNs need to represent (non-linear)
functions that are differentiable. Branches would necessarily
introduce discontinuities of that derivative. In the concerned
code sequences, the if serve the only purpose of computing
minima and maxima on vectors of FP values, hence does not
influence the output directly. We solve the control flow issue in
a similar way as the decorrelation effect: the point is to provide
the CAA and IA arithmetics, which, again, are concerned with
local effects, with just enough global insight on the program’s
logic. For instance, the quantities analyzed with CAA and
IA can be labeled with bounds given in the form of other
CAA+IA quantities that are minimum or maximum bounds
for them. Subsequent CAA or IA operations, like subtraction,
can then exploit the fact that if for example a quantity q̂ is
upper-bounded by M̂ , i.e. q̂ ≤ M̂ , the result of the subtraction
q̂ − M̂ will always be bounded by q̂ − M̂ ≤ 0.

As a matter of course, DNNs that perform classification
tasks do contain if statements that depend on FP values.
These statements are the one executed as the very last step,
when the one-hot output of a softmax layer [1] gets translated
into the predicted numerical integer class. This code boils
down to computing the integer argmax index for a vector of
FP values of probabilities; the DNN picks the class that is
the most probable. However, it is the very aim of this paper
to analyze the effects of roundings in the FP arithmetic for
the DNN’s inference on the output class, which we discuss in
Section IV.

To wrap it up, our approach is to analyze DNNs for FP
rounding errors using CAA and IA, where the FP quantity
in the DNN to be analyzed gets replaced by an arithmetical
object containing the following entries:

• a unique ID of the quantity, in the form of an integer,
• the FP value in the IEEE754-2019 (or any other) FP

format that would be used if the DNNs were implemented
without this enhanced CAA+IA arithmetic,
• an interval holding the actual error of the latter FP value,

for reference purposes,
• an absolute error bound δ ∈ R+ ∪ {+∞}, for this

quantity, in units of u,
• a relative error bound ε ∈ R+∪{+∞}, for this quantity,

in units of u,
• an interval safely enclosing all possible values for this

quantity if no FP rounding error occurred,
• an interval safely enclosing all possible values for this

quantity, as it is evaluated with rounding FP arithmetic and,
• optionally, a lower and an upper bound for this quantity.

These bounds are given in the form of arithmetical objects of
the same nature.

All operators required for DNNs, starting with assignment,
going over computational operators like +,−,×, /,√ to
functions like exp, log and tanh are overloaded to work on
such CAA+IA arithmetical objects, propagating all entries as
described above. As a result, a DNNs run on an example input,
widened with interval bounds for the inputs’ ranges, provides
an output in these arithmetical objects, from which errors on
probabilities etc. can be read off. As the absolute and relative
error bounds are expressed in units of u, that same output
can be used to tailor a DNN’s FP precision to just the right
amount of tolerable final error. We shall describe the use of
this arithmetic just below, in Section IV. As for the technical
realization of this enhanced CAA+IA arithmetic in an actual
software tool, we refer the reader to Section V.

IV. COMPUTER ARITHMETIC LOOK AT DNNS

As we shall see in the next Section V, the enhanced
CAA arithmetic we just described is able to automatically
analyze given FP code for DNNs and to come up with absolute
or relative error bounds, expressed in units of u, that are
pretty tight and suit their purpose. However, as useful as
this automatic analysis might be for application programmers,
we wanted to ensure its tightness and validity from a more
theoretical standpoint. This Section strives at providing this
insight. For the sake of brevity, we shall focus on DNNs for
classification problems. The analysis is similar for other types
of problems. We will present a concrete example of a DNN
for a non-classification problem in Section V.

DNNs for classification problems transform high-
dimensional input data into an output vector that is a one-hot
representation of the class detected for the input’s class. This
is, the output vector has as many entries as there are classes,
and the i-th entry of that vector contains a probabilistic
estimate of the confidence of the DNN the input is in the i-th
class. That estimate is expressed as a probability; all entries
are hence between 0 and 1 and sum up to 1. Post-processing
after a DNN picks the class for which the confidence estimate
is highest, computing the argmax on the output vector. The
index of this output class can then be translated into e.g. a
textual representation of the class, such as “Cat” or “Dog”.

In the case when the maximum confidence estimate is at
50% and the second-to-maximum confidence estimate is also
at 50%, the slightest change to these output values will of
course make the DNN commit a misclassification, outputting
e.g. “Dog” when the input represents a “Cat”. Such a slight
change may stem from FP rounding errors. For DNN input data
where maximum confidence is at 50%, no FP arithmetic –but

exact arithmetic– exists avoiding misclassifications. However,
when external knowledge on the DNN exists that guarantees
that, on all possible inputs3, the DNN will output a one-hot
vector with a top-1 value p? > 0.5, it can be guaranteed that
the second-to-maximum, top-2, value will be p† < 1 − p?,
leaving a margin of 1/2

(
p? − p†

)
> p? − 1/2 for each of

the maximum and second-to-maximum entry to be affected by
FP rounding error. Gaining this external knowledge is beyond
the scope of this article, but approaches like SafeAI [18]
seem to be able to provide it. This external minimum bound
may also just be specified, accepting a certain percentage of
misclassifications.

From a computer arithmetic perspective, we may hence
assume that there is an absolute FP error margin µ = p?− 1/2
available for each element in the output vector, where p? > 0.5
is the minimum bound established with external knowledge.
Similarly, we may assume a relative FP error margin ν =
2 p?−1
2 p?+1 available. Our job is to rigorously ensure that no
misclassification may occur given that error margin. Hence
we need to choose FP precision k, resp. u = 2−k+1 in such a
way that we can guarantee that the DNN’s inference accuracy
is enough so that the FP rounding error does not exceed
the margins. We may hence start reclimbing the DNN’s FP
algorithm from its end with that margin as some kind of FP
error budget to be burnt for FP roundings.

As their last layer, most classification DNNs have a
Softmax layer, as it was defined in Section II. We must
hence analyze the FP error in output of a Softmax layer. This
analysis will also serve as an illustration of error analysis for
the different layers; we analyzed all layers, for the sake of
brevity, we shall only report on the Softmax layer. The error
in output of a Softmax layer has two sources: (1) the FP
rounding errors committed during the layer’s evaluation and
(2) the errors present in input to the layer, propagated in an
amplified or attenuated manner by the layer. The analysis of
the first kind of errors, the rounding errors, is trivial, as the
Softmax function required just the evaluation of exponentials,
a division (often implemented as a division of a logarithm) and
the summation of positive values, obtained by exponentiating
the input. We shall hence not address this point any further.

For the propagated error of a Softmax layer, the following
analysis can be performed; herein, x̂i are the elements of
the computed input vector affected by an absolute error δi,
approximating the unknown, ideal xi. The ŷi are the output
vector elements, approximating the unknown, ideal yi.

ŷi =
exi+δi∑
k

exk+δi

=
exi∑

k

exk ·

(
1 +

∑
k

exk ·(eδk−δi−1)∑
k

exk

)

= yi ·
(

1 +
1

1 + ηi
− 1

)
= yi · (1 + εi) (10)

3For a reasonable definition of what a possible input is.

with
ηi =

∑
k

exk∑
j

exj
·
(
eδk−δi − 1

)
.

This quantity is easily bounded with

|ηi| ≤
∑
k

exk∑
j

exj
·max

t

∣∣eδt−δi − 1
∣∣

≤ max
k

∣∣eδk−δi − 1
∣∣ .

With some mild assumptions on bounds for the δk and ηi, it
can further be shown that the relative error εi affecting ŷi is
bounded by

|εi| ≤ 11/2 max
k
|δk| , (11)

essentially by taking the Taylor development of ex − 1.

This analysis therefore shows us the following: the
Softmax layer transforms the absolute error in its input into
a relative error of approximately4 the same amount in output.
Our margin of ν =

2 p?−1
2 p?+1 becomes hence an absolute error

margin in input of the Softmax layer. This input of the
Softmax layer is in general the output of a convolutional layer,
where the arithmetical difficulty is in a summation, which lives
very well when it just needs to satisfy an absolute error bound.
Amazingly, the bound given above does not at all depend on
the number of elements of the vectors x and y.

In order to illustrate this stability argument more intuitively,
let us give a numerical example: let p? = 0.60, i.e. the
classifying DNN shows at least 60% confidence for the best
output class. Then ν > 0.0909 > 2−3.45, meaning that
FP results with about 3.45 valid bits are sufficent. Then a
maximum element-wise absolute error of 0.0909

5.5 > 1.65 · 10−2

is still tolerated on the input of the softlayer. This means
for a convolution or dot-product, i.e. summation, fixed-point
arithmetic with a quantization unit of 1.65 · 10−2, i.e. about
2−6 is enough. FP arithmetic can only do better, its precision
is at least these 6+g bits, provided the inputs to the summation
are bounded around 2g .

The boundedness of the values manipulated by DNNs is
something we have already stated in Section II. Most activation
layers bound their outputs to [0; 1], equivalent to a bound
2g = 20. Convolutional or fully-connected layers also exhibit
pretty small bounds 2g , which are easily established, and,
by the way, perfectly bounded with IA [28], considering the
boundedness of the DNN’s coefficients, the relatively small
dimensions of the manipulated vectors, matrices and tensors
and the boundedness of the preceeding input.

It is hence all but surprising to observe that

• DNN inference behaves very well for FP arithmetic with
low precision,
• DNN inference behaves very well for FP arithmetic with

low exponent range, as fixed-point arithmetic already provided
enough accuracy for the subsequent layers, such as softmax,
• and analysis with CAA that exhibits small FP error

bound in output does provide tight and sensible results.

4i.e. 5.5 times larger

max absolute error in u max relative error in u analysis time required precision to prevent misclassificaton with p? = 0.60

Digits 1.1u 3.4u 12s per class k = 8
MobileNet 22.4u 11.5u 4.2h per class k = 8
Pendulum 1.7u – 100ms –

TABLE I. NUMERICAL RESULTS FOR EXPERIMENTS WITH u ≤ 2−7 .

V. CAA-BASED FP ERROR ANALYSIS AND
EXPERIMENTAL RESULTS

We implemented our semi-automatic FP accuracy analysis
tool building upon a combination of existing software pack-
ages for DNNs, such as frugally-deep5, which we patched
pretty heavily. We coupled these packages with a C++ im-
plementation of the enhanced CAA that we have described
in Section III. This C++ implementation of CAA was written
from scratch. The implementation is currently based on IA
provided by MPFI 1.5.3, which is itself based on MPFR 4.0.2
on top of GMP 6.1.2 [29]–[31]. However, we wrapped MPFI
in a C++ façade class in order to facilitate transition to other
IA libraries later. We use g++ version 8.3.0 to compile our
code. The frugally-deep library we are using requires the use
of C++ in its C++20 version [32]. Our contribution in terms
of code consists in C++ classes to implement CAA as we have
described it and in the patches required to allow for binding
and use of that CAA arithmetic instead of plain IEEE754-2019
arithmetic in frugally-deep. Our workflow runs only with our
version of frugally-deep, not with a stock version. Thanks to
frugally-deep, our semi-automatic FP accuracy analysis tool
is compatible with almost all DNNs as they are designed
and trained with Tensorflow/Keras [33], [34]. The frugally-
deep package first converts DNN models to JSON files, and
then provides C++ header classes that allow loading of JSON
files as object graphs that can be evaluated on the input data.
The frugally-deep library leverages several other C++ libraries
for this task, the most prominent of which is Eigen [35] that
permits binding of custom arithmetic.

Our CAA class structure consists of three classes: a façade
class for the front-end binding with frugally-deep; a class that
actually implements the CAA arithmetic and overloads all
necessary arithmetic operations; and a back-end wrapper for
IA. We did not use existing MPFI wrappers in C++, in order
to have the possibility to exploit the performance advantage
of new C++20 features, like move constructors and move
assignment operators.

Our workflow runs as follows: using frugally-deep we
construct a C++ program to load a DNN model designed in
Tensorflow/Keras, as well as the input data, expressed with
CAA objects. The bounds on these data are trivial in most
cases, e.g. image data gets annotated with 8-bit unsigned values
in [0; 255]. We run the resulting program for all possible classes
to cover all possible control flows. And this can be done
only for one representative of the class, no additional tests
are required. The program outputs the inference result and the
absolute and relative error on it. The error bounds are all given
in units of u, an upper bound on which is user-configurable.
The output error bounds can then be used to tailor the DNNs
actual FP arithmetic, by applying the theory we described in

5https://github.com/Dobiasd/frugally-deep

Section IV, determining the value of u such that the required
accuracy bounds are still met.

We demonstrate our tool on several examples of DNNs and
give some results in Table I.

a) Digits: We built a simple DNN for the recognition of
hand-written digits and trained it on the MNIST dataset [36].
This model requires around 0.7 million parameters and consists
of three Dense, two ReLU and a Softmax layer. As input,
it takes 28 × 28 gray-scale images (i.e. a flattened vector of
length 784) and has a 10-dimensional output vector whose ith
element indicates the probability that the input image is the
digit i. Table I illustrates the results of analysis, where the
maximum absolute and relative errors denote the maximum
errors over all possible classes. We also observed that on the
top-1 choice, the relative error bounds are quite tight, while on
the other elements the relative error looks less good. However,
the bound (11) still holds and in any case, the absolute error
stays low. Our analysis shows that the network can safely run
with 7-bit precision FP.

b) MobileNet: We used a Keras pre-trained model for
this considerably bigger network for Imagenet classification.
MobileNet requires around 27 million parameters. The com-
plete architecture can be found in Keras documentation, we
will only state here that it is a Convolutional Neural Network
with 28 Conv layers, 27 BatchNorm layers followed by ReLU
activations and a Softmax layer that classifies 224×224 RGB
images over 1000 classes. This challenging example revealed a
performance bottleneck in our tool. To analyze the model over
one class it took the tool around 4 hours on a conventional
laptop. Our performance analysis determined that most of the
analysis time was dedicated to the memory allocation process
somewhere deep in MPFI. Regardless of the analysis time, the
tool successfully illustrated that even for large-scale models
our analysis techniques compute tight error bounds.

c) Pendulum: This small neural network model comes
from the context of reinforcement learning applied for au-
tonomous control [19] and aims at approximating a Lyapunov
function for a non-linear controller. The article [19] proposes
a new methodology for certified approximation of neural
controllers based on SAT theory. This example is interesting
from the formal verification point of view: our bound on the
absolute error can be effortlessly incorporated into the existing
verification procedure. This network has two Dense layers and
two tanh activations. It takes a 2D coordinate vector as input
and, as in [19], we tested it for the interval [−6; 6]. Our tool
provided an absolute error bound in a fraction of a second.
A relative error bound does not exist since the output interval
contains zero.

VI. CONCLUSION AND PERSPECTIVES

With this work we proposed a semi-automated way to
bound and interpret the impact of rounding errors due to the

precision choice for inference in generic DNNs. We presented
a software tool that, thanks to frugally-deep library, can receive
any TensorFlow/Keras model in the front-end. We support the
most common activation and computational layers.

The back-end that we developed automatically computes
and propagates rounding errors through the computations. For
this, we have introduced a combination of Affine and Interval
Arithmetics called CAA. This new construction permitted
us to compute both relative and absolute error bounds. Our
implementation of CAA is based on rigorous error analysis
for arithmetic operations, as well as for all the necessary
elementary functions for activation layers (e.g. tanh, exp).
We enhance CAA with just enough global insight on the
program’s logic in order to fight the decorellation effect and
take care of the control flow depending on FP variables.
Software implementation of the arithmetic is done in C++ in
a generic way.

We offer a computer arithmetic look at the computations
with the DNNs. When analyzing the computations within acti-
vation layers, we establish that activation functions are actually
transforming absolute errors on their inputs into relative errors
in the output. Which means that even if the computational
layers yield relatively imprecise results, activation layers will
recover decent relative errors, as long as inputs are bounded
(which is basically always the case thanks to bounded activa-
tion functions and normalizations).

Finally, we offered the first, to the best of our knowledge,
interpretation of the impact of precision choice upon the top-1
accuracy of classification networks. If we reason that the goal
is to preserve the top-1 choice w.r.t. the reference model, we
can establish the minimum required precision as a function of
the deduced error bound and the distance between the top-1
and top-2 choice.

This reasoning reflects perfectly the fact that as long as
the model was well-trained for some classification problem
and can clearly distinguish between classes, then the network
is extremely robust to low-precision evaluation.

We identify several axes of future improvements to this
work. The first improvement will be to improve the tool’s
performance, which so far does not scale up to models having
tens of millions parameters. We identified the performance
bottleneck to be the memory management in MPFI. The solu-
tion would be to replace the the underlying IA implementation
by a faster one. In addition to that, the manually-coded error
analysis is of course error-prone, from the formal verification
point of view. Another limitation of the proposed tools is that
it analyzes one implementation produced by the frugally-deep
library. In order to support other implementations, e.g. using
Kahan summation instead of a straightforward one, a corre-
sponding code generation phase needs to be added. The second
improvement concerns mixed-precision implementations, as
proposed by NVIDIA [6], which can be achieved by removing
the global u and parameterizing the error analysis with the
input/output precision. To go further, we would like to combine
our results with a static analysis and mixed-precision tuning
tool like Daisy [37] to accelerate specific parts of DNN models.
Extension towards the training of DNNs is non-trivial and
requires an analysis of gradient descent algorithms. Finally,
[38] proposes to relate the classification capacity of DNNs

with the geometry of the object manifolds issued after each
layer. By combining our error analysis with the quantitative
“separability” measure from [38], we hope to back up our
interpretation of the relation between precision and accuracy
for DNNs with a solid theoretic-geometrical basis.

REFERENCES

[1] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. The MIT
Press, 2016.

[2] M. Minsky and S. Papert, Perceptrons: An Introduction to Computa-
tional Geometry. Cambridge, MA, USA: MIT Press, 1969.

[3] G. Tesauro, “Td-gammon, a self-teaching backgammon program,
achieves master-level play,” Neural Comput., vol. 6, no. 2, p. 215–219,
Mar. 1994.

[4] J. Deng, W. Dong, R. Socher, L. Li, Kai Li, and Li Fei-Fei, “Imagenet:
A large-scale hierarchical image database,” in 2009 IEEE Conference
on Computer Vision and Pattern Recognition, June 2009, pp. 248–255.

[5] J. L. Hennessy and D. A. Patterson, Computer Architecture, Sixth
Edition: A Quantitative Approach, 6th ed. San Francisco, CA, USA:
Morgan Kaufmann Publishers Inc., 2017.

[6] P. Micikevicius, S. Narang et al., “Mixed precision training,” CoRR,
vol. abs/1710.03740, 2017.

[7] G. Henry, P. T. P. Tang, and A. Heinecke, “Leveraging the bfloat16
artificial intelligence datatype for higher-precision computations,” in
IEEE 26th Symposium on Computer Arithmetic (ARITH), 2019.

[8] N. Burgess, J. Milanovic, N. Stephens, K. Monachopoulos, and
D. Mansell, “Bfloat16 processing for neural networks,” in IEEE 26th
Symposium on Computer Arithmetic (ARITH), 2019.

[9] A. Agrawal, S. M. Mueller, B. M. Fleischer, X. Sun, N. Wang, J. Choi,
and K. Gopalakrishnan, “Dlfloat: A 16-b floating point format designed
for deep learning training and inference,” in IEEE 26th Symposium on
Computer Arithmetic (ARITH), 2019.

[10] (2020) Microsoft brainwave project. [Online]. Available: https:
//www.microsoft.com/en-us/research/project/project-brainwave/

[11] R. Banner, Y. Nahshan, and D. Soudry, “Post training 4-bit quantization
of convolutional networks for rapid-deployment,” in Advances in Neural
Information Processing Systems 32, NeurIPS, 2019.

[12] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio,
“Binarized neural networks,” in Advances in Neural Information Pro-
cessing Systems 29, NeurIPS, 2016.

[13] ——, “Quantized neural networks: Training neural networks with low
precision weights and activations,” CoRR, vol. abs/1609.07061, 2016.

[14] E. Kravchik, F. Yang, P. Kisilev, and Y. Choukroun, “Low-bit quan-
tization of neural networks for efficient inference,” in The IEEE
International Conference on Computer Vision (ICCV) Workshops, 2019.

[15] Y. Choi, M. El-Khamy, and J. Lee, “Learning low precision deep neural
networks through regularization,” CoRR, vol. abs/1809.00095, 2018.

[16] M. Courbariaux and Y. Bengio, “Binarynet: Training deep neural
networks with weights and activations constrained to +1 or -1,” CoRR,
vol. abs/1602.02830, 2016.

[17] D. D. Kalamkar, D. Mudigere et al., “A study of BFLOAT16 for deep
learning training,” CoRR, vol. abs/1905.12322, 2019.

[18] T. Gehr, M. Mirman, D. Drachsler-Cohen, P. Tsankov, S. Chaudhuri,
and M. Vechev, “Ai2: Safety and robustness certification of neural
networks with abstract interpretation,” in 2018 IEEE Symposium on
Security and Privacy (SP), 2018.

[19] Y. Chang, N. Roohi, and S. Gao, “Neural lyapunov control,” in NeurIPS,
2019.

[20] V. Dumoulin and F. Visin, “A guide to convolution arithmetic for deep
learning,” 2016.

[21] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” CoRR, vol.
abs/1502.03167, 2015.

[22] J.-M. Muller et al., Handbook of Floating-Point Arithmetic, 2nd ed.
Birkhäuser Basel, 2018.

[23] N. J. Higham, Accuracy and stability of numerical algorithms (2 ed.).
SIAM, 2002.

[24] J. H. Wilkinson, “Error analysis of floating-point computation,” Numer.
Math., vol. 2, no. 1, p. 319–340, Dec. 1960.

[25] E. Goubault and S. Putot, “Static analysis of finite precision computa-
tions,” in Proceedings of the 12th International Conference on Verifi-
cation, Model Checking, and Abstract Interpretation, ser. VMCAI’11.
Berlin, Heidelberg: Springer-Verlag, 2011, p. 232–247.

[26] R. E. Moore, R. B. Kearfott, and M. J. Cloud, Introduction to Interval
Analysis. SIAM, 2009.

[27] E. Goubault, “Static analysis by abstract interpretation of numerical
programs and systems, and fluctuat,” LNCS, vol. 7935, pp. 1–3, 2013.

[28] S. Sergey, Interval algebraic problems and their numerical solution
(habilitation in Russian). Institute of Computational Technologies.
Russian Academy of Sciences, 2000.

[29] N. Revol and F. Rouillier, “Motivations for an arbitrary precision
interval arithmetic and the MPFI library,” Reliable Computing, vol. 11,
no. 4, pp. 275–290, 2005.

[30] L. Fousse, G. Hanrot, V. Lefèvre, P. Pélissier, and P. Zimmermann,
“Mpfr: A multiple-precision binary floating-point library with correct
rounding,” ACM Trans. Math. Softw., vol. 33, no. 2, p. 13–es, Jun. 2007.

[31] T. Granlund and the GMP development team, GNU MP: The GNU
Multiple Precision Arithmetic Library, 5th ed., 2012, http://gmplib.org/.

[32] R. Smith, “Working draft, standard for programming language c++,”
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/n4849.pdf,
2020-01-14.

[33] M. Abadi et al., “TensorFlow: Large-scale machine learning on
heterogeneous systems,” 2015, software available from tensorflow.org.
[Online]. Available: http://tensorflow.org/

[34] F. Chollet et al., “Keras,” https://keras.io, 2015.
[35] G. Guennebaud et al., “Eigen v3,” http://eigen.tuxfamily.org, 2010.
[36] Y. LeCun and C. Cortes, “MNIST handwritten digit database,” 2010.

[Online]. Available: http://yann.lecun.com/exdb/mnist/
[37] E. Darulova et al., “Daisy - framework for analysis and optimization

of numerical programs,” in Tools and Algorithms for the Construction
and Analysis of Systems, 2018.

[38] U. Cohen, S. Chung, D. D. Lee, and H. Sompolinsky, “Separability and
geometry of object manifolds in deep neural networks,” bioRxiv, 2019.

