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Abstract

This paper is devoted to the numerical approximation of the spatially extended FitzHugh-Nagumo

transport equation with strong local interactions based on a particle method. In this regime, the time

step can be subject to stability constraints related to the interaction kernel. To avoid this limitation,

our approach is based on higher-order implicit-explicit numerical schemes. Thus, when the magnitude

of the interactions becomes large, this method provides a consistent discretization of the macroscopic

reaction-diffusion FitzHugh-Nagumo system. We carry out some theoretical proofs and perform several

numerical experiments that establish a solid validation of the method and its underlying concepts.

Key words : Particle methods Spectral methods Vlasov-like equations AMS 65M75 35K57 35Q92

1 Introduction

The FitzHugh–Nagumo (FHN) system [18], [28], models the pulse transmission in animal nerve axons

and allows to describe complicated interactions of neurons in large neural networks. More precisely, we

consider a network composed of n ∈ N neurons interacting with each other, where each one is labeled by

i ∈ {1, ..., n}, and endowed with a parameter xi ∈ Rd for d ∈ {1, 2, 3} standing for the constant spatial

position in the network. The FHN system accounts for the variations of the membrane potential vi of a

neuron coupled to an auxiliary variable wi called the adaptation variable. It can be written as follows for

all i ∈ {1, ..., n}, 

dvi
dt

= N(vi)− wi +
1

n ε2

n∑
j=1

Ψε(‖xi − xj‖) (vj − vi),

dwi
dt

= τ (vi − γ wi),

(1.1)
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where τ ≥ 0 and γ > 0 are given constants, N(v) = v (1 − v) (v − θ) with θ ∈ (0, 1) a fixed parameter

whereas ε > 0 is a scaling small parameter describing the intensity of local interactions between neurons.

For all ε > 0 and for all x ∈ Rd, the connectivity kernel Ψ only depends on the relative distance between

neurons and is given by

Ψε(‖y‖) :=
1

εd
Ψ

(
‖y‖
ε

)
, y ∈ Rd,

where Ψ : R+ → R+. This scaling with respect to ε means that when ε goes to zero, space interactions

are highly dominated by local ones compared to long range correlations. In the rest of this article, we

assume that the connectivity kernel Ψ is nonnegative and rapidly vanishing at infinity, hence we introduce

the following quantities, 
Ψ :=

∫
Rd

Ψ(‖y‖) dy > 0,

σ :=
1

2

∫
Rd

Ψ(‖y‖) ‖y‖2dy > 0,

(1.2)

which will play an important role later. A typical example for Ψ is a Gaussian function, or the indicator

function in a compact set.

In [8], we proved that as the number of neurons n goes to infinity and for Ψ ∈ Lipb(R+), the set of neurons

at time t > 0 and position x ∈ Rd can be described by a distribution function f ε(t,x, .) solution of a

mean-field equation,
∂tf

ε + ∂v [f ε (N(v) − w + Kε[f ε])] + ∂w [f εA(v, w)] = 0,

f ε(t = 0,x, .) = f ε0 (x, .),

(1.3)

with Kε[f ε] and A given by
Kε[f ε](t,x, v) =

1

ε2

∫
Rd

∫
R2

Ψε

(
‖x− x′‖

)
(v′ − v) f ε(t,x′,dv′, dw′)dx′,

A(v, w) = τ (v − γ w) .

(1.4)

Here, we want to construct numerical solutions of (1.3)–(1.4) using particle methods, which consist in

approximating the distribution function by a finite number of macro-particles. The trajectories of these

particles are determined from the characteristic curves corresponding to the (1.3). Indeed, for any initial

data f ε0 with finite second moments in x ∈ Rd and (v, w) ∈ R2, the solution of (1.3)–(1.4) is uniquely

determined as the push-forward of f ε0 by the flow of the characteristic system of equations associated to

(1.3)–(1.4), which can be written for (t,x) ∈ R+ × Rd and (v, w) ∈ R2 as

dVε

dt
= N (Vε) − Wε + Kε[f ε] (t,x,Vε) ,

dWε

dt
= A (Vε,Wε) ,

Vε(0) = v, Wε(0) = w.

(1.5)
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Then we denote by Φt,x the flow (v, w) ∈ R2 7→ Φt,x(v, w) = (Vε,Wε)(t,x, v, w), with Φt,x(v, w) ∈ R2,

hence the solution of (1.3)–(1.4) is given by

f ε(t,x, .) = Φt,x#f ε0 (x, .), (1.6)

where # is our notation for a push-forward, that is, for any test-function ϕ and B ⊂ R2,∫
B
ϕ(v, w) f ε(t,x,dv,dw) =

∫
Φ−1

t,x(B)
ϕ ◦ Φt,x f

ε
0 (x, dv,dw).

We also define for all (t,x) ∈ R+ × Rd and ε > 0 the following macroscopic quantities,

ρε

 1

V ε

W ε

 (t,x) :=

∫
R2

1

v

w

 f ε(t,x, dv,dw), (1.7)

so that ρε(t,x) is the average neuron density in the network at time t and location x, and (V ε,W ε) is the

average pair membrane potential - adaptation variable. Therefore, we observe that Kε[f ε] may be written

with respect to the macroscopic quantities ρε and ρε V ε as

Kε[f ε](., v) =
1

ε2
[Ψε ? (ρεV ε) − Ψε ? ρ

ε v ] , (1.8)

where ? denotes the standard convolution product in x.

An important issue in the numerical simulation of (1.5) is that when the parameter ε is small, the numerical

error of a classical time explicit scheme may become large. For instance with an explicit Euler scheme,

the error may behave as O(∆t
ε2

), where ∆t is the time step, hence the scheme is not appropriate for ε� 1.

Here we want to design a numerical scheme which is less sensitive to this parameter ε > 0 in order to keep

a control on the numerical error when ε� 1.

Before describing and analyzing a class of numerical methods for (1.3)–(1.4) in the presence of strong local

space interactions (ε � 1), we first briefly expound what may be expected from the continuous model in

the limit ε→ 0.

On the one hand, by integrating (1.3) with respect to (v, w) ∈ R2, we observe that for all t ≥ 0

ρε(t,x) = ρε0(x), x ∈ Rd

and moreover we suppose that it does not depend neither on ε, so that ρε(t, .) = ρ0 with

ρ0 ≥ 0, ρ0 ∈ L∞(Rd). (1.9)

On the other hand, using (1.8), we observe that∫
R2

Kε[f ε](t,x, v) f ε(t,x, dv dw) =
ρ0

ε2
[ Ψε ? (ρ0 V

ε) − (Ψε ? ρ0)V ε ] . (1.10)

Hence, multiplying (1.3) by v (resp. w) and integrating with respect to (v, w) ∈ R2 and using (1.10), we

get a time evolution equation for the macroscopic quantities (ρ0V
ε, ρ0W

ε) as
∂t(ρ0V

ε)− ρ0

ε2
[Ψε ? (ρ0V

ε)− (Ψε ? ρ0)V ε] =

∫
R2

N(v)f ε(.,dv,dw)− ρ0W
ε,

∂t(ρ0W
ε) = ρ0A (V ε,W ε) .

(1.11)
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Of course, this system is not closed since the right hand side of the equation on ρ0 V
ε again depends on the

distribution function f ε. However, in the regime of strong local interactions [9], that is, in the limit ε→ 0,

the singular term in ε−2 indicates that the distribution function f ε converges towards a Dirac distribution

in v centered in V ε. Then applying a Taylor expansion of the solution V ε, the right hand side of (1.11)

gives rise to a diffusive operator for the spatial interactions at zeroth order with respect to ε. It yields that

(ρ0 V
ε, ρ0W

ε) converges towards a limit pair (ρ0 V, ρ0W ) satisfying the FHN reaction-diffusion system,
ρ0 ( ∂tV − σ [∆ (ρ0 V ) − V∆ρ0] − N(V ) + W ) = 0,

ρ0 ( ∂tW − A(V,W ) ) = 0,

(1.12)

where σ is defined in (1.2). We refer to [9] for more details on this asymptotic analysis.

We now come to our main concern in the present article and seek after a numerical method that is able

to capture these expected asymptotic properties, even when numerical discretization parameters are kept

independent of ε hence are not adapted to the stiffness degree of the space interactions. Our objective

enters in the general framework of so-called Asymptotic Preserving (AP) schemes, first introduced and

widely studied for dissipative systems as in [22], [24]. Yet, in opposition with collisional kinetic equations

in hydrodynamic or diffusion limits, transport equations like (1.3) involve of course some stiffness in time

but it is also crucial to take care of the space discretization in order to capture the correction terms of the

non-local operator Kε[f ε]. By many respects this makes the identification of suitable schemes much more

challenging.

One of the interest of the study of AP schemes is to numerically determine a rate of convergence of the

transport equation (1.3) as the parameter ε goes to 0. Thus, we can compare this numerical rate of

convergence with what we derived in the continuous framework in [9].

In [8], the author proposed a numerical approximation to (1.3)–(1.4) using a standard particle method.

However, as the parameter ε goes to 0, that is when the range of interactions between neurons shrinks

and their amplitude grows, the time step and spatial grid size have to tend to zero too, hence the scheme

cannot be consistent with the limit system (1.12) in the limit ε → 0. In a different context [16], [17], F.

Filbet & L. M. Rodrigues developed a particle method for the Vlasov-Poisson system with a strong external

magnetic field, which is able to capture accurately the non stiff part of the evolution while allowing for

coarse discretization parameters.

Here, we show how this approach may be extended to transport equations like (1.3) to deal with the

time discretization. However, it is not sufficient since an appropriate space discretization technique is

mandatory to capture the diffusive operator in (1.12) in the limit ε → 0. In [5], the authors apply

a spectral collocation method to provide numerical approximations of reaction-diffusion equations, with

fractional spatial diffusion. Their method obviously can also be applied for local diffusions as in the

FitzHugh-Nagumo reaction-diffusion system (1.12). On the other hand, the spectral collocation method

also provides numerical approximations of differential equations with integral terms. For example, in [29],

[11], [12], [14] and [15], the authors use fast spectral methods for the non-local Boltzmann operator, which

lead to compute the time evolution of Fourier coefficients of the solution instead of the solution itself.

Therefore, this approach considerably simplifies the computation of the integral collision term and may

be applied in our context. Moreover, we will show that a suitable formulation allows to perform a Taylor

expansion of the solution in the Fourier space and to recover a consistent discretization of the macroscopic
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system (1.12) in the limit ε → 0, which guarantee the asymptotic preserving property. Finally, another

difficulty in our framework is to prove the convergence when ε vanishes of the nonlinear term in (1.5)

involving the cubic function N . The idea to circumvent this issue is to use, as in the continuous framework

[9], the stiff term in (1.5), which stands for the interactions between neurons throughout the network to

prove that the solution f ε converges towards a Dirac mass in v, that is all the membrane potential of the

neurons at position x are synchronized. Thus, it is possible to identify the asymptotic of the nonlinear term

in (1.5). We will show that the particle approximation of the distribution in (v, w) ∈ R2 is particularly

well suited to achieve this.

The rest of the paper is organized as follows. In Section 2, we present the particle method for the transport

equation (1.3)–(1.4) and propose an appropriante time discretization technique in order to preserve the

correct asymptotic when ε� 1. Then, we provide first and second order schemes and verify the consistency

when ε tends to zero. Finally, in Section 3, we present some numerical simulations to illustrate our

results, and to study the dynamics of (1.3)–(1.4) with different different sets of parameters and different

heterogeneous neuron densities.

2 A numerical scheme for the FitzHugh-Nagumo transport equation

This section is devoted to the construction of the numerical schemes for (1.3)- (1.4). We first focus on the

discretization of the nonlocal operator Kε[f ε] in (1.4), for which we propose a spectral collocation method

based on the discrete fast Fourier method. Then, we treat the transport equation (1.3) using a particle

method for the microscopic variable (v, w) ∈ R2 and provide first and second order semi-implicit schemes

for the time discretization. This algorithm is constructed in order to get a consistent approximation in the

limit ε→ 0.

For sake of clarity, we drop the dependence with respect to ε on the distribution function f ε and on the

non-local operator Kε[f ε].

2.1 Computation of the Non-local operator

We first look for an approximation of the operator K[f ] given in (1.4). In view of applying a Fourier

spectral method in space, we write K[f ] as

K[f ](t,x, v) =
1

ε2

∫
Rd

Ψε(‖y‖) ρ0(x− y) (V (t,x− y)− v) dy .

Then we define a truncated operator KS [f ] in the following way.

Lemma 2.1. Suppose that Supp (ρ0) ⊂ B(0, S), where B(0, S) is the ball of radius S > 0 centered at the

origin and choose ε ∈ (0, 1). Then, for any (t,x, v, w) ∈ R+ × B(0, S)× R2, f is solution of

∂tf + ∂v
[
f
(
N(v) − w + KS [f ]

)]
+ ∂w [f A(v, w)] = 0,

where for any (x, v) ∈ B(0, S)× R,

KS [f ](t,x, v) =
χB(0,S)

ε2
(x)

∫
B(0,2S)

Ψε(‖y‖) ρ0(x− y) (V (t,x− y)− v) dy, (2.1)

where χB(0,S) denotes the characteristic function in the ball B(0, S).
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Proof. On the one hand, since Supp (ρ0) ⊂ B(0, S) and for all t ≥ 0, the density ρ(t) = ρ0, we get that for

any x ∈ Rd, the transport equation (1.3) can be written as

∂tf + ∂v
[
f
(
N(v) − w + χB(0,S)K[f ]

)]
+ ∂w [f A(v, w)] = 0 .

Then it is enough to consider only x ∈ B(0, S). On the other hand, the domain of integration of the

operator K[f ] is such that

‖y‖ ≤ ‖x‖ + ‖y − x‖ ≤ 2S,

hence for any (t,x, v) ∈ R+ × B(0, S)× R,

K[f ](t,x, v) =
1

ε2

∫
B(0,2S)

Ψε(‖y‖) ρ0(x− y) (V (t,x− y)− v) dy.

Thus, we define the truncated operator (2.1) as ε2KS [f ] = χB(0,S)K[f ].

Actually the operator KS [f ] can be seen as convolution products between (ρ0, ρ0V ) and the connectivity

kernel Ψε, that is,

KS [f ](t,x, v) =
1

ε2

(
LS [ρ0V ](t,x) − vLS [ρ0](x)

)
,

where LS is given by

LS [u] = Ψε ? u, u ∈ {ρ0, ρ0V }. (2.2)

In the sequel, we choose for simplicity S = π/2 such that B(0, S) ⊂ T := [−π, π]d, and consider a set of

equidistant points (xj)j∈Jnx
⊂ T with Jnx := J−nx/2, nx/2− 1Kd where nx is an even integer. An efficient

strategy to approximate this nonlocal term is the spectral or spectral collocation methods [20, 29]. We

suppose that the density ρ0 and the macroscopic membrane potential V are both known at the mesh points

(xj)j∈Jnx
, then we compute an approximation of the Fourier coefficients for u ∈ {ρ0, ρ0V } as,

û(t,k) :=
1

ndx

∑
j∈Jnx

u(t,xj) e
−ik·xj , k ∈ Jnx .

and get a trigonometric polynomial

unx(t,x) :=
∑

k∈Jnx

û(t,k) eik·x, u ∈ {ρ0, ρ0V } .

Therefore, we substitute this polynomials in (2.2), which yields a discrete operator LSnx
given by

LSnx
[u] :=

∑
k∈Jnx

L̂S [u](t,k) eik·x, (2.3)

where L̂S [u] is given by

L̂S [u](t,k) = (2π)d Ψ̂ε(k) û(t,k) (2.4)

and Ψ̂ε is the expansion coefficient depending on the connectivity kernel

Ψ̂ε(k) =
1

(2π)d

∫
T

Ψε(‖x‖) e−ik·x dx. (2.5)
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Finally the approximation KSnx
[f ] of the operator KS [f ] is provided by

KSnx
[f ](t,x, v) =

1

ε2

(
LSnx

[ρ0V ](t,x) − vLSnx
[ρ0](x)

)
. (2.6)

Let us focus on the computation of the kernel modes (Ψ̂ε(k))k∈Jnx
for any fixed parameter ε > 0. In the

spirit of [29] for the Boltzmann equation, our purpose is to prove that these coefficients can be computed

as one-dimensional integrals, so that we can store them in an array, but also to compute the asymptotic

limit when ε→ 0 in order to ensure that the scheme is consistent and stable when ε� 1.

Using the change of variable x = r ω, for r ≥ 0 and ω ∈ Sd−1, we get:

Ψ̂ε(k) =
1

(2π)d

∫ π

0
Ψε(r) r

d−1 I(k, r) dr,

where

I(k, r) :=

∫
Sd−1

exp(−i r k · ω) dω.

Then, changing the variable r into s = r/ε, we get

Ψ̂ε(k) =
1

(2π)d

∫ π/ε

0
Ψ(s) sd−1I(k, ε s) ds.

To complete the computation of the function I, we have to study separately each possible value for the

spatial dimension d ∈ {1, 2, 3}.

One-dimensional case: d = 1. Since S0 = {−1, 1}, it is straightforward to check that for any k ∈ Jnx ,

I(k, r) = 2 cos(r |k|),

hence we get:

Ψ̂ε(k) =
1

π

∫ π/ε

0
Ψ(s) cos(ε s |k|) ds.

Two-dimensional case: d = 2. Let r ≥ 0 and k ∈ Jnx . In this case, setting q = −r k, then using

spherical coordinates, we have

I(k, r) =

∫
S1

exp (iq · ω) dω =

∫ 2π

0
exp (i r ‖k‖ cos θ) dθ

= 2

∫ π

0
cos (r ‖k‖ sin θ) dθ = 2πJ0(r ‖k‖),

where J0 is the Bessel function of order 0, defined with

J0 : x ∈ R 7→ 1

π

∫ π

0
cos (x sin θ) dθ =

∞∑
l=0

(−1)l

(l!)2

(x
2

)2 l
.

Consequently, we get

Ψ̂ε(k) =
1

2π

∫ π/ε

0
Ψ (s) sJ0 (ε s ‖k‖) ds.
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Three-dimensional case: d = 3. Let r ≥ 0 and k ∈ Jnx . Hence, setting q = −r k, and then using

spherical coordinates, we get

I(k, r) =

∫
S2

exp (iq · ω) dω = 2π

∫ π

0
exp (i ‖q‖ cos(θ)) sin θ dθ

= 2π

∫ 1

−1
exp (i ‖q‖µ) dµ = 4π Sinc (r ‖k‖) ,

where Sinc(x) := sin(x)/x. Thus, the kernel mode Ψ̂ε(k) is given by

Ψ̂ε(k) =
1

2π2

∫ π/ε

0
Ψ (s) |s|2 Sinc (ε s ‖k‖) ds.

Now let us investigate the asymptotic behavior of the discrete operator LSnx
[u] when ε � 1. To this

approach we set Snx the space of trigonometric polynomial of degree nx/2 in each direction, defined as [6]

Snx = span
{
eik·x , −nx/2 ≤ kj ≤ nx/2− 1, j = 1, . . . , d

}
,

equipped with the classical L2 norm ‖.‖L2 , which satisfies for any u ∈ Snx

‖u‖2L2 =

(
2π

nx

)d ∑
j∈Jnx

|u(xj)|2

and for any u and v ∈ Snx , we also have∫
T
u(x) v(x) dx =

(
2π

nx

)d ∑
j∈Jnx

u(xj) v(xj).

Finally we define by Inx the projection operator from C(T) to Snx such that Inxu(xj) = u(xj), for all

j ∈ Jnx .

Proposition 2.2. Let d ∈ {1, 2, 3} and consider a connectivity kernel Ψ satisfying (1.2) with∫
Rd

Ψ(‖y‖) ‖y‖4 dy < ∞. (2.7)

Then, for all k ∈ Jnx, there exists a positive constant C > 0, depending on Ψ, such that for all ε > 0,∣∣∣(2π)d Ψ̂ε(k) − Ψ + σ ε2 ‖k‖2
∣∣∣ ≤ C

(
‖k‖4 + 1

)
ε4 . (2.8)

Moreover for any trigonometric polynomial u ∈ Snx, we have∥∥LSnx
[u] − Ψu− σ ε2 ∆u

∥∥
L2 ≤ C ε4

(
‖∆2u‖L2 + ‖u‖L2

)
. (2.9)

Proof. On the one hand, for any k ∈ Jnx , we perform a Taylor expansion of I(k, .) at r = 0 and using the

assumptions (2.7) on Ψ, it yields∣∣∣∣∣(2π)d Ψ̂ε(k) −
∫ π/ε

0
Ψ(s)sd−1ds − ε2 ‖k‖2

∫ π/ε

0
Ψ(s)sd+1ds

∣∣∣∣∣
≤ ‖k‖4 ε4

∫
Rd

‖y‖4 Ψ(‖y‖)dy.
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On the other hand, we have∫ ∞
π/ε

Ψ(s)sd−1ds + ε2

∫ ∞
π/ε

Ψ(s)sd+1ds ≤ ε4

(
1

π4
+

1

π2

) ∫
Rd

‖y‖4 Ψ(‖y‖)dy.

Gathering these results and using (1.2), there exists a constant C > 0, depending on Ψ, such that∣∣∣(2π)d Ψ̂ε(k) − Ψ + σ ε2 ‖k‖2
∣∣∣ ≤ C (‖k‖4 + 1) ε4 .

Then, we consider u ∈ Snx and for k ∈ Jnx , we substitute the latter result in the expression (2.4) of

L̂S [u](k), it yields for each∣∣∣L̂S [u](k) −
(
Ψ + σ ε2 ‖k‖2

)
û(k)

∣∣∣ ≤ C ε2 (‖k‖4 + 1) |û(k)|.

Thus, from the definition of (2.3), we know that LSnx
[u] ∈ Snx and get

‖LSnx
[u]−Ψu− σ ε2∆u‖L2 =

 ∑
k∈Jnx

∣∣∣L̂S [u](k) −
(
Ψ + σ ε2 ‖k‖2

)
û(k)

∣∣∣2
1/2

,

≤ C ε4 (‖∆2u‖L2 + ‖u‖L2) .

2.2 Particle/Spectral methods for (1.3)

We now consider the transport equation (1.3) and apply a standard particle method. This kind of numerical

scheme was first introduced by Harlow [19] for the numerical computation of specific problems in fluid

dynamics, and precisely mathematically studied later [31]. Thus a large diversity of particle methods

were developed for the simulation in fluid mechanics and plasma physics (see for instance [16], [17] and

references therein). The method consists in approximating the solution f to (1.3) with a sum of Dirac

masses centered in a finite number of solutions of the characteristic system (1.5). These solutions stand

for some particles characterized by a pair membrane potential-adaptation variable (v, w) ∈ R2.

In our case, since the transport equation (1.3) involves a high dimensional space (t,x, v, w) ∈ R+×Rd×R2,

a particle method seems to be the most natural approach. Moreover, although the cost of the simulation

increases with the number of particles considered, this kind of method has already shown its efficiency to

describe complex dynamics in plasma physics and fluid dynamics.

We approximate the solution f to the transport equation (1.3) at each point x ∈ T,

fM (t,x, dv,dw) :=
ρ0(x)

M

M∑
p=1

δVp(t,x)(dv)⊗ δWp(t,x)(dw),

where M ∈ N∗, δ stands for the Dirac measure, and for any t ≥ 0, (Vp,Wp)(t) ∈ Snx is the solution of the

spatially discretized characteristic system which can be written as follows, x ∈ T and 1 ≤ p ≤M
dVp
dt

= Inx

(
N(Vp) +KSnx

[fM ](Vp)
)
− Wp,

dWp

dt
= A (Vp,Wp) ,

(2.10)
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with a given initial data (V0
p ,W0

p ) ∈ Snx for 1 ≤ p ≤ M and Inx is the projection operator on Snx .

Moreover, we define the macroscopic potential VM at each point (t,x) ∈ R+ × T, as

ρ0 =

∫
R2

fM (t,x, dv,dw) ,

ρ0 VM (t,x) :=

∫
R2

v fM (t,x,dv,dw) =
1

M

M∑
p=1

ρ0(x)Vp(t,x) ,

ρ0WM (t,x) :=

∫
R2

w fM (t,x, dv,dw) =
1

M

M∑
p=1

ρ0(x)Wp(t,x) .

(2.11)

From these macroscopic quantities, it is then possible to compute the discrete operator KSnx
[fM ] given in

(2.6), where (2.10)–(2.11) are solved at each mesh point (xj)j∈Jnx
.

2.3 Time discretization

The time discretization of (2.10) is the key point to get an asymptotic preserving scheme. The basic idea

is do develop numerical methods that preserve the asymptotic limits (ε→ 0) from the microscopic to the

macroscopic models in the discrete setting. Contrary to multi-physics domain decomposition methods,

the asymptotic preserving schemes only solve the microscopic equations avoiding the coupling of different

models. This approach generates automatically macroscopic solvers when, in the asymptotic regime, the

small time and space scales are not resolved numerically. This idea can be illustrated in Figure 2.1.

Pε Pεh

P0 P0
h

h→ 0

ε→ 0

h→ 0

ε→ 0

Figure 2.1: Asymptotic preserving diagram is performed to evaluate uniform error estimates ‖Pε − Pε
h‖ with

respect to ε.

Suppose, we start with a microscopic model Pε, which depends on a parameter ε, characterizing the small

scale. As ε → 0, the model is approximated by a macroscopic model P0, which is independent of ε. We

want to design a discretization Pεh of Pε, where h is the numerical parameter (mesh size and time step). If

the asymptotic limit Pεh, as ε→ 0 (with a fixed h), exists, then it is denoted by P0
h. Furthermore when P0

h

is a stable and consistent approximation of P0, then the scheme Pεh is called asymptotic preserving. Error

on an asymptotic preserving scheme is obtained from the following argument. Typically, we consider Pε

and P0, corresponding for instance to (1.3)-(1.4) and its asymptotic model (1.12), we expect formally [9],

E0(ε) := ‖Pε − P0‖ = O(ε2). (2.12)
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Then we assume that Pεh is an r-order approximation of Pε for a fixed ε > 0. Due to the presence of the

small parameter ε > 0, a classical numerical analysis typically gives the following error estimates

Eh(ε) := ‖Pεh − Pε‖ = O(‖h‖r/εs), s > 0, (2.13)

which blows-up when ε � 1. Hence, the main issue of the asymptotic preserving analysis is to establish

the discrete counterpart of the asymptotic analysis (2.12), that is, for a fixed h,

Ẽh(ε) := ‖Pεh − P0
h‖ = O(ε2) (2.14)

and in the limit ε→ 0,

Eh(0) := ‖P0
h − P0‖ = O(‖h‖r). (2.15)

Clearly, if we add up the error estimates (2.12), (2.14) and (2.15), by the triangle inequality, we have

Eh(ε) ≤ E0(ε) + Ẽh(ε) + Eh(0) = O(ε2 + ‖h‖r). (2.16)

By comparing the two error estimates (2.13) and (2.16), it yields

Eh(ε) ≤ C min

(
‖h‖r

εs
, ε2 + ‖h‖r

)
,

showing that when ε � 1, the error does not blow-up. This formal argument applies to any asymptotic

preserving schemes, although a rigorous proof will be problem dependent, based on the regularity of the

solution to Pε and the specific scheme Pεh.

Now, the aim is to apply this strategy to (2.10), which corresponds to the characteristic curves of (1.3)-(1.4).

We have to be especially careful about the stiff nonlocal terms in (1.5), where the small parameter ε > 0

appears. We cannot use a fully explicit scheme, which does not provide an AP-scheme unless ∆t = O(ε2),

whereas a fully implicit time discretization would be too costly because of the spectral collocation method

for the nonlocal terms.

Therefore, our strategy consists in applying implicit-explicit numerical scheme, and to treat VM as an

additional unknown of the system. In the following, we consider ∆t > 0 and for all n ∈ N, we set

tn = n∆t.

In this section, we propose a first and a second order time discretization scheme and prove some consistency

properties when h is fixed and ε → 0 (see Proposition 2.3 and 2.5 ) corresponding to the error estimate

Ẽh(ε) in (2.14) and when ε is fixed and h→ 0 (see Lemma 2.4 and 2.6) corresponding to the error estimates

Eh(ε) in (2.13).

A first order semi-implicit scheme

We propose a first order semi-implicit scheme, that is for any time step n ∈ N and any particle index

1 ≤ p ≤ M , we approximate (Vp(tn),Wp(t
n)) solution of (2.10) by (Vnp ,Wn

p ) ∈ Snx × Snx given by the

following system
Vn+1
p − Vnp

∆t
− Inx

(
N(Vnp ) +

1

ε2

[
LSnx

[ρ0V
n
M ]− Vn+1

p LSnx
[ρ0]
])

+Wn
p = 0 ,

Wn+1
p −Wn

p

∆t
−A

(
Vn+1
p ,Wn

p

)
= 0 ,

(2.17)
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where V n
M denotes an approximation of the macroscopic membrane potential. Using the linearity of A and

the fact that (Vnp ,Wn
p ) ∈ Snx × Snx , the system (2.17) yields that (Vn+1

p ,Wn+1
p ) ∈ Snx × Snx . Moreover,

since the projection Inx is linear, and LSnx
[ρ0 V

n
M ] ∈ Snx according to its definition (2.3), we get that the

right term in the first equation in (2.17) reads

Inx

(
N(Vnp ) +

1

ε2

[
LSnx

[ρ0V
n
M ] − Vn+1

p LSnx
[ρ0]
])
− Wn

p

= Inx

(
N(Vnp )

)
+

1

ε2

[
LSnx

[ρ0V
n
M ] − Inx

(
Vn+1
p LSnx

[ρ0]
)]
− Wn

p .

On the one hand, let us emphasize that the stiff term, for ε � 1, is treated implicitly but can be solved

exactly whereas other terms, nonlinear with respect to Vp, are considered explicitly. Formally speak-

ing, when ε tends to zero, at each point xj ∈ T, j ∈ Jnx , the microscopic potential Vn+1
p converges to

LSnx
[ρ0V

n
M ]/LSnx

[ρ0].

On the other hand, the macroscopic membrane potential V n
M might be given by (2.11) from the values

(Vnp )1≤p≤M . Unfortunately, this approach would not give the correct asymptotic behavior of the macro-

scopic membrane potential when ε→ 0. Indeed, as ε goes to 0, the first equation in (2.17) formally gives

for all p and n:

Vn+1
p ∼ V n

M ,

which is the expected limit, but the non linear term N(Vnp ) does not converge to N(V n
M ).

Therefore, we consider V n
M ∈ Snx as an additional variable solution of the following scheme

V n+1
M − V n

M

∆t
− 1

M

M∑
p=1

Inx

(
N(Vn+1

p )
)

(2.18)

− 1

ε2

[
LSnx

[ρ0V
n
M ] − Inx

(
V n
M LSnx

[ρ0]
)]

+ Wn
M = 0 .

Observe here that the nonlinear term is computed implicitly from (Vn+1
p )1≤p≤M whereas the stiff term is

now explicit.

Now, we define a numerical parameter h ∈ R3 as h = (∆t,∆x, 1/M), where ∆x = 2π/nx and let us show

the consistency of the numerical scheme (2.17)–(2.18) in the limit as ε→ 0 for a fixed numerical parameter

h.

Proposition 2.3 (Consistency when ε→ 0). Let h be a fixed parameter and consider a connectivity kernel

Ψ : R+ → R+ satisfying (1.2), (2.7) and a neuron density ρ0 ∈ Snx satisfying (1.9) at each grid point xj,

j ∈ Jnx. For all ε > 0, p ∈ {1, . . . ,M} and n ∈ N, let us assume that the triplet (Vε,np , Wε,n
p , V ε,n

M ) given

by (2.17)–(2.18) is uniformly bounded with respect to ε > 0. Then we define

W ε,n
M =

1

M

M∑
p=1

Wε,n
p

12



and for all j ∈ Jnx, (V ε,n
M ,W ε,n

M )(xj) converges to (V
n
M , W

n
M )(xj), as ε goes to 0, solution of

V
n+1
M − V n

M

∆t
= Inx

(
N
(
V
n
M

))
− W

n
M

+σ
(

∆Inx

(
ρ0 V

n
M

)
− Inx

(
V
n
M∆ρ0

) )
,

W
n+1
M −Wn

M

∆t
= A

(
V
n
M ,W

n
M

)
.

(2.19)

Proof. For any p ∈ {1, . . . ,M} and n ≥ 0, we denote by
(
Vε,np , Wε,n

p , V ε,n
M

)
ε>0

the solution of (2.17)–(2.18)

computed at the grid points (xj)j∈Jnx
. Since this sequence, abusively labeled by ε, is uniformly bounded,

there exists a sub-sequence, still labeled in the same manner, which converges to
(
Vnp , W

n
p , V

n
M

)
when

ε→ 0.

On the one hand using the scheme (2.17) on Vn+1
p , we may write

ε2V
ε,n+1
p − Vε,np

∆t
= ε2 Inx

(
N(Vε,np )

)
− ε2Wε,n

p

+
[
LSε,nx

[ρ0V
ε,n
M ] − Inx

(
Vε,n+1
p LSε,nx

[ρ0]
)]
,

and pass to the limit with respect to ε, it yields that for any j ∈ Jnx ,

LSε,nx
[ρ0V

ε,n
M ](xj) − Inx

(
Vε,n+1
p LSε,nx

[ρ0]
)

(xj)

= LSε,nx
[ρ0V

ε,n
M ](xj) − Vε,n+1

p (xi)LSε,nx
[ρ0](xj) −→

ε→0
0.

Then, applying Proposition 2.2 to ρ0 ∈ Snx , we have ‖LSε,nx
[ρ0]−Ψ ρ0‖L2 → 0, when ε goes to 0, that is,

for any j ∈ Jnx ∣∣LSε,nx
[ρ0](xj)−Ψ ρ0(xj)

∣∣ −→
ε→0

0 .

Furthermore, applying again Proposition 2.2 to Inx(ρ0V
ε,n
M ) ∈ Snx , we also get∣∣LSε,nx

[ρ0V
ε,n
M ](xj)−Ψ ρ0V

n
M (xj)

∣∣ −→
ε→0

0 ,

hence for any j ∈ Jnx and p ∈ {1, . . . ,M}, the limit Vn+1
p (xj) does no depend on p and is given by

Vn+1
p (xj) =

 V
n
M (xj), if ρ0(xj) > 0,

0, else.

Now we consider W ε,n
M given by

W ε,n
M =

1

M

M∑
p=1

Wε,n
p

and apply the second relation in (2.17), it gives by linearity of A,

W ε,n+1
M −W ε,n

M

∆t
= A

 1

M

M∑
p=1

Vε,n+1
p ,W ε,n

M

 ,
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Passing to the limit ε→ 0, we get an equation on the limit W
n
M given by

W
n+1
M −Wn

M

∆t
= A

(
V
n
M ,W

n
M

)
.

On the other hand, we start from (2.18) and again apply Proposition 2.2, it yields that

V ε,n
M

(
LSε,nx

[ρ0]−Ψρ0

)
ε2

−→
ε→0

σ V
n
M ∆ρ0 ,

whereas
LSε,nx

[ρ0V
ε,n
M ]−Ψ Inx

(
ρ0V

ε,n
M

)
ε2

−→
ε→0

σ∆Inx

(
ρ0V

n
M

)
.

Gathering these latter results, we get that when ε goes to zero,

LSε,nx
[ρ0V

ε,n
M ]− Inx

(
V ε,n
M LSε,nx

[ρ0]
)

ε2
−→
ε→0

σ
[
∆Inx

(
ρ0V

n
M

)
− Inx

(
V
n
M∆ρ0

)]
.

Therefore the limit V
n+1
M is solution of

V
n+1
M − V n

M

∆t
= Inx

(
N
(
V
n
M

))
− W

n
M + σ

(
∆Inx(ρ V

n
M )− Inx

(
∆ρ0 V

n
M

))
.

Finally, since the limit point (V
n
M , W

n
M ) is uniquely determined, actually all the sequence (V ε,n

M , W ε,n
M )ε>0

converges.

Now, let us investigate the consistency error of the numerical scheme (2.17)–(2.18) as the parameter h goes

to 0, for a fixed parameter ε like Eh(ε) in (2.13). Let us note (Vε,Wε) the flow of the characteristic system

(1.5), and V ε the macroscopic potential as defined in (1.7). From the numerical scheme (2.17)–(2.18), we

write the system in the form for all n ∈ N:

F1

(
Vε,np ,Vε,n+1

p ,Wε,n
p ,Wε,n+1

p , V ε,n
M , V ε,n+1

M

)
= 0,

where F1 : R6 → R3. We define the consistency error Enh(ε) as

Enh(ε) :=
∥∥∥F1

(
Vε,np ,Vε,n+1

p ,Wε,n
p ,Wε,n+1

p , V ε,n
M , V ε,n+1

M

)∥∥∥
L∞

, (2.20)

where ‖.‖L∞ is the classical L∞ norm.

Lemma 2.4 (Consistency in the limit h → 0). Let 0 < ε < 1 be a fixed parameter and consider Ψ

satisfying (1.2), and ρ0 satisfying (1.9) and such that Supp(ρ0) ⊂ B(0, S) where S > 0. We suppose that

f ε the solution of (1.3)–(1.4) is differentiable twice with respect to time and there exists a constant CT > 0,

independent of ε, such that in [0, T ]× B(0, S),∥∥∥∥∫
R2

(
v4 + w4

)
f ε(.,dv,dw)

∥∥∥∥
L∞

+ ‖V ε‖L∞ ≤ CT .

Consider the scheme (2.17)–(2.18) and the consistency error Enh(ε) in (2.20). Then, there exists another

positive constant C > 0, independent of h and ε, such that for all n ∈ {0, . . . , [T/∆t]},

Enh(ε) ≤ C

(
1 +

1

ε2

)(
∆x3/2

ε4
+ ∆t +

1

M

)
.
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Proof. According to (1.3) and (1.5), we get that there exists a positive constant independent of ε such that

for all t ∈ [0, T ] and z = (x, v, w) ∈ Rd+2,∣∣∣∣ ∂2

∂t2
Vε(t, z)

∣∣∣∣ +

∣∣∣∣ ∂2

∂t2
Wε(t, z)

∣∣∣∣ +

∣∣∣∣ ∂2

∂t2
(ρ0 V

ε)(t,x)

∣∣∣∣ ≤ C

ε4
.

Thus, from a Taylor expansion of the solution to (1.5) and the first equation of (1.11), the consistency

error can be bounded as

Enh(ε) ≤ T1 + T2 + T3 + T4 + C
∆t

ε4
.

with the non stiff terms

T1 :=
∥∥A (Vε(tn+1),Wε(tn)

)
− A (Vε(tn),Wε(tn))

∥∥ ,
T2 := ‖N(Vε(tn)) − Inx (N(Vε(tn))) ‖ ,

T3 :=
∥∥∥ρ0(x)

M

∑M
p=1 Inx

(
N(Vε(tn+1))

)
−
∫
R2 N(Vε(tn)) f ε0 (dv′,dw′)

∥∥∥ ,
and the stiff term

T4 :=
1

ε2

∥∥ Inx

(
LSnx

[ρ0]Vε(tn+1)
)
− Ψε ? [ρ0]Vε(tn)

∥∥
+

1

ε2

∥∥Inx

(
LSnx

[ρ0 V
ε(tn)]

)
− Ψε ? [ρ0 V

ε]
∥∥

+
1

ε2

∥∥ Inx

(
LSnx

[ρ0]V ε(tn)
)
− Ψε ? [ρ0]V ε(tn)

∥∥ .
First of all, for the first term, since second and fourth order moments of f ε in v and w are uniformly

bounded with respect to ε, we directly get that

T1 ≤ C ∆t,

for some positive constant C > 0. Then, in order to treat the second term, we use the estimate from

Theorem 2.12 in [20] which yields that for all U ∈ H2(B(0, S)), there exists a constant C > 0 such that

‖U − Inx(U)‖L∞(B(0,S)) ≤ C ‖U‖H2(B(0,S)) ∆x3/2.

Since the initial data are regular enough, we get that there exists a positive constant independent of ε such

that for all t ∈ [0, T ] and z = (x, v, w) ∈ B(0, S)× R2,∣∣∇2
xVε(t, z)

∣∣ +
∣∣∇2

xWε(t, z)
∣∣ +

∣∣∇2
x(ρ0 V

ε)(t,x)
∣∣ ≤ C

ε4
.

This leads to the estimate

T2 ≤ C
∆x3/2

ε4
,
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for some positive constant C > 0. As for the third term, we decompose it as follows:

T3 ≤

∥∥∥∥∥∥ ρ0

M

M∑
p=1

|Inx

(
N(Vε(tn+1)

)
−N(Vε(tn+1))|

∥∥∥∥∥∥
+

∥∥∥∥∥∥ ρ0

M

M∑
p=1

|N(Vε(tn+1)−N(Vε(tn)|

∥∥∥∥∥∥
+

∥∥∥∥∥∥ ρ0

M

M∑
p=1

N(Vε(tn)−
∫
R2

N(Vε(tn)) f ε0 (dv′ dw′)

∥∥∥∥∥∥ .
The first term can be treated as previously with the estimate from [20]. Then, the second term is of order

∆t. Finally, the third term corresponds to an approximation of the integral term with the rectangle rule,

hence it is of order 1/M . Consequently, we get that

T3 ≤ C

(
∆x3/2

ε4
+ ∆t +

1

M

)
,

for some positive constant C. As for the final term T4, we notice that for all U ∈ C(B(0, S)),

LSnx
[U ] = Inx [Ψε ? U ] .

Therefore, we want to use the estimate form [20] here again. This gives us that there exists a positive

constant C such that

T4 ≤
C

ε2

(
∆x3/2

ε4
+ ∆t +

1

M

)
.

Consequently, gathering the previous results, we get that there exists a positive constant C independent

of h and ε such that if ‖h‖ is small enough,

Enh(ε) ≤ C

(
1 +

1

ε2

)(
∆x3/2

ε4
+ ∆t +

1

M

)
.

The lack of uniform bounds, with respect to ε and h, on the numerical solution does not allow us to complete

the rigorous analysis of the asymptotic preserving scheme (2.17)–(2.18). Furthermore, Proposition 2.3

only gives a convergence result without any error estimate as Ẽh(ε) in (2.14). However, Proposition 2.3

indicates that in the limit ε → 0, the numerical scheme (2.17)–(2.18) becomes a first order explicit time

approximation with respect to ∆t of the reaction-diffusion system (1.12), hence it constitutes together with

Lemma 2.4 a first direction to provide a proof of the asymptotic preserving property (2.16).

A second order implicit-explicit Runge-Kutta scheme

Now let us adapt the previous strategy to a second order implicit-explicit Runge-Kutta scheme for the

system (2.10). We propose a combination of Heun’s method for the explicit part, and an A-stable second
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order singly diagonally implicit Runge-Kutta (SDIRK) method for the implicit part. According to the

classification from [1], we call it H-SDIRK2 (2,2,2).

For all n ∈ N and p ∈ {1 . . .M}, we apply a first stage,

V(1)
p = Vnp +

∆t

2

[
Inx

(
N(Vnp )

)
+

1

ε2

[
LSnx

[ρ0V
n
M ] − Inx

(
V(1)
p LSnx

[ρ0]
)]
− Wn

p

]
,

W(1)
p =Wn

p + ∆t
2 A

(
V(1)
p ,Wn

p

)
,

(2.21)

Hence we compute the additional variable V
(1)
M ∈ Snx solution of the following scheme

V
(1)
M = V n

M + (2.22)

∆t

2

 1

M

M∑
p=1

Inx

(
N(V(1)

p )
)

+
1

ε2

[
LSnx

[ρ0V
n
M ] − Inx

(
V n
M LSnx

[ρ0]
)]
− Wn

M

 ,
with

Wn
M :=

1

M

M∑
p=1

Wn
p .

Then, we set 
V̂(1)
p = 2 V(1)

p − Vnp ,

Ŵ(1)
p = 2W(1)

p − Wn
p ,

V̂
(1)
M = 2V

(1)
M − V n

M

and compute the second stage with a semi-implicit step on (V(2)
p ,W(2)

p ),

V(2)
p = Vnp +

∆t

2

[
Inx

(
N(V̂(1)

p )
)

+
1

ε2

[
LSnx

[ρ0V̂
(1)
M ] − Inx

(
V(2)
p LSnx

[ρ0]
)]
− Ŵ(1)

p

]
,

W(2)
p =Wn

p + ∆t
2 A

(
V(2)
p , Ŵ(1)

p

)
,

(2.23)

Moreover, V
(2)
M ∈ Snx is given by

V
(2)
M = V n

M + (2.24)

∆t

2

 1

M

M∑
p=1

Inx

(
N(V(2)

p )
)

+
1

ε2

[
LSnx

[ρ0V̂
(1)
M ] − Inx

(
V̂

(1)
M LSnx

[ρ0]
)]
− Ŵ

(1)
M

 ,
where Ŵ

(1)
M = 2W

(1)
M −Wn

M and

W
(1)
M :=

1

M

M∑
p=1

W(1)
p .
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Finally, we get the numerical solution at time tn+1 through

Vn+1
p = V(1)

p + V(2)
p − Vnp ,

Wn+1
p = W(1)

p + W(2)
p − Wn

p ,

V n+1
M = V

(1)
M + V

(2)
M − V n

M .

(2.25)

Now, we prove an analogous result to Proposition 2.3 for the numerical scheme (2.21)–(2.25) as the param-

eter ε goes to 0 with a fixed numerical parameter h ∈ R3 given by h = (∆t,∆x, 1/M), where ∆x = 2π/nx,

∆t > 0 and M ∈ N∗.

Proposition 2.5 (Consistency when ε → 0). Let h to be fixed and consider a connectivity kernel Ψ :

R+ → R+ satisfying (1.2), (2.7) and a neuron density ρ0 ∈ Snx satisfying (1.9) at each grid point xj,

j ∈ Jnx. For all ε > 0, p ∈ {1, . . . ,M} and n ∈ N, let us assume that the triplet (Vε,np , Wε,n
p , V ε,n

M ) given

by (2.21)–(2.25) is uniformly bounded with respect to ε > 0. Then we define

W ε,n
M =

1

M

M∑
p=1

Wε,n
p

and for all j ∈ Jnx, (V ε,n
M ,W ε,n

M )(xj) converges to (V
n
M , W

n
M )(xj), as ε goes to 0, solution of

V
(1)
M = V

n
M +

∆t

2

[
Inx

(
N
(
V
n
M

))
−Wn

M + σ
(
∆Inx

(
ρ0 V

n
M

)
− Inx

(
V
n
M∆ρ0

))]
,

W
(1)
M = W

n
M +

∆t

2
A
(
V
n
M ,W

n
M

)
,

(2.26)

where the second stage is given by

V
(2)
M = V

n
M +

∆t

2

[
N
(
V̂

(1)
M

)
− Ŵ (1)

M + σ
(

∆Inx

(
ρ0V̂

(1)
M

)
− Inx

(
V̂

(1)
M ∆ρ0

))]
W

(2)
M = Wn

M +
∆t

2
A
(
V̂

(1)
M , Ŵ

(1)
M

)
,

(2.27)

where V̂
(1)
M = 2V

(1)
M − V

n
M , Ŵ

(1)
M = 2W

(1)
M −W

n
M . The next time step is given by

V n+1
M = V

(1)
M + V

(2)
M − V n

M ,

Wn+1
M = W

(1)
M + W

(2)
M − Wn

M .

(2.28)

Proof. We fix a time step ∆t > 0, a set of equidistant points (xj)j∈Jnx
⊂ T and p ∈ {1, . . . ,M}. Then we

denote by
(
Vε,np , Wε,n

p , V ε,n
M

)
ε>0

the solution of (2.21)–(2.25). Up to a sub-sequence,
(
Vε,np , Wε,n

p , V ε,n
M

)
ε>0
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converges to
(
Vnp , W

n
p , V

n
M

)
when ε→ 0, hence we proceed exactly as in Proposition 2.3 and set

W
ε,(1)
M =

1

M

M∑
p=1

Wε,(1)
p −→

ε→0
W

(1)
M .

Thus, we prove that
(
V

(1)
M ,W

(1)
M

)
corresponds to the solution of the first stage (2.26) and we have

V
(1)
M = 2V

(1)
M − V

n
M ,

W
(1)
M = 2W

(1)
M − W

n
M .

Furthermore, we treat the second stage in the same manner for any j ∈ Jnx and p ∈ {1, . . . ,M}, the limit

V(2)
p (xj) does not depend on p and is given by

V(2)
p (xj) =

 V̂
(1)
M (xj), if ρ0(xj) > 0,

0, else.

Passing to the limit as ε → 0 in (2.24) and in the second equation in (2.23), it yields that (V
(2)
M ,W

(2)
M )

satisfies (2.27) and finally (2.28).

Let us notice that the present strategy can be applied to a large class of second order schemes and can

also be extended to a third order semi-implicit scheme. We refer to [1] for the detailed description of the

schemes.

Now, let us investigate the consistency with respect to the numerical parameter h.

Lemma 2.6 (Consistency h → 0). Let 0 < ε < 1 be a fixed parameter and consider Ψ satisfying (1.2),

and ρ0 satisfying (1.9) and such that Supp(ρ0) ⊂ B(0, S) where S > 0. We suppose that f ε the solution of

(1.3)–(1.4) is differentiable twice with respect to time and there exists a constant CT > 0, independent of

ε, such that in [0, T ]× B(0, S),∥∥∥∥∫
R2

(
v4 + w4

)
f ε(.,dv,dw)

∥∥∥∥
L∞

+ ‖V ε‖L∞ ≤ CT .

Consider the scheme (2.21)–(2.25) and the consistency error Enh in (2.20). Then, there exists another

positive constant C > 0, independent of h and ε, such that for all n ∈ {0, . . . , [T/∆t]},

Enh(ε) ≤ C

(
1 +

1

ε2

)(
∆x3/2

ε4
+ ∆t2 +

1

M

)
.

Proof. The proof uses the same tools as in the proof of Lemma 2.4.

As in the previous section, Proposition 2.5 indicates that in the limit ε→ 0, the numerical scheme (2.21)–

(2.25) becomes a second order explicit time approximation with respect to ∆t of the reaction-diffusion

system (1.12). Applying Lemma 2.6, we may conjecture that the asymptotic preserving property (2.16) is

satisfied.

In the following section, we provide some numerical evidences on this issue.
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3 Numerical simulations

In this section, we provide examples of numerical computations to validate and compare the different time

discretization schemes (2.17)–(2.18) and (2.21)–(2.25) introduced in the previous section.

First of all, we focus on the order of accuracy when ε is fixed and the numerical parameter h goes to zero.

Then we study the behaviour of the numerical solutions for a fixed h and in the limit ε→ 0, to show the

convergence towards the solutions of the approximations (2.19) and (2.26)–(2.28) of the reaction-diffusion

system (1.12).

Then, we display some simulations of the behaviour of a solution of (1.3)–(1.4) with a heterogeneous neuron

density, and finally, we show some two-dimensional dynamics.

Throughout this section, except for the first subsection, we fix the parameter of the nonlinearity N to

θ = 0.1 and the other constants to τ = 0.005 and γ = 5, expect in the first subsection. This framework

corresponds to the “excitable” regime of the well-known FHN reaction-diffusion system (3.5). Therefore,

the system only admits one steady state which is the stable fixed point 0, and according to [7], τ is small

enough so that the solution of (3.5) exhibits slow/fast dynamics like traveling pulses.

Moreover, as for the connectivity kernel, we use the following truncated gaussian function

Ψ(‖z‖) =
1

(2π σ0)d/2
exp

(
−‖z‖

2

2σ0

)
, (3.1)

with σ0 = 0.005 such that we have in (1.2),

Ψ = 1 and σ =
σ0

2
.

3.1 Order of accuracy in the numerical parameters

In this subsection, we aim to verify the order of accuracy of our numerical methods proposed in Section

2 with respect to the numerical parameters h = (∆t,∆x, 1/M), when it goes to zero. We consider a

simplified version of the nonlocal transport equation (1.3) with N(v) = −αv and τ = 0, that is, for t > 0

and x ∈ R 
∂tf

ε + ∂v (f ε [−α v − w + Kε[f ε]]) = 0,

f ε|t=0(x, v, w) = δV0(x)(v)⊗ δ0(w),

(3.2)

with V0 given by

V0(x) = exp
(
−100 |x|2

)
, x ∈ R.

Consequently, in this configuration, we have ρ0 ≡ 1, and the solution of (1.3)–(1.4) is given by f ε =

δV ε(v) ⊗ δ0(w) where V ε is the unique solution of the following reaction-diffusion equation for t > 0 and

x ∈ R, 
∂tV

ε − 1

ε2

(
Ψε ? V

ε − ΨV ε
)

= −αV ε,

V ε(0,x) = V0(x), x ∈ R.
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‖h‖ L2 error for (2.17)–(2.18) Order

1.e-01 5.48e-04 XXX

5.e-02 2.73e-04 1.63

2.e-02 1.09e-04 1.00

1.e-02 5.47e-05 1.00

5.e-03 2.73e-05 1.00

2.e-03 1.09e-05 1.00

1.e-03 5.47e-06 1.00

5.e-04 2.73e-06 1.00

Table 1: Order of accuracy in ‖h‖ → 0: evaluation of the numerical error at fixed time T = 10 of the numerical

schemes (2.17)–(2.18).

‖h‖ L2 error for (2.21)–(2.25) Order

1.e-01 1.23e-07 XXX

5.e-02 3.56e-08 2.69

2.e-02 8.35e-09 2.02

1.e-02 2.07e-08 2.01

5.e-03 5.01e-09 2.01

2.e-03 1.23e-09 2.01

1.e-03 2.95e-10 2.01

5.e-04 2.95e-10 2.00

Table 2: Order of accuracy in ‖h‖ → 0: evaluation of the numerical error at fixed time T = 10 of the numerical

schemes (2.21)–(2.25).

Thus, the parameter α > 0 determines the rate of convergence of V ε towards the stable state 0. Since the

term N(V ε) is now linear, the macroscopic equation on V ε is also linear (even if the equation on f ε is not)

and we can exhibit an explicit solution using a Fourier transform in space. It yields that,

V̂ ε(t, ξ) = V̂0(ξ) exp

([
−α +

1

ε2

(
Ψ̂ε(ξ)−Ψ

)]
t

)
.

where we choose the parameter α = 0.001, and the scaling parameter ε = 1. The domain in space is taken

to be (−1, 1). We compute an approximation of the error on the macroscopic quantity V ε at each time

step

En = ‖V ε,n
M − V ε(tn)‖L2 , n = 0, . . . NT ,

with NT = [T/∆t]. In Table 1 and 2, we report the numerical error for different values of h at fixed

time T = 10 for the numerical schemes (2.17)–(2.18) (first table) and (2.21)–(2.25) (second table). A

linear regression yields that these numerical methods seems to be respectively first and second order in

h. Therefore, with this parametrization, the order of accuracy corresponds to the one given by the time

discretization, whereas the error due to the spectral discretization is negligible.
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3.2 Order of accuracy in ε

We again consider the transport equation (1.3)–(1.4), with the initial data

f0(x, v, w) = δV0(x)(v) ⊗ δW0(x)(w), (3.3)

with

V0 = χ[−1,1] and W0 ≡ 0.

In this configuration, we get ρ0 ≡ 1 and the solution of the transport equation (1.3) is again a Dirac mass

in (v, w) centered in (V ε,W ε), solution of the nonlocal reaction-diffusion system for t > 0 and x ∈ Rd,
∂tV

ε − 1

ε2

(
Ψε ? V

ε − ΨV ε
)

= N(V ε) − W ε,

∂tW
ε = A (V ε,W ε) .

(3.4)

The purpose is now to study the asymptotic when the scaling parameter ε goes to 0. It is expected that

the macroscopic quantities (V ε,W ε) converge towards the solution of the reaction-diffusion FHN system

(1.12), which reads as follows when ρ0 ≡ 1, for t > 0 and x ∈ R,
∂tV − σ ∂2

xV = N(V ) − W,

∂tW = τ (V − γ W ) .

(3.5)

To investigate this asymptotic, we compute an approximation of the relative entropy given at any time

t > 0 as

Dε(t) :=

[∫
R
ρ0(x)

[
|V ε(t,x)− V (t,x)|2 + |W ε(t,x)−W (t,x)|2

]
dx

]1/2

, (3.6)

as ε goes to 0.

Here again, we approach Dε(t) with a rectangle rule. In [9], it is proven that for any t > 0, Dε(t) tends

to 0 as ε goes to 0 with a rate of convergence larger than 2/7. However, when ρ0 ≡ 1 and for compactly

supported f ε, the rate of convergence is formally equal to 2.

Furthermore, since the solution of the transport equation is a Dirac mass in (v, w) ∈ R2, we take M = 1.

Then, we choose ∆t = 0.01 and nx = 512 for the time and space discretization.

In Figure 3.1, we show the spatio-temporal profile of the mean membrane potential V ε computed from f ε

the solution of the transport equation (1.3) for ε = 3.25 (panel (a)), ε = 3 (panel (b)) and ε = 1 (panel

(c)). It shows that depending on the value of ε, the solution V ε presents dramatically different dynamics.

If ε is too large compared to the width of the considered interval, as in the case (a), two symmetric waves

start to propagate, but quickly disappear, and then V ε converges to 0 everywhere as time goes on. On the

contrary, for smaller values of ε as in the cases (b) and (c), that is ε ≤ 3, the function V ε has the shape

of two symmetric counter-propagating traveling pulses. This is typically the kind of slow/fast dynamics

expected for the solution of (3.5) according to [7] with this set of parameters. Moreover, it seems that the

speed of propagation of these waves decreases as ε grows, since in the case (b), the speed of propagation

of these traveling pulses is slightly less than in the case (c).
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ε Dε(t) with (2.17)–(2.18) Order

5 1.21

2 1.73 XX

1 9.16e-01 XX

5.e-01 2.60e-01 1.82

2.e-01 4.17e-02 1.92

1.e-01 1.04e-02 1.95

5.e-02 2.60e-03 1.97

2.e-02 4.17e-04 1.98

1.e-02 1.04e-04 1.98

5.e-03 2.62e-05 1.99

2.e-03 4.24e-06 1.99

1.e-03 8.65e-07 2.00

Table 3: Order of accuracy in ε → 0: approximation of Dε(t) at fixed time t = 250 with the first order scheme

(2.17)–(2.18).

ε Dε(t) with (2.21)–(2.25) Order

5 1.21

2 1.73 XX

1 9.13e-01 XX

5.e-01 2.59e-01 1.83

2.e-02 4.15e-02 1.93

1.e-01 1.04e-02 1.95

5.e-02 2.59e-03 1.97

2.e-02 4.15e-04 1.98

1.e-02 1.03e-04 1.98

5.e-03 2.59e-04 1.99

2.e-03 6.94e-05 1.99

1.e-03 1.74e-05 1.99

Table 4: Order of accuracy in ε→ 0: approximation of Dε(t) at fixed time t = 250 with the second order scheme

(2.21)–(2.25).
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(a) ε = 3.25 (b) ε = 3 (c) ε = 1

Figure 3.1: Order of accuracy in ε → 0: spatio-temporal profile of V ε(t,x) for (a) ε = 3.25, (b) ε = 3 and (c)

ε = 1.

Then, we display in Table 3 and 4, the numerical approximations of Dε(t) at fixed time t = 250 for several

values of ε for the first order (left table) and the second order (right table) numerical schemes. Since the

behavior of V ε is too different from its limit for smaller values of ε, we display linear regressions only from

the line corresponding to ε = 1. These linear regressions yield that Dε(t) seems to be approximately of

order two in ε for both numerical schemes, which corresponds to the one obtained by formal computations

for the continuous problem [9].

Notice that the second order numerical scheme (2.21)–(2.25) represents a negligible improvement for the

speed of convergence of Dε(t) as ε goes to 0. A key issue in numerical analysis is to perform a similar study

on the discrete solution as the one we performed on the continuous problem [9] in order to establish the

asymptotic preserving property of the scheme.

3.3 Heterogeneous neuron density

In the spirit of [3, 4], the study of propagating waves in neural networks with spatial heterogeneities seems

to be a fruitful topic. This subsection is therefore devoted to the illustration of the behaviour of the

solution of the numerical scheme (2.17)–(2.18) with a non constant neuron density function ρ0. We choose

the initial datum

f0(x, v, w) = ρ0(x)χA

(
v − V0(x)

10

)
χA

(
w −W0(x)

100

)
,

with A = (−1/2, 1/2) where the density ρ0 is a smooth approximation of 1−χB(0,6) and (V0,W0) is chosen

as

V0(x) =

{
1 if x1 ∈ (−14,−13),

0 else,
W0(x) =

{
0.1 if x2 ≤ −14,

0 else.
(3.7)

The domain in space is taken to be (−15, 15)2, discretized using nx = 512 points in each spatial coordinate

and M = 50 particles per cell. It is expected that a wave will propagate initially from the left hand side in

the homogeneous density of neurons. Then in the center of the domain, the density becomes inhomogeneous,

which will perturb the wave propagation front. In Figure 3.2, we propose different scenario depending on

the scaling parameter ε > 0. We display the profile of the solution V ε at time t = 300, 500 and 700 for

ε = 5, 2 and 10−2. Clearly, the amplitude of the scaling parameter ε > 0 has an influence on the shape of

the pulse but also on the speed of propagation.
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First of all, the scrolling wave does not propagate through the ball B(0, 6), since the neuron density is too

weak. Then, we can observe that as ε grows small, the speed of propagation and the width of the scroll

wave increase. Thus, the heterogeneity does not have exactly the same effect. For ε = 5 and ε = 2 for

example, the width of the gap in the neuron density is too large compared to the width of the traveling

pulse. Therefore, the scroll wave breaks at its middle, and then recomposes once the heterogeneity is

passed. Then, for smaller values of ε, as ε = 0.01, the traveling pulse starts to wrap the area where it

cannot propagate before breaking and recomposing.

(a) t = 300 (b) t = 500 (c) t = 700

Figure 3.2: Heterogeneous neuron density : plot of the solution V ε at different time t = 300, 500 and 700 for

ε = 5 (top), ε = 2 (middle) and ε = 10−2 (bottom).

3.4 Rotating spiral waves

A spiral wave in the broadest sense is a rotating wave traveling outward from a center. Such spiral waves

have been observed in many biological systems [33], [27], such as mammalian cerebral cortex [21]. Although

circular waves were predicted from early models of cortical activity [2], true spiral wave formation has been

already obtained in numerical simulations of reaction-diffusion systems such as the Wilson–Cowan system

[5, 32].
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In this section, we present numerical evidence for stable spiral waves considering the transport equation

(1.3)–(1.4). We choose the initial datum [5]

f0(x, v, w) = ρ0(x)χA

(
v − V0(x)

10

)
χA

(
w −W0(x)

100

)
,

with A = (−1/2, 1/2) where the density ρ0 is a smooth approximation of the characteristic function on

the disk centered in 0 with radius 12, whereas (V0,W0) is chosen as

V0(x) =

{
1 if x1 ≤ −6 and x2 ∈ (0, 3),

0 else,
W0(x) =

{
0.1 if x2 ≥ 3,

0 else.
(3.8)

Here the trivial state (V,W ) = (0, 0) is perturbed by setting the lower-left quarter of the domain to V = 1

and the upper half part to W = 0.1, which allows the initial condition to curve and rotate clockwise

generating the spiral pattern. The domain in space is taken to be (−15, 15)2, discretized using nx = 512

points in each spatial coordinate and M = 50 particles per cell.

(a) ε = 6 (c) ε = 5

(c) ε = 4 (d) ε = 2

Figure 3.3: Rotating spiral waves : plot of the solution V ε at time t = 800 for different values of ε > 0.
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We first perform several computations changing the value of the scaling parameter and report in Figure

3.3, the profile of the numerical solution V ε obtained using the second order scheme (2.21)–(2.23) at the

final time of the simulation t = 800. On the one hand, when ε ≥ 6, we observe that the initial wave

first propagates into the domain, then it is damped and the solution converges to the stable steady state

(V,W ) = (0, 0) when times goes on (see Figure 3.3 (a) at time t = 800). On the other hand, when ε

becomes smaller ε ∈ (4, 6), the solution evolves in a different manner. Indeed, the initial wave propagates

into the physical domain where ρ0 > 0, and a spiral wave appears at time t ' 20, where a traveling pulse

emerges and propagates from the bottom left quarter of the domain, towards the bottom right quarter,

which creates a rotating spiral wave at larger time. For these values of ε, the shape of the solution is very

sensitive to ε (see for instance (b) and (c) in Figure 3.3). Finally, when ε ≤ 4, a spiral wave appears and

it seems that the solution is not anymore sensitive to ε.

(a) t = 0 (b) t = 100 (c) t = 200

(d) t = 300 (e) t = 400 (f) t = 600

Figure 3.4: Rotating spiral waves : plot of the solution V ε for ε = 0.5 at different time t ∈ [0, 600].

In Figure 3.4, we report the numerical results for ε = 0.5 at different time t ∈ (0, 600). It illustrates

how the spiral wave is generated from the initial data: a traveling pulse appears and begins to rotate

clockwise, while the waves propagate up to the edge of the region where ρ0 > 0. Moreover, it seems that

once the spiral wave has appeared, its speed of rotation remains constant (see in (e) and (f) in Figure 3.4).

Furthermore, in Figure 3.5, we report a zoom in the region where the traveling pulse appears. We observe

that the center of the spiral moves and oscillates around a point. Finally in Figure 3.6, we propose the time

evolution of the solution V ε at different points x = (−6, 3), x = (−8, 4) and x = (−8, 2). Close to the point

x = (−6, 3), around which the spiral oscillates, time oscillations appear with an amplitude between −0.1

and 0.6 whereas in the neighboring points, different oscillations appear with a larger amplitude. Observe

that at x = (−8, 4) and x = (−8, 2), the time oscillations look the same but are shifted.
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(a) t = 0 (b) t = 200

(c) t = 400 (d) t = 600

Figure 3.5: Rotating spiral waves : zoom on the solution V ε for ε = 0.5 at different time t ∈ [0, 400] around the

point where the traveling pulse emerges.

(a) x = (−6, 3) (b) x = (−8, 4) (c) x = (−8, 2)

Figure 3.6: Rotating spiral waves : time evolution of the solution V ε for ε = 0.5 at different points around the

location where the traveling pulse emerges.
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4 Conclusion

In the present paper we have proposed a class of semi-implicit time discretization techniques for particle

simulations to (1.3)–(1.4) coupled with a spectral collocation method for the space discretization. The

main feature of our approach is to guarantee the accuracy and stability on slow scale variables even when

the amplitude of local interactions becomes large, thus allowing a capture of the correct behavior with a

large time step with respect to ε > 0. Even on large time simulations the obtained numerical schemes

also provide an acceptable accuracy on the membrane potential when ε � 1, whereas fast scales are

automatically filtered when the time step is large compared to ε2.

As a theoretical validation we have proved that under some stability assumptions on numerical approxi-

mations, the slow part of the approximation converges when ε→ 0 to the solution of a limiting scheme for

the asymptotic evolution, that preserves the initial order of accuracy. Yet a full proof of uniform accuracy

remains to be carried out in the frame of the continuous case [9]. The main challenge is to rigorously study

the stability of the numerical solution for an appropriate norm and to find a bound uniformly with respect

to ε and h.
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