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Equilibrium phenomena are characterized by time symmetry. Thermodynamic fluctuations are
also time-symmetric at equilibrium. Conversely, diffusion of a solute in a liquid in the presence of a
gradient is a non-equilibrium phenomenon, which gives rise to long-range fluctuations with amplitude
much larger than the equilibrium one for small enough wave number. In the case of diffusion
in binary mixtures such fluctuations are time-symmetric, notwithstanding the fact that they are
generated by a non-equilibrium condition. In this paper, we investigate diffusion of two solutes in a
ternary liquid mixture by means of fluctuating hydrodynamics theory. We show that the time cross-
correlation function of the concentrations is not time-symmetric, hence showing that time-symmetry
is violated for such non-equilibrium fluctuations. We discuss the feasibility of experiments aimed at
the detection of the asymmetry of the cross correlation function of non-equilibrium concentration
fluctuations in ternary mixtures, as envisaged in the Giant Fluctuations (NEUF-DIX) microgravity
project of the European Space Agency.

PACS numbers: 47.10.+g: Fluid dynamics; 05.40.-a: Fluctuations phenomena; 05.70.Ln: Nonequilibrium

thermodynamics; 66.10.Cb: Diffusion

I. INTRODUCTION

One of the features of systems at equilibrium is time
symmetry: given a sequence of observations, it is not
possible to say if they are presented in the forward or
backward time direction [1]. Considering, in particular, a
binary liquid mixture, thermodynamic fluctuations of the
concentration are always present. Basically, they repre-
sent the Poisson noise arising when molecules are counted
inside a given volume. The process describing molecules
entering and exiting a volume is time-symmetric at the
macroscopic scale. From the mesoscopic point of view
the equilibrium fluctuations of the concentration of a so-
lute can be described by using fluctuating hydrodynam-
ics [2]: a fluctuation arises because of a random source,
and is dissipated by diffusion. Although the two pro-
cesses are not time-symmetric, they are however con-
nected by the fluctuation-dissipation and linear response
theorems, which safeguard the time-symmetry of the out-
coming phenomena.

Under such circumstances, time-symmetry is a conse-
quence of the fact that the process is isoentropic, and
this feature prevents the identification of a preferential
direction for time. In the presence of a non-equilibrium
condition dissipative processes determine a progressive
increase of entropy. If one takes into account the degrees
of freedom of all the molecules, however, the system still
exhibits microscopic time-symmetry. This is due to the
fact that the equations of motion of the molecules are of
second order in time, without any term containing time
derivatives of odd order. Conversely, the evolution of the
macroscopic degrees of freedom of the system is not time-
symmetric, because the averaged microscopic degrees of
freedom determine the presence of derivatives of odd or-

der in the equations for the evolution of the macroscopic
system [1]. A typical example of such system is a Brown-
ian particle under the action of a constant external force
like gravity or a thermophoretic force [3]. A reconcilia-
tion of time symmetry at the microscopic scale and time
asymmetry at the macroscopic scale requires a thorough
comparison of the probability distribution of finding a
certain time evolution for the position of the particle in
the presence of a forward non-equilibrium driving force
and the probability distribution in the presence of a back-
ward driving force. The presence of a non-equilibrium
condition breaks the time-symmetry of these probabil-
ity distributions, giving rise to a production of entropy
proportional to the unbalance between the probability
distributions [4].

A signature of the presence of time-symmetry is pro-
vided by the behavior of the time correlation functions
of fluctuations upon inversion of time. With this respect,
the understanding of time-cross-correlations in a stochas-
tic system is of wide general relevance, because an asym-
metric behavior can underlie the presence of a causal rela-
tionship between the correlated variables. A meaningful
example of a stochastic system which exhibits a time-
asymmetry is represented by the fluctuations in returns
of stocks in financial markets. In this case, the time cross-
correlation function between fluctuations is asymmetric
whenever a causal relationship exists between the returns
of different stocks [5, 6].

A model system suitable for the understanding of time-
symmetry in non-equilibrium systems is represented by a
binary mixture where a macroscopic concentration gra-
dient determines a non-equilibrium diffusion process. In
the last 20 years it has been shown that a non-equilibrium
diffusion process is accompanied by long-range large-
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amplitude fluctuations of concentration. These fluctu-
ations have been predicted theoretically [7–13], reported
experimentally [14–18] and in numerical simulations [19–
22]. Since the origin of such fluctuations is a non-
equilibrium phenomenon determined by the presence of a
macroscopic gradient [23], the fluctuations are not com-
pelled to follow the fluctuation-dissipation and linear re-
sponse theorems. In the presence of a non-equilibrium
steady state the fluctuation-dissipation theorem can be
generalized by taking into account the total entropy pro-
duction [24–26], but so far we are not aware of attempts of
application of the theorem to the case of non-equilibrium
fluctuations in liquid mixtures.
In this paper, we investigate the time cross-correlations

of the concentration fluctuations of two solutes in a
ternary mixture. We show that a violation of time-
symmetry is observable at the mesoscopic scale for fluc-
tuations in this system, as evidenced by the asymmetry
of the time cross-correlation function. In Sect. II we out-
line how non-equilibrium fluctuations in binary mixtures
are time-symmetric. In Sect. III A, we show that the
time cross-correlation between the concentrations of the
two solutes is indeed not time-symmetric, its center of
mass being displaced from ∆t = 0. In Sect. III B we
give a qualitative account of the observed behavior. In
Sect. IV, we discuss the feasibility of experiments show-
ing the violation of the time-symmetry. Finally, in Sect.
V we perform a critical comparison of our results with
those of previous work in the field [27].

II. NON-EQUILIBRIUM FLUCTUATIONS IN

BINARY LIQUID MIXTURES

Theoretical, experimental and numerical work per-
formed in the last 25 years [12, 13] showed that Fluctu-
ating Hydrodynamics [2] represents a reliable quantita-
tive model to describe non-equilibrium fluctuations gen-
erated by small gradients. Fluctuating Hydrodynamics
relies on a linearization of the Navier-Stokes equations to
obtain a set of equations that, once supplemented with
stochastic white noise terms, act as Langevin equations
for the fluctuations of the relevant thermophysical vari-
ables. In this work we are interested mainly in modeling
the non-equilibrium concentration fluctuations generated
by a concentration gradient and we will assume that the
system is isothermal, so that the non-equilibrium tem-
perature fluctuations can be neglected. We will also ne-
glect the contribution of temperature and concentration
equilibrium fluctuations and the gravitational force.

A. Time-symmetry in binary mixtures

In binary mixtures of liquids, the composition is de-
fined univocally by the concentration of one component.
Therefore the only time-correlation function that can
be calculated is the self correlation < δc∗(t,q)δc(t +

∆t,q) >. Here the brackets indicate a time average and
δc is the displacement of the local concentration c from
the macroscopic average. By definition, this function is
time-symmetric under stationary conditions:

〈δc∗(t,q)δc(t −∆t,q)〉 =

〈δc∗(t′ +∆t,q)δc(t′,q)〉 =

〈δc∗(t+∆t,q)δc(t,q)〉 (1)

where the first equality is obtained by substituting t =
t′ + ∆t and the second equality holds due to the time
invariance of the process.

It is important to notice that this time-symmetry is
simply a mathematical consequence of the definition of
time correlation, and would hold also in the case of an
apparently time-asymmetric signal. In principle, higher-
order correlations could show a time-asymmetry. How-
ever, concentration fluctuations have a Gaussian statis-
tics, as a consequence of the central limit theorem.
Therefore, by means of Wick’s theorem, we can relate
any n-point correlation to the 2-point correlation, which
is, as previously shown, time-symmetric. It follows that
every n-point correlation of the concentration fluctua-
tions shows a symmetric behaviour, and, more gener-
ally, we can conclude that all of them are actually time-
symmetric.

B. Fluctuating hydrodynamics in binary mixtures

The Fluctuating Hydrodynamics equations for the con-
centration fluctuations in binary mixtures can be written
as:

∂δc

∂t
= D∇2δc− δvz∇c−

1

ρ
∇ · δJ (2)

where δc is the fluctuation of the concentration, δvz is
the fluctuation of the vertical component of the veloc-
ity, D is the mass diffusion coefficient, ∇c is the macro-
scopic concentration gradient, ρ is the density, and δJ is
a stochastic source term for concentration fluctuations.
This equation describes the variation of concentration
due to diffusion, advection and the source of fluctuations.

We will neglect the source term δJ , which gives rise
to the equilibrium fluctuations only; it is negligible un-
der all the practical conditions where the amplitude of
non-equilibrium fluctuations is much larger than that of
equilibrium ones, i.e. small wave numbers.

Under non-equilibrium conditions concentration fluc-
tuations are generated by the coupling of velocity fluc-
tuations to the macroscopic concentration gradient,
which gives rise to non-equilibrium concentration fluc-
tuations [12]. The relevant component of the velocity
is δvz , the component perpendicular to the macroscopic
concentration gradient. The correlation of the velocity
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fluctuations is [27, 28]:

〈δv∗z (ω,q) δvz (ω
′,q′)〉 =

2
kBTν

ρ

q2‖

ω2 + ν2q4
(2π)

4
δ (ω − ω′) δ (q− q′) (3)

where q2‖ = q2− (q · ∇c)
2
is the square of the component

of the wave vector q perpendicular to the macroscopic
concentration gradient.

C. Concentration-velocity cross-correlation in

binary mixtures

The investigation of non-equilibrium fluctuations relies
on linearized hydrodynamics, where second order fluctua-
tions are neglected. However, it can be shown that second
order fluctuations in concentration δc and velocity δvz
give rise to mesoscopic mass currents δj = δvzδc. Quite
interestingly, the cumulative contribution of the micro-
scopic mass currents determined by non-equilibrium fluc-
tuations accounts for the whole Fick’s flux [29–31]. This
term violates time-symmetry. However, it is not present
unless renormalization is performed. Therefore, the in-
vestigation of cross-correlations between velocity fluctua-
tions and concentration fluctuations is particularly mean-
ingful, because it is strictly connected to the microscopic
flux δj.
In the case of a binary liquid mixture the equation

governing the evolution on non-equilibrium fluctuations
is Eq. 2. Rewriting it in Fourier space we get:

iωδc = −q2Dδc− δvz∇c (4)

By solving with respect to the concentration fluctuations,
we get:

δc = −
δvz∇c

iω + q2D
(5)

The cross-correlation function of velocity (along ∇c0)
and concentration is expressed by:

〈δc (q, ω) δvz (q
′, ω′) · ∇c〉 =

−
〈δvz (q, ω) δvz (q

′, ω′)〉

−iω + q2D
, (6)

By substituting the expression of the velocity correla-
tion, Eq. 3, into Eq. 6:

〈δc (q, ω) δvz (q
′, ω′)〉 = −δ (q− q′) δ (ω − ω′)∇c

KBTν

8π4ρ

q2‖

(ω2 + ν2q4) (−iω + q2D)
. (7)

We carry on the calculation by assuming that the dif-
fusion time is much longer than the viscous time. this
approximation holds true for Sc = ν/D ≫ 1, the so-
called large Schmidt number approximation, a condition

fulfilled by most binary liquid mixtures (more details
about the validity of such approximation are discussed
in Ref. [11]). We obtain the approximated expression:

〈δc (q, ω) δvz (q
′, ω′)〉 = −δ (q− q′) δ (ω − ω′)∇c

KBTν

8π4ρ

q2‖

ν2q4 (−iω + q2D)
. (8)

The time correlation is obtained by Fourier transforming.
The integrand has one pole at the positive imaginary part
of ω, hence we get a correlation only for ∆t > 0:

〈δc (q, t) δvz (q
′, t+∆t)〉 = −δ (q− q′)∇c

KBTν

8π4ρ

q2‖

ν2q4
exp

(

−∆tDq2
)

H (∆t) . (9)

This result has a clear physical interpretation: the con-
centration fluctuations in non-equilibrium conditions are
generated by the coupling of velocity fluctuations with
the macroscopic concentration gradient, hence the con-
centration fluctuation takes place only after the veloc-
ity fluctuation. Therefore, under such circumstances the
causal relation between velocity fluctuations and concen-
tration fluctuations determines the presence of a correla-
tion between the two quantities.
In the next section we show that, at variance with the

binary mixtures, mixtures of three or more components
show an asymmetry of the time-correlations.

III. NON-EQUILIBRIUM FLUCTUATIONS IN

TERNARY MIXTURES

We now consider the case of non-equilibrium fluctu-
ations in a ternary liquid mixture. The determination
of the time auto-correlations of non-equilibrium fluctua-
tions in ternary mixtures has been dealt with in detail
in a previous work [27]. A similar approach can be used
to determine the time cross-correlation functions. In the
Appendix we will present the results of this approach. In
the following we will present a more direct determination
of the time cross-correlation function of concentration
fluctuations in a ternary mixture, which relies directly
on the diagonalization of the hydrodynamic equations de-
scribing the non-equilibrium concentration fluctuations.

A. Correlation and cross-correlation of the

concentration fluctuations

In analogy to Eq. 2, the Fluctuating Hydrodynamics
equations for the concentration fluctuations in ternary
mixtures can be written as:

∂δc1
∂t

= D11∇
2δc1 +D12∇

2δc2 − δvz∇c1 −
1

ρ
∇ · δJ1

∂δc2
∂t

= D21∇
2δc1 +D22∇

2δc2 − δvz∇c2 −
1

ρ
∇ · δJ2

(10)
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where δci is the concentration fluctuations of the compo-
nent i ∈ [1, 2], δvz is the fluctuation of the vertical com-
ponent of the velocity, Di,j is the mass diffusion matrix,
∇ci is the macroscopic concentration gradient of compo-
nent i, ρ is the density, and δJi is a stochastic source
term for concentration fluctuations. This equation de-
scribes the variation of concentration due to diffusion,
advection and to the fluctuation source.
As we have done above for the binary mixture, we will

neglect the source terms δJi, because it gives rise to the
equilibrium fluctuations only.
We diagonalize the matrix D, i.e. we find a transfor-

mation matrix T such that:

T−1 ·

[

D1,1 D1,2

D2,1 D2,2

]

·T =

[

D̂1 0

0 D̂2

]

(11)

The diagonal elements D̂1 and D̂2 are the eigenvalues of
the matrix D. Since the cross-diffusion terms are usually
smaller than the self-diffusion terms, T is usually close
to an identity and the eigenvalues D̂1 and D̂2 are close
to the self-diffusion coefficients D1 and D2.
By using this transformation, we define the diagonal-

ized concentration fluctuations δ̂ci

T−1 ·

[

δc1
δc2

]

=

[

δ̂c1
δ̂c2

]

(12)

and diagonalized macroscopic concentration gradients
∇̂ci

T−1 ·

[

∇c1
∇c2

]

=

[

∇̂c1
∇̂c2

]

(13)

We thus rewrite Eqs. 10 as:

∂δ̂c1
∂t

= D̂1∇
2δ̂c1 − δvz∇̂c1

∂δ̂c2
∂t

= D̂2∇
2δ̂c2 − δvz∇̂c2 (14)

The two equations are now decoupled and can be solved
separately, similarly to what we have done in Sect. II for
the fluctuations in a binary mixture. First we rewrite the
equations in Fourier space:

iωδ̂ci = −D̂1q
2δ̂ci − δvz∇̂ci (15)

By solving with respect to the concentration fluctuations,
we get:

δ̂ci = −
δvz∇̂ci

iω + q2D̂i

(16)

From this expression, we calculate the self and cross
correlations:

〈

δ̂c
∗

i (q, ω) δ̂cj (q
′, ω′)

〉

= ∇̂ci∇̂cj
〈δvz (q, ω) δvz (q

′, ω′)〉
(

D̂iq2 + iω
)(

D̂jq2 − iω
)

(17)

By using Eq. 3:

〈

δ̂c
∗

i (q, ω) δ̂cj (q
′, ω′)

〉

=

2
kBTν

ρ
∇̂ci∇̂cj

q2‖

(ω2 + ν2q4)
(

D̂iq2 + iω
)(

D̂jq2 − iω
)

(2π)
4
δ (ω − ω′) δ (q− q′) (18)

and by using the definition of correlation:

〈

δ̂c
∗

i (q, ω) δ̂cj (q
′, ω′)

T
〉

=

Ĉi,j (q, ω) (2π)
4 δ (ω − ω′) δ (q− q′) (19)

we determine the correlation function C from Eq. 18:

Ĉi,j (q, ω) = 2
kBTν

ρ
∇̂ci∇̂cj

q2‖

(ω2 + ν2q4)
(

D̂iq2 + iω
)(

D̂jq2 − iω
) (20)

Again, we make use of the large Schmidt number
approximation [11] in its straightforward extension to
ternary mixtures: Sci = ν/Di ≫ 1, so that the result
is:

Ĉi,j (q, ω) = 2
kBT

ρνq4
∇̂ci∇̂cj

q2‖
(

D̂iq2 + iω
)(

D̂jq2 − iω
) (21)

The time-correlation is then obtained by Fourier trans-
forming in ω:

Ĉi,j (q,∆t) = 2
kBT

ρνq4
∇̂ci∇̂cj

∫ q2‖
(

D̂iq2 + iω
)(

D̂jq2 − iω
)eiω∆tdω (22)

In the case of the autocorrelation, the two decay times
(forward and backward) equal the diffusion decay time
of the component under consideration.
The integration can be easily performed by means of

the method of the residues (see Fig. 1). The integrand
has two poles on the imaginary axis of ω, one at positive
and one at negative imaginary part, with residues R+

and R−:

R+ = i
e−D̂1q

2∆t
(

D̂1 + D̂2

)

q2

R− = i
eD̂2q

2∆t
(

D̂1 + D̂2

)

q2
. (23)
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Re( )ω

)ωIm(

R+

R-

∆t>0

∆t<0

FIG. 1. Residues of the integrand in Eq. 22 and integration
paths.

The integration is performed along different paths in
the case of ∆t > 0 and ∆t < 0, as shown in Fig. 1. In
the two different cases, a different pole is enclosed by the
path, and the corresponding residue (with either D̂1 or

D̂2) appears in the result. By using the Heaviside step
function H the correlation function can be expressed as:

Ĉi,j (q,∆t) = 2
kBT

ρνq4
∇̂ci∇̂cj

[

H (∆t) e−∆tD̂1q
2

+H (−∆t) e∆tD̂2q
2
]

(24)

Therefore, the correlation function is composed by two
exponential decays, with different characteristic decay
times forward and backward in time, as shown in Fig. 2.

B. Origin of the time-asymmetry

In this section, we discuss the qualitative reason why
the cross-correlation is time-asymmetric, and in partic-
ular, why it shows an exponential decay with different
time constants forward and backward in time.
In our system, the observable quantities (δc1 and δc2)

are fully determined by the liquid velocity vz . In particu-
lar, the concentration fluctuation at time t0 is determined
by the values of vz at times t < t0; this can be seen as
a consequence of the cause-effect relation between liquid
velocity and concentration fluctuations discussed in Sect.

II C. We can thus write δc
(

v
(−∞,t]
z , t,q

)

, evaluated at

time t and wave vector q, as deterministically given as a
function of vz in the interval (−∞, t].
The correlation function becomes:

0

<
δc

A
(t

) 
δc

B
(t

+
∆t

)>

∆t

FIG. 2. Example of correlation function. The axis are arbi-
trary. The ratio between the two diffusion coefficients is 3.

〈

δc1 (t,q)
∗
δc2 (t+∆t,q)

〉

=
∫

δc1

(

v(−∞,t]
z , t,q

)∗

δc2

(

v(−∞,t+∆t]
z , t+∆t,q

)

P
[

v(−∞,t+∆t]
z

]

D
[

v(−∞,t+∆t]
z

]

(25)

where P represents the probability of a given vz and
∫

·D [vz ] is the functional integral over the function vz . In
the case ∆t > 0, we can separate the interval (−∞, t+∆t]
into the two separate intervals (−∞, t] and (t, t+∆t]:

〈

δc1 (t,q)
∗ δc2 (t+∆t,q)

〉

=
∫

δc1

(

v(−∞,t]
z , t,q

)∗

δc2

(

v(−∞,t]
z , v(t,t+∆t]

z , t+∆t,q
)

P
[

v(−∞,t]
z

]

P
[

v(t,t+∆t]
z |v(−∞,t]

z

]

D
[

v(−∞,t]
z

]

D
[

v(t,t+∆t]
z

]

(26)

where the symbol P [A|B] represents the conditional
probability. By multiplying and dividing by δc2 (t,q):

〈

δc1 (t,q)
∗
δc2 (t+∆t,q)

〉

=
∫

δc1

(

v(−∞,t]
z , t,q

)∗

δc2

(

v(−∞,t]
z , t,q

)

δc2

(

v
(−∞,t]
z , v

(t,t+∆t]
z , t+∆t,q

)

δc2

(

v
(−∞,t]
z , t,q

)

P
[

v(−∞,t]
z

]

P
[

v(t,t+∆t]
z |v(−∞,t]

z

]

D
[

v(−∞,t]
z

]

D
[

v(t,t+∆t]
z

]

(27)
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This can be rewritten as:

〈

δc1 (t,q)
∗
δc2 (t+∆t,q)

〉

=
∫

g
(

v(−∞,t]
z , t,q

)

f2

(

v(−∞,t]
z , t,∆t,q

)

P
[

v(−∞,t]
z

]

D
[

v(−∞,t]
z

]

(28)

where

g
(

v(−∞,t]
z , t,q

)

=

δc1

(

v(−∞,t]
z , t,q

)∗

δc2

(

v(−∞,t]
z , t,q

)

f2

(

v(−∞,t]
z , t,∆t,q

)

=

∫ δc2

(

v
(−∞,t]
z , v

(t,t+∆t]
z , t+∆t,q

)

δc2

(

v
(−∞,t]
z , t,q

)

P
[

v(t,t+∆t]
z |v(−∞,t]

z

]

D
[

v(t,t+∆t]
z

]

(29)

We thus see that, for ∆t > 0, the correlation function
reflects the behavior of δc2 with time. An analogous cal-
culation with ∆t < 0 gives an analogous expression, with
δc1 playing the same role.
Therefore, the time-asymmetry is a consequence of the

cause-effect relation: both δc1 and δc2 are determined by
vz, and the effect of vz at a given time can be seen only
at subsequent times.
The center of mass of the cross-correlation function,

Eq. 24, is not at ∆t = 0, as visible in Fig. 2. This is
a violation of the time-symmetry. As mentioned above,
the concentration fluctuations of the two solutes are gen-
erated simultaneously by a velocity fluctuation, but then
they relax at different rate, depending on the diffusion
coefficient. Obviously, the solute with larger diffusion co-
efficient relaxes faster than the other. The center of mass
of the cross-correlation function is displaced accordingly.

IV. APPLICATIONS TO EXPERIMENTS

Non-equilibrium concentration fluctuations arise dur-
ing diffusion processes in multi-component mixtures. In
the presence of a macroscopic concentration gradient
the coupling of spontaneous thermal velocity fluctuations
gives rise to non-equilibrium concentration fluctuations.
On Earth large-wavelength fluctuations are strongly in-
fluenced by the gravity force, which can give rise to their
stabilization or destabilization, depending on whether
the macroscopic density profile associated to the concen-
tration gradient is gravitationally stable [10, 14] or not
[32, 33].
In the case of binary liquid mixtures a stable configura-

tion can be obtained by bringing two miscible fluids into
contact, so that the denser fluid is below the less dense
one [15, 16, 34]. Alternatively, one can use an external

temperature gradient to induce the concentration gradi-
ent through the Soret effect [14, 18, 35, 36]. In the case of
a sample with a positive Soret coefficient ST , the imposi-
tion of a temperature gradient∇T induces a steady-state
concentration gradient ∇c = −ST c(1− c)∇T , where c is
the concentration of the sample. Non-equilibrium fluc-
tuations induce fluctuations in the index of refraction,
which can be picked up by using either small angle light
scattering techniques [15] or near field techniques such
as quantitative shadowgraphy [37–39]. Both methods al-
low to determine the time autocorrelation function of the
correlation fluctuations [34].

Per il quantitative shadowgraph ho aggiunto un rifer-
imento al nostro articolo del 2000. Avete qualcosa in
contrario?

The experimental investigation of non-equilibrium
fluctuations in ternary mixtures is problematic, because
on Earth the presence of the gravity force gives rise to
convective instabilities under rather generic conditions.
This is due to the fact that, even in the configuration
where the density profile is gravitationally stable, solutes
diffuse at different rates and this can give rise to a lo-
cal destabilization of the density profile. For this reason
a systematic investigation of mass transfer in ternary
liquid mixtures requires microgravity conditions. The
mass transfer in ternary liquid mixtures has been investi-
gated extensively in microgravity in the framework of the
DCMIX project of the European Space Agency [40–42].
The DCMIX experiments were hosted inside the SODI
facility of ESA, where a two color Mach-Zehnder inter-
ferometer allowed to recover the Soret coefficients and
the eigenvalues of the diffusion matrix. Thermal gradi-
ent cells for the investigation on non-equilibrium fluctu-
ations in ternary systems require a different geometry
with respect to that adopted in DCMIX. Indeed, one
wants to access the sample optically by looking in the di-
rection parallel to the concentration gradient. This kind
of configuration was used during the GRADFLEX ex-
periment, which flew for two weeks aboard the FOTON
M3 spacecraft [43–46]. GRADFLEX contained a ther-
mal gradient cell and a shadowgraph diagnostics that
allowed to grab images of the phase perturbations de-
termined by non-equilibrium fluctuations. The experi-
ments allowed to attain a first important confirmation of
the fact that in the absence of gravity non-equilibrium
fluctuations grow up to the size of the container host-
ing the sample. The Giant-Fluctuations (NEUF-DIX)
project of ESA will adopt a configuration similar to
GRADFLEX to investigate non-equilibrium fluctuations
in multi-component complex liquids [47]. The facility
will comprise 6 thermal gradient cells and shadowgraph
diagnostics. The use of two light sources, one in the red
and one in the blue region of the visible spectrum will
allow to decouple the contributions to the fluctuations
determined by the two independent components of the
investigated mixtures. The cross-correlation of the shad-
owgraph images obtained with the two light sources will
allow to perform an experimental check of the asymmetry
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of the time cross-correlation function of non-equilibrium
fluctuations in ternary mixtures. Suitable samples will
include ternary mixtures including either a polymer or
a colloid as a third component and ternary mixtures of
biological relevance, such as protein solutions.
Qui e’ necessaria una connessione con gli esperimenti
The various components of the mixtures have different

refraction index and different disperions, thus the trans-
fer function of the shadowgraph technique ... with a suit-
able procedure it is possible to calculate ...
Questa e’ la frase di Jose’
The use of two-color shadowgraphy and light scatter-

ing for separating the contributions of the various compo-
ments of the mixture requires to re-work the underlying
physical optics theory, taking into account the presence
of two wavelength. This study is beyond the scope of
the present paper and will be performed as a part of the
above-mentioned projects.
Qui inizia la parte banale di connessione tra indici di

rifrazione e concentrazioni diagonali
In order to show the feasibility of the detection of the

time-asimmetry of the fluctuations, here we use a simpli-
fied approach, i.e. we assume that the optical technique
give access to the fluctuation of the refraction indices at
the two wavelengths, [δn1, δn2]. We approximate with a
linear relationship, as usually observed:

[

δc1
δc2

]

= R ·

[

δn1

δn2

]

(30)

with a given matrixR. BothR andT are experimentally
measurable, thus, from the optically measured [δn1, δn2]
it is possible to calculate the diagonalized concentrations:

[

δ̂c1
δ̂c2

]

= T ·R ·

[

δn1

δn2

]

(31)

It is possible to first calculate the diagonalized concen-

trations
[

δ̂c1, δ̂c1

]

and then calculate their correlation

function Ĉi,j , which shows the time-asymmetry. An al-
ternative approach could be to calculate the correlation
function of the refraction indices at the two wavelengths,
Cn

i,j ; it is connected to the correlation function of the
diagonalized concentration by the following equation:

[

Cn
i,j

]

= (T ·R)
−1

[

Ĉi,j

] [

(T ·R)
−1

]T

(32)

From this equation, we see that the cross-correlation of
the refraction index is a linear combination of the auto-
and the cross-correlations of the diagonalized concentra-
tions, hence it will appear more time-symmetric than the
cross-correlation of the diagonalized concentration.

V. CONCLUSION

In this work we have analyzed the cross correlations
of non-equilibrium concentration fluctuations of inde-
pendent components in a multi-component mixture. In

the trivial case of binary mixtures, the number of in-
dependent components is only one, so that one can
only investigate auto-correlation, which is symmetric,
notwithstanding the entropy production during the non-
equilibrium process. In the case of a ternary mixture,
the cross-correlations are investigated and they appear
to be asymmetric in time. An experimental verification
would require a measurement technique able to sepa-
rate the contribution of different components. This is in
principle possible with the two-wavelength shadowgraph
apparatus that is being developed within the NEUF-
DIX project. An experimental verification of the time-
asymmetry will then be performed in a near future.

Appendix

In this section we will derive the time cross-correlation
function of non-equilibrium concentration fluctuations in
a ternary mixture by using a procedure similar to that
adopted in Ref. [27] to determine the auto-correlation
function. At variance with Ref. [27] we will take into
account the contribution of the imaginary part of the
time correlation function. These contributions can be ne-
glected when determining the auto-correlation function,
but become significant in the case of the cross-correlation
function. Following Ref. [27] the Fluctuations Hydrody-
namics equations describing non-equilibrium concentra-
tion fluctuations in a ternary mixture are:

∂δc1
∂t

= D11∇
2δc1 +D12∇

2δc2 − δvz∇c1 −
1

ρ
∇ · δJ1

∂δc2
∂t

= D21∇
2δc1 +D22∇

2δc2 − δvz∇c2 −
1

ρ
∇ · δJ2

(A.1)

In Fourier space:

iωδc1 = −D11q
2δc1 −D12q

2δc2 − δvz∇c1 + F1

iωδc2 = −D21q
2δc1 +D22q

2δc2 − δvz∇c2 + F2 (A.2)

This expression can be rewritten as:

iωδc+ q2D · δc = −δvz∇c+ F (A.3)

where δc = (δc1, δc2), ∇c = (∇c1,∇c2), F = (F1, F2),
and D is the matrix of diffusion coefficients. We de-
compose the concentration fluctuation as the sum of an
equilibrium and a non-equilibrium contribution:

δc = δcE + δcNE (A.4)

where

iωδcE + q2D · δcE = F (A.5)

and

iωδcNE + q2D · δcNE = −δvz∇c (A.6)
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Since F and δvz are not correlated, we can evaluate sep-
arately the contributions of the two terms, and we now
focus on the non-equilibrium part δcNE . By calculating
δcNE :

δcNE = −
(

iω +Dq2
)−1

· ∇cδvz (A.7)

The correlation is:
〈

δcNE (ω,q)∗ δcNE (ω′,q′)
T
〉

=

(

−iωI+Dq2
)−1

· ∇c · ∇cT ·
(

iωI+Dq2
)−1T

〈δv∗z (ω,q) δvz (ω
′,q′)〉 (A.8)

The correlation of δvz is:

〈δv∗z (ω,q) δvz (ω
′,q′)〉 = 2kBT

q2‖

νρq4
(2π)

4
δ (ω − ω′) δ (q− q′)

(A.9)
Using this correlation, we get:

〈

δcNE (ω,q)
∗
δcNE (ω′,q′)

T
〉

=

(

−iωI+Dq2
)−1

· ∇c · ∇cT ·
(

iωI+Dq2
)−1T

2kBT
q2‖

νρq4
(2π)

4
δ (ω − ω′) δ (q− q′) (A.10)

By using the definition of correlation:

〈

δcNE (ω,q)
∗
δcNE (ω′,q′)

T
〉

=

CNE (ω,q) (2π)
4
δ (ω − ω′) δ (q− q′) (A.11)

we get:

CNE (ω,q) = 2kBT
q2‖

νρq4
(

−iωI+Dq2
)−1

· ∇c · ∇cT ·
(

iωI+Dq2
)−1T

(A.12)

Now we diagonalize the matrix D. We consider the case
in which D has two real eigenvalues, although an imagi-
nary part could be present. The eigenvalues can be cal-
culated analytically (Eq. 18 of Ref. [27]):

D̂1,2 =
1

2

[

D11 +D22 ±

√

(D11 −D22)
2
+ 4D12D21

]

(A.13)
The transformation T diagonalizes D:

T−1 ·D ·T = D̂ (A.14)

where D̂ is a diagonal matrix with elements D̂1 and D̂2.
By using this transformation:

CNE (ω,q) = 2kBT
q2‖

νρq4
(

−iωI+T · D̂ ·T−1q2
)−1

· ∇c·

∇cT ·
(

iωI+T · D̂ ·T−1q2
)−1T

(A.15)

We rewrite this last equation as:

CNE (ω,q) = 2kBT
q2‖

νρq4

T ·
(

−iωI+ D̂q2
)−1

T−1 · ∇c·

∇cT ·T−1T ·
(

iωI+ D̂q2
)−1T

·TT (A.16)

By introducing the projectors Pi:

P1 =

[

1 0
0 0

]

(A.17)

P2 =

[

0 0
0 1

]

(A.18)

The correlation becomes:

CNE (ω,q) = 2kBT
q2‖

νρq4

T ·

[

P1

−iω + D̂1q2
+

P2

−iω + D̂2q2

]

T−1 · ∇c·

∇cT ·T−1T ·

[

P1

iω + D̂1q2
+

P2

iω + D̂2q2

]

·TT (A.19)

By distributing the products on the sum:

CNE (ω,q) = 2kBT
q2‖

νρq6

∑

i,j

Ai,j

(

D̂i + D̂j

)

q2

(

−iω + D̂iq2
)(

iω + D̂jq2
) (A.20)

where the matrices Ai,j are defined as:

Ai,j =
T ·PiT

−1 · ∇c · ∇cT ·T−1T ·Pj ·T
T

D̂i + D̂j

(A.21)

We now compare our results with those of Ref. [27].
The real part of CNE can be written as:

CNE (ω,q) = 2kBT
q2‖

νρq6

∑

i,j

Ai,j

[

D̂iq
2

ω2 + D̂2
i q

4
+

D̂jq
2

ω2 + D̂2
j q

4

]

(A.22)

The sum can be rearranged as:

CNE (ω,q) = 2kBT
q2‖

νρq6

A1
D̂iq

2

ω2 + D̂2
i q

4
+A2

D̂jq
2

ω2 + D̂2
j q

4
(A.23)

where

A1 = 2A1,1 +A1,2 +A2,1 (A.24)

A2 = 2A2,2 +A1,2 +A2,1 (A.25)
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This expression corresponds to Eqs. 20-23 of Ref. [27].
The result given in Ref. [27] is thus correct for the auto-
correlations, which are real, while it neglects a significant
imaginary part in the calculation of the cross-correlation.
In practically relevant cases, D1,2 = D2,1 = 0; this

means that the eigenvalues D̂ correspond to the diffusion
coefficients D1 and D2, and the transformation matrix T
is the identity.
We calculate the correlations for this case:

CNE
1,1 (ω,q) = 2kBT

q2‖

νρq6
∇c21
2D1

2D1q
2

ω2 +D1q2
(A.26)

CNE
1,2 (ω,q) = 2kBT

q2‖
νρq6

∇c1∇c2
D1 +D2

(D1 +D2) q
2

(−iω +D1q2) (iω +D2q2)
(A.27)

CNE
2,2 (ω,q) = 2kBT

q2‖

νρq6
∇c21
2D2

2D2q
2

ω2 +D2q2
(A.28)

CNE
2,1 (ω,q) = 2kBT

q2‖

νρq6
∇c1∇c2
D1 +D2

(D1 +D2) q
2

(iω +D1q2) (−iω +D2q2)
(A.29)

We see that the self power-spectra of the concentration
fluctuations are real with a Lorentzian shape. In this
case the determination of the auto-correlation function
is straightforward and yields a single exponential decay.
Conversely, the cross-spectra exhibit two poles and the
determination of the cross-correlation function requires
the procedure outlined in Sect. III A.
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