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Abstract—Light detection and ranging (Lidar) single-photon
devices capture range and intensity information from a three-
dimensional (3-D) scene. This modality enables long range 3-D
reconstruction with high range precision and low laser power.
A multispectral single-photon Lidar system provides additional
spectral diversity, allowing the discrimination of different mate-
rials. However, the main drawback of such systems can be the
long acquisition time needed to collect enough photons in each
spectral band. In this work, we tackle this problem in two ways:
first, we propose a Bayesian 3-D reconstruction algorithm that is
able to find multiple surfaces per pixel, using few photons, i.e.,
shorter acquisitions. In contrast to previous algorithms, the novel
method processes jointly all the spectral bands, obtaining better
reconstructions using less photon detections. The proposed model
promotes spatial correlation between neighbouring points within a
given surface using spatial point processes. Secondly, we account for
different spatial and spectral subsampling schemes, which reduce
the total number of measurements, without significant degradation
of the reconstruction performance. In this way, the total acquisition
time, memory requirements and computational time can be signif-
icantly reduced. The experiments performed using both synthetic
and real single-photon Lidar data demonstrate the advantages of
tailored sampling schemes over random alternatives. Furthermore,
the proposed algorithm yields better estimates than other exist-
ing methods for multi-surface reconstruction using multispectral
Lidar data.

Index Terms—Bayesian inference, 3-D reconstruction, Markov
chain Monte Carlo, Lidar, multispectral imaging, low-photon
imaging, poisson noise.
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I. INTRODUCTION

S INGLE-PHOTON Lidar devices provide accurate range
information by constructing, for each pixel, a histogram

of time delays between emitted light pulses and photon detec-
tions. Using time correlated single-photon counting (TCSPC)
technology, Lidar systems are able to provide accurate depth
information (of the order of centimetres) over very long ranges,
while allowing the use of laser sources of low power [1]. The
acquired range information (3D structure) has many important
applications, such as self-driving cars [2], the study of structures
behind dense forests [3] and environmental monitoring [4].
Multispectral Lidar (MSL) systems gather measurements at
many spectral bands, making it possible to distinguish distinct
materials, as illustrated in Fig. 1. For example, spectral diver-
sity was used in [5] to differentiate leaves from trunks and
in [6] to estimate plant area indices and abundance profiles.
The MSL modality consists of constructing one histogram of
time delays per wavelength, as shown in Fig. 2. The spectral
diversity can be obtained either using a supercontinuum laser
source [6], [7] or multiple lasers [8]. The detector generally
consists of a spatial form of wavelength routing to demultiplex
the channels [6]–[8] or wavelength-to-time codification [9].
Recovering spatial and spectral information from MSL data
is a challenging task, specially in scenes with strong ambient
illumination (i.e., multiple spurious detections) or when the
acquisition time is very low (i.e., very few photon detections
per histogram). Moreover, in a general setting, it is possible to
find more than one object per pixel. This phenomenon occurs in
scenes where the light goes through semi-transparent materials
(e.g., glass), or when the laser footprint is such that multiple
surfaces appear in the field of view. Thus, several signal process-
ing algorithms have been proposed to address these challenges:
while many algorithms are available for single-wavelength Li-
dar, either assuming a single surface per pixel [10]–[12] or
multiple surfaces per pixel [13]–[15], to the best of our knowl-
edge, only the single-surface-per-pixel case was studied in the
multispectral case [7], [16], [17]. This single-depth assumption
greatly simplifies the reconstruction problem, as it significantly
reduces memory requirements and overall complexity. Datasets
containing dozens of wavelengths can be prohibitively large
for practical 3D reconstruction algorithms, both in terms of
memory and computing requirements. For example, a typical
MSL hypercube with 32 wavelengths has more than 109 data
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Fig. 1. An airborne MSL system can capture multiple objects per pixel and
discriminate their materials. The multidepth capability enables the recovery of
information from photons reflected off different branches of the trees, ground,
pedestrians or even from the interior of a car (i.e., photons which propagated
across the windshield) at an intra-pixel level. Moreover, the multispectral infor-
mation allows us to discriminate different properties of the materials of each
3-D object (e.g., the leaves and trunk of a tree).

voxels. To alleviate this problem, some compressive acquisi-
tion strategies have been proposed. While TCSPC technology
hinders compressive techniques along the depth axis,1 reducing
the number of measurements can be achieved by integrating
multiple wavelengths in a single histogram [9] or measuring
fewer histograms (i.e., subsampling) [16]. The wavelength-to-
time approach proposed by Ren et al. [9] is not well-suited in
the presence of multiple surfaces per pixel. Indeed, this method
compresses L histograms (associated with L wavelengths) into
a single waveform by shifting in time the photon detections
according to each measured wavelength. While significantly
reducing the data size, the resulting likelihood becomes highly
multimodal and extremely difficult to handle in the presence of
multiple surfaces. Different random subsampling schemes were
studied in [16] without obtaining any significant differences in
terms of reconstruction quality in the low-photon count regime.

In this work, we investigate a new pseudo-random subsam-
pling scheme for low-photon count MSL data based on ideas
from coded aperture design [19], [20]. By choosing the pixels
measured for each wavelength in a more principled way, we
achieve better results than the completely random schemes of
Altmann et al. [16]. Furthermore, the proposed subsampling
strategy can be easily implemented in many Lidar systems,
reducing the total number of measurements, i.e., the time to
acquire an MSL frame. Raster-scan systems using a laser super-
continuum source [6], [7] can be easily modified to measure
only a subset of pixels per wavelength. More interestingly,
single-wavelength array technology [21] can be combined with
coded apertures [19], which acquire different wavelengths at
each pixel.

Furthermore, we propose a new method to perform 3D re-
construction from subsampled MSL data, which is capable of
finding multiple surfaces per pixel. The novel method draws
ideas from a recently published algorithm named ManiPoP [15],
provided state-of-the-art reconstructions in the multiple surface,
single-wavelength case. However, due to the significantly larger
dimensionality of multispectral data, we propose to modify the

1A coarse time-of-flight gating is applied to the photon detections, hindering
measurements of an arbitrary subset of histogram bins or linear combination of
them. However, other alternatives such as gated cameras [18] can provide such
measurements.

Bayesian model and estimation strategy of ManiPoP. Adopting
a Bayesian framework similar to [15], we assign a spatial point
process prior to promote spatial correlation and a Gaussian
Markov random field prior to regularize the spectral reflectivity
within surfaces/objects. Inference using the resulting poste-
rior distribution is performed using a reversible jump Markov
chain Monte Carlo algorithm (RJ-MCMC), coupled with a
multiresolution approach that improves the convergence speed
and reduces the total computing time of the algorithm. We
introduce new RJ-MCMC proposals, which take into account
the additional spectral dimension and improve the acceptance
ratio, compared to the ones proposed in [15]. Moreover, we
propose an empirical Bayes approach to build the prior distri-
bution associated with the background detections, which further
improves the convergence of the RJ-MCMC sampler. Contrary
to multi-depth methods that require storage of dense volumetric
estimates (e.g., [13], [14] in the single-wavelength case and [22]
in the multi-temporal case), the memory requirements of the
proposed method are minimal (just the 3D points and spectral
signatures are stored in memory), enabling the acquisition and
processing of very large datasets (dozens of wavelengths and
hundreds of pixels).

The main contributions of this work are
� a new Bayesian 3D reconstruction algorithm for subsam-

pled MSL data with multiple surfaces per pixel
� the analysis of an appropriate subsampling scheme based

on coded aperture design, which provides better results
than completely random alternatives.

The new algorithm is referred to as MuSaPoP, as it mod-
els MultiSpectrAl Lidar signals using POint Processes. The
remainder of the paper is organized as follows. Section II recalls
the classical observation model for single-photon MSL data.
Sections III and IV present the Bayesian 3D reconstruction
algorithm and the associated RJ-MCMC sampler. Section V
details the principled subsampling strategy. Experiments per-
formed with synthetic and real Lidar data are introduced and
discussed in Section VI. Conclusions and future work are finally
reported in Section VII.

II. SINGLE-PHOTON MULTISPECTRAL LIDAR

A full multispectral Lidar data hypercube Z ∈ ZNr×Nc×L×T
+

consists of discrete photon count measurements, where Z+ =
{0, 1, . . . } is the set of positive integers, Nr and Nc are the
numbers of vertical and horizontal pixels respectively, L is the
number of acquired wavelengths and T is the histogram length
(i.e., the number of time bins). The 3D reconstruction algorithm
estimates a point cloud, referred to asΦ, from the data hypercube
Z. The 3D point cloud is represented by an unordered set of
points, that is

Φ = {(cn, rn), n = 1, . . . , NΦ} (1)

where NΦ is the total number of points, and cn = [xn, yn,
tn]

T ∈ [1, Nr]× [1, Nc]× [1, T ] ⊂ Z3
+ and rn = [rn,1, . . . ,

rn,L]
T ∈ RL

+ are the coordinate vector and the spectral response
of the nth point, respectively. The observed photon count at
pixel (i, j), bin t and spectral band � follows a Poisson distribu-
tion [16], whose intensity is a mixture of the background level,
denoted by bi,j,�, and the responses of the surfaces present in
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Fig. 2. Example of an MSL system with three different wavelengths (red, green and blue). On the right, a schematic shows the working principles of a single-photon
multispectral Lidar device. The red, green and blue arrows illustrate the laser pulses sent by the laser sources and reflected by the target onto the single-photon
detectors. The white arrow depicts the background photons emitted by an ambient illumination source that reach the detectors at random times. The figure on the
left shows the collected histograms for a given pixel: the discrete measurements are depicted in red, green and blue, while the underlying Poisson intensity (i.e.,
the parameters to estimate from the data) is shown in black.

that pixel, i.e.,

zi,j,�,t|Φ, bi,j,� ∼ P
⎛
⎝gi,j,�

⎛
⎝∑
Ni,j

rn,�h�(t− tn) + bi,j,�

⎞
⎠
⎞
⎠

where P(·) denotes the Poisson distribution, gi,j,� ∈ {0, 1} is
a known binary variable that indicates whether wavelength �
at pixel (i, j) has been acquired/observed or not, Ni,j = {n :
(xn, yn) = (i, j)} is the set of points corresponding to pixel
(i, j) and wavelength �, and h�(t) is the impulse response
of the Lidar device at wavelength �, which can be measured
using a spectralon panel during a calibration step. Note that to
lighten notations, we assume that the impulse responses are only
wavelength-dependent but the algorithm can be easily adapted
when the responses vary among pixels. Assuming mutual inde-
pendence between noise realizations in different bins, pixels and
spectral bands [1], the likelihood of the proposed model can be
written as

p(Z|Φ,B) =

Nc∏
i=1

Nr∏
j=1

L∏
�=1

T∏
t=1

p(zi,j,�,t|Φ, bi,j,�). (2)

For clarity in the notation, we will also denote the set of
point coordinates as Φc = {cn, n = 1, . . . , NΦ} and the set
of spectral responses as Φr = {rn, n = 1, . . . , NΦ}. The set
of all background levels is denoted by B = [b1, . . . , bL] ∈
RNr×Nc×L

+ , which is the concatenation of L images b�, one
for each wavelength. The cube of binary measurements is desig-
nated by G ∈ {0, 1}Nr×Nc×L, where [G]i,j,� = gi,j,�. Note that
the model used in the ManiPoP algorithm [15] can be obtained
from (2) by setting all the binary variables to 1, and considering
only one band, i.e., L = 1.

III. MULTIPLE-RETURN MULTIPLE-WAVELENGTH

3-D RECONSTRUCTION

Recovering the position of the objects cn, their spectral sig-
natures rn and background levels B from the subsampled MSL
data Z is an ill-posed inverse problem, as many solutions can
explain the observed photon counts. Thus, prior regularization
is necessary to promote reconstructions in a set of feasible 3D
point clouds. In this work, we adopt a Bayesian framework,
which allows us to include prior knowledge about the scene
through tailored prior distributions assigned to the parameters
of interest.

A. Prior Distributions

The proposed model considers prior regularization for the
point positions and reflectivity. As explained in Section III-A3,
an empirical Bayes prior [23] is assigned to the background
levels.

1) Spatial Configuration: We adopt the spatial prior distri-
bution of 3D points developed in the ManiPoP algorithm. This
distribution is designed to promote spatial correlation between
points within one surface and repulsion between points belong-
ing to different surfaces. While only a brief summary is included
below, we refer the reader to [15] for a detailed discussion about
this prior model. The spatial point process prior for the position
of the points is modelled by a density defined with respect to a
Poisson point process reference measure [24, Chapter 9], i.e.,

f(Φc) ∝ f1(Φc)f2(Φc|γa, λa)

where f1(Φc) and f2(Φc|γa, λa) are the Strauss and area inter-
action [25] processes respectively. The repulsive Strauss process
is written as

f1(Φc) ∝

⎧⎪⎪⎨
⎪⎪⎩

0 if ∃n �= n′ : xn = xn′ , yn = yn′

and |tn − tn′ | < dmin

1 otherwise

where dmin is the minimum separation between two surfaces
in the same pixel. Attraction between points within the same
surface is promoted by the area interaction process, that is

f2(Φc|γa, λa) ∝ λNΦ
a γ

−m
(⋃NΦ

n=1 S(cn)
)

a (3)

where m(·) denotes the standard Lebesgue measure, S(cn)
defines a convex set around the point cn, and γa and λa are
two hyperparameters, accounting for the amount of attraction
and total number of points, respectively. Both densities de-
fine Markovian interactions between points, only correlating
points in a local neighbourhood. Moreover, the combination of
both processes implicitly defines a connected-surface structure,
which is used to model 2D manifolds in a 3D space.

2) Reflectivity: The spectral signatures are related to the ma-
terials of the surfaces [17]. Neighbouring points corresponding
to a surface composed of a specific material show similar spectral
signatures. This prior information is added to the model using
a Gaussian Markov random field distribution, where the neigh-
bours are defined by the connected-surface structure of the point
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Fig. 3. Connectivity at an inter-pixel level. Two different surfaces are denoted
by the colours red and blue, where each square represents one pixel. Pixels
without points are represented by white squares. For simplicity, in this example
all points are considered to be present at the same depth. Note that each pixel
can be connected with at most eight neighbours.

process prior. First, in order to avoid the positivity constraint on
the intensity rn,�, we use the canonical form [26]–[28],

mn,� = log(rn,�) (4)

where mn,� ∈ R denotes the log-intensity of the nth point
at band �. As multispectral devices only acquire dozens of
well-separated wavelengths, the spectral measurements within
a pixel do not show significant correlation. Hence, although
potential correlations between wavelengths could be modelled,
we choose here to neglect this correlation to keep the estimation
strategy tractable. As a consequence, we consider the following
reflectivity prior model

p(Φr|σ2, β) =
L∏

�=1

p(m�|Φc, σ
2, β). (5)

Spatial correlations between log-intensity values in
neighbouring pixels are defined according to the distribution

m�|σ2, β,Φc ∼ N (0, σ2P−1) (6)

where σ2 and β are hyperparameters controlling the level of
smoothness. The precision matrix P is very sparse due to the
Markovian structure, being defined by

[P ]n,n′ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

β +
∑

ñ∈Mpp(cn)
1

d(cn;cñ)
if n = n′

− 1
d(cn;cn′ )

if cn ∈Mpp(cn′)

0 otherwise
(7)

where Mpp(cn) is the set of neighbours of point cn, which
is obtained using the connected-surface structure illustrated in
Fig. 3, and d(cn; cñ) is the Euclidean distance between two
points, normalized according to the camera parameters of the
scene to have a physical meaning [29].

3) Background Levels: Background detections are due to
detector dark counts and ambient illumination, as explained
in [13], [30]. If the transceiver system is mono-static2 [1], the set
of background levels can be interpreted as a multispectral passive
image of the scene, as background detections generally come
from ambient illumination reflected onto the target and collected
by the single-photon detector. In this case, the background
levels are strongly spatially correlated within each wavelength.
However, in bi-static systems [13], the transmit and receive
channels do not share the same objective lens aperture, yielding

2In mono-static Lidar systems, the laser and detector are coaxial, whereas in
bi-static systems, the source and detector do not share the same axis.

Fig. 4. Computation of the hyperparameters for the priors of the background
levels. First, the photons due to the signal are removed from the dataset using
a coarse approximation of the point cloud. Secondly, the remaining photons
are integrated per pixel, giving a noisy background image. Finally, this image is
used to estimate uncertainty about the background levels, computing the gamma
hyperparameters K and Θ.

weakly or uncorrelated background detections. Although not
showing a strong spatial correlation in this second case, all the
background levels have similar values, which also serves as prior
information.

a) Independent Prior Distributions: In order to simultane-
ously model potential spatial correlation and ensure the positiv-
ity of the background levels, ManiPoP uses a 2D gamma Markov
random field, which was introduced by Dikmen et al. in [31].
However, this prior is not well suited for MSL data as it in-
troduces an undesired penalization for large background levels,
whose negative effects are amplified when considering multiple
bands (see Appendix A for details). Other alternatives such as
Gaussian Markov random fields [26] cannot be sampled directly
in closed form, requiring proposals with a rejection step, whose
mixing and convergence scale badly with the dimension of the
spectral cube, as shown in [32]. To alleviate these problems, we
assign independent gamma priors, i.e.,⎧⎨

⎩
p(B|K,Θ) =

Nr∏
i=1

Nc∏
j=1

L∏
�=1

p(bi,j,�|ki,j,�, θi,j,�)
bi,j,�|ki,j,�, θi,j� ∼ G(ki,j,�, θi,j�)

(8)

where [Θ]i,j,� = θi,j,� and [K]i,j,� = ki,j,� are the shape and
scale hyperparameters of the gamma distributions. Despite using
independent priors, we can capture the spatial correlation by set-
ting the hyperparameters (K,Θ) appropriately. More precisely,
in a similar fashion to variational Bayes [33] or expectation
propagation [34] methods, in order to simplify the estimation
of B, we specify (8) such that p(B|K,Θ) is similar to another
distribution q(B) =

∏L
�=1 q�(b�)which explicitly correlates the

background levels in neighbouring pixels and assumes mu-
tual independence between spectral bands. Here, we use as a
similarity criterion the Kullback-Leibler divergence

(K,Θ) = argmin
K,Θ

KL(q||p). (9)

As discussed in Appendix B, solving (9) can be achieved by
computing expectations with respect to q(B).

b) Empirical Bayes approach: To ensure that the prior model
(8) is informative, a suitable distribution q(B) should be chosen.
Assuming that we have a coarse estimate of the point cloud
(this information will be obtained using the multiresolution
approach detailed in Section IV-B), we build the distribution
q(B) following an empirical Bayes approach, as illustrated in
Fig. 4. First, one can discard almost all the signal photons in
the dataset by removing the photons detected in the compact
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Fig. 5. Directed acyclic graph (DAG) of the proposed hierarchical Bayesian
model. The variables inside squares are fixed, whereas the variables inside circles
are estimated.

support of h�(t) around each point (see Fig. 4, central subplot).
The number of bins that is not excluded in each pixel is re-
ferred to as vi,j,�. Secondly, we integrate the remaining pho-
tons of each pixel, obtaining a coarse estimate of the per-pixel
background photon levels, denoted by z̄i,j,�,b. We then define
q�(b�) ∝ p(z̄�|b�)p(b�|αB) with⎧⎪⎪⎨

⎪⎪⎩

z̄i,j,�,b|bi,j,� ∼ P(gi,j,�vi,j,�bi,j,�)
bi,j,� = exp(b̃i,j,� + μ�)

b̃�|αB ∼ N (0, αBD
−1)

(10)

where b� a vectorized image of background levels at wavelength
�, D ∈ RNrNc×NrNc a positive semidefinite matrix, αB is
a fixed hyperparameter controlling the degree of smoothness.
In mono-static systems, a two-dimensional Laplacian filter is
chosen for D to promote spatial correlation [26], whereas in
bi-static systems, D is replaced by the identity matrix, only
penalizing large background levels. μ� is a translation parameter
centring b̃i,j,� in the linear part of the exponential function and
is defined as μ� = log( 1

NrNc

∑Nr

i

∑Nc

j
z̄i,j,�,bgi,j,�

vi,j,�
). As men-

tioned above, solving (9) requires the computation of expecta-
tions with respect to q(B) which are unfortunately not available
in closed form. Instead of using additional MCMC sampling
to find numerical approximations (detailed in Appendix B),
obtaining samples from (10) is more attractive both in terms
of convergence and computational complexity than using the
original full datacube which includes mixtures of background
and signal photons. Indeed, (10) simply involves integrated
photon counts (over the range dimension). Moreover, given the
independence property of q(B) among spectral bands, all the
bands can be processed independently in parallel when sampling
B (see Section IV-A5).

B. Posterior Distribution

Following Bayes theorem, the joint posterior distribution of
the model parameters is given by

p(Φc,Φr,B|Z,Ψ)

∝ p(Z|Φc,Φr,B)p(Φr|Φc, σ
2, β)

× f1(Φc|γa, λa)f2(Φc|γst)π(Φc)p(B|K,Θ) (11)

where Ψ denotes the set of hyperparameters Ψ = {γa, λa, γs,
σ2, β,K,Θ} and π(·) is the Poisson point process reference
measure. Fig. 5 shows the directed acyclic graph associated with
the proposed hierarchical Bayesian model.

IV. INFERENCE

In this work, we compute the same posterior statistics as
in [15]: the point cloud positions and spectral signatures are
estimated using the maximum-a-posteriori (MAP) estimator

Φ̂ = argmax
Φ

p(Φ,B|Z,Ψ) (12)

and the minimum mean squared error estimator is considered
for B

B̂ = E{B|Z,Ψ}. (13)

As this expectation cannot be derived analytically, we propose
to investigate Markov Chain Monte Carlo (MCMC) simulation
methods. As in [15], we use a reversible jump MCMC algorithm
that can handle the varying dimension nature of the spatial point
process. This sampler generates Nm samples of Φ and B from
the posterior distribution (11) denoted as

{Φ(s),B(s) ∀s = 0, 1, . . . , Nm − 1}. (14)

These samples are then used to approximate the statistics of
interest, i.e.,

Φ̂ ≈ argmax
s=0,...,Nm−1

p(Φ(s),B(s)|Z,Ψ)

B̂ ≈ 1

Nm −Nbi

Nm∑
s=Nbi+1

B(s)

where Nbi is the number of burn-in iterations.

A. Reversible Jump MCMC Moves

While other stochastic simulation algorithms for varying di-
mensions can be used [24], we choose an RJ-MCMC sampler,
as it allows us to build proposals tailored for the MSL recon-
struction problem. RJ-MCMC can be interpreted as a natural
extension of the Metropolis-Hastings algorithm for problems
with an a priori unknown dimensionality. Given the actual
state of the chain θ = {Φ,B} of model order NΦ, a random
vector of auxiliary variables u is generated to create a new state
θ′ = {Φ,′B′} of model order NΦ′ , according to an appropriate
deterministic function θ′ = g(θ,u). To ensure reversibility, an
inverse mapping with auxiliary random variables u′ has to exist
such that θ = g−1(θ,′ u′). The move θ → θ′ is accepted or
rejected with probability ρ = min{1, r(θ,θ′)}, where r(·, ·) is
defined as

r (θ,θ′) =
p(θ′|Z,Ψ)K(θ|θ′)p(u′)
p(θ|Z,Ψ)K(θ′|θ)p(u)

∣∣∣∣
∂g(θ,u)

∂(θ,u)

∣∣∣∣ (15)

and K(θ′|θ) is the probability of proposing the move θ → θ′,
p(u) is the probability distribution of the random vector u, and
|∂g(θ,u)
∂(θ,u) | is the Jacobian of the mapping g(·). The RJ-MCMC al-

gorithm performs birth/death, dilation/erosion, spatial and mark
shifts, and split/merge moves with probabilities pbirth, 1− pbirth,
pdilation, 1− pdilation, pshift, pmark, psplit and 1− psplit respectively.
Due to the Markovian nature of the prior distributions, all the
proposed moves are local, having a complexity proportional to
the size of the neighbourhood. These moves are detailed in the
following subsections. For ease of presentation, we summarize
the main aspects of each move, inviting the reader to consult
Appendix C for more details.
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1) Birth and Death Moves: The birth move proposes a new
point θ′ = (cNΦ+1,mNΦ+1) uniformly at random in the 3D
cube. The spectral signature of the new point is proposed by
extracting a fraction (1− u�) from the current value of the back-
ground level bi,j,� according to the signal-to-background-ratio
(SBR) [11] w�, that is for each wavelength �⎧⎪⎨

⎪⎩

u� ∼ U(0, 1), b′i,j,� = u�bi,j,�

emNΦ+1,� = w�(1− u�)bi,j,�
T∑T

t=1 h�(t)

, (16)

where U(0, 1) denotes the uniform distribution on the interval
(0, 1). The death move proposes the removal of a point. In
contrast to the birth move, we modify the background level
according to

b′i,j,� = bi,j,� + emNΦ+1,�

∑T
t=1 h�(t)

w�T
∀� = 1, . . . , L. (17)

2) Dilation and Erosion Moves: Birth moves have low ac-
ceptance ratio, as the probability of randomly proposing a point
within or close to the surfaces of interest is very low. However,
this problem can be overcome by using the current estimation
of the surface to propose in regions of high probability. The
dilation move proposes a point inside the neighbourhood of
an existing surface with uniform probability across all possible
neighbouring positions where a point can be added. Contrary
to [15], where the intensity samples are generated according to
the prior distribution, the spectral signature is sampled in the
same way as the birth move (16). The complementary move
(named erosion), proposes to remove a point cn with one or
more neighbours. In this case, the background is updated in the
same way as the death move.

3) Mark and shift moves: As in ManiPoP, the mark move
updates the log-intensity of a randomly chosen point cn. Each
wavelength is updated independently using a Gaussian proposal
with variance δm as a proposal (also known as Metropolis
Gaussian random walk), that is

m′n,� ∼ N (mn,�, δm) ∀� = 1, . . . , L. (18)

Similarly, the shift move updates the position of a uniformly
chosen point using a Gaussian proposal with variance δt

t′n ∼ N (tn, δt) (19)

The values of δm and δt are adjusted by cross-validation3 to
yield an acceptance ratio close to 41% for each move, which
is the optimal value for a one dimensional Metropolis random
walk, as explained in [24, Chapter 4].

4) Split and Merge Moves: Some pixels might present two
points with overlapping impulse responses in depth. In such
cases, a death move followed by two birth moves would happen
with very low probability. Hence, as in ManiPoP, we propose a
split move, which randomly picks a point (cn,mn) and proposes
two new points, (c′k1

,m′
k1
) and (c′k2

,m′
k2
). The log-intensity

is proposed for each wavelength following the mapping⎧⎪⎪⎨
⎪⎪⎩

u� ∼ B(η, η)
m′k1,�

= mn,� + log(u�)

m′k2,�
= mn,� + log(1− u�)

(20)

3Intensities are normalized to belong to a fixed interval across datasets. Hence,
we can fix the variance of the proposal to achieve similar acceptance ratios.

where B(·) denotes the beta distribution and η is a fixed param-
eter. The new positions are determined according to⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

s� ∼ Be(0.5)

Δ ∼ U(dmin, Lh)

t′k1
= tn + (−1)s�Δ

∑L
�=1(1− u�)e

mn,�

∑L
�=1 e

mn,�

t′k2
= tn − (−1)s�Δ

∑L
�=1 u�e

mn,�

∑L
�=1 e

mn,�

(21)

where Be(·) denotes the Bernoulli distribution, Lh is the length
in bins of the instrumental response at the wavelength with
longest impulse response. The complementary move, named
merge move, is performed by randomly choosing two points
ck1

and ck2
inside the same pixel (xk1

= xk2
and yk1

= yk2
)

that satisfy the condition

dmin < |tk1
− tk2

| ≤ Lh ∀� = 1, . . . , L (22)

The merged point (c′n, r′n) is obtained by the inverse mapping⎧⎪⎪⎨
⎪⎪⎩

em
′
n,� = emk1,� + emk2,� ∀� = 1, . . . , L

t′n= tk1

∑L
�=1 e

mk1,�

∑L
�=1 e

mk1,� + emk2,�
+ tk2

∑L
�=1 e

mk2,�

∑L
�=1 e

mk1,� + emk2,�

which preserves the total pixel intensity and weights the spatial
shift of each peak according to the sum of the intensity values.

5) Sampling the Background: In order to exploit the con-
jugacy between the Poisson likelihood and gamma priors for
the background levels, we use a data augmentation scheme as
in [35], which classifies each photon-detection according to the
source (target(s) or background), i.e.,

zi,j,t,� =
∑

n:(xn,yn)=(i,j)

z̃i,j,t,�,n + z̃i,j,t,�,b

z̃i,j,t,�,b ∼ P(gi,j,�bi,j,�)
z̃i,j,t,�,n ∼ P(gi,j,�rn,�h(t− tn))

where z̃i,j,t,�,n are the photons at bin t associated with the nth
surface and z̃i,j,t,�,b are the ones associated with the background.
In the augmented space defined by (z̃i,j,t,�,n, z̃i,j,t,�,b), the back-
ground levels are sampled as follows⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

z̃i,j,t,�,b ∼ B
(
zi,j,l,t,

bi,j,�∑
n:(xn,yn)=(i,j) rn,�h(t−tn)+bi,j,�

)

bi,j,� ∼ G
(
ri,j,� +

T∑
t=1

z̃i,j,t,�,b,
θi,j,�

gi,j,�Tθi,j,� + 1

)

(23)
where B(·) denotes the Binomial distribution. The transition
kernel defined by (23) produces samples of bi,j,� distributed
according to the marginal posterior distribution ofB. In practice,
we observed that only one iteration of this kernel is sufficient.

B. Full Algorithm

We adopt a multi-resolution approach to speed up the conver-
gence of the RJ-MCMC algorithm, in a fashion similar to [15].
The dataset is downsampled by integrating photon detections
in patches of Nbin ×Nbin pixels. Hence, the number of pixels is
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Algorithm 1: Multiresolution MuSaPoP.
Input: MSL waveforms Z, hyperparameters Ψ, window
size Nbin and number of scales K.
Initialization:
Φ

(0)
1 ← ∅

B
(0)
1 ← sample from (23)

(K1,Θ1)← non-informative hyperparameter values
Main loop:
for k = 1, . . . ,K do

if k > 1 then
(Φ

(0)
k ,B

(0)
k )← upsample(Φ̂k−1, B̂k−1)

Compute hyperparameters (Kk,Θk) and SBR using
Section III-A3

end if
(Φ̂k, B̂k)←MuSaPoP(Zk, (Φ

(0)
k ,B

(0)
k ),Ψk,SBR)

end for
Output: (Φ̂K , B̂K)

reduced by a factor of N2
bin, meaning less points and background

levels to infer with N2
bin times more photons per pixel. The

estimated point cloud at the coarse scale is upsampled using
a simple nearest neighbour algorithm and used as initialization
for the next (finer) scale. In all our experiments we repeat the
process for K = 3 scales. The background hyperpriors K and
Θ are initialized with non-informative values, i.e., ki,j,� = 0.01
and θi,j,� = 100 for all pixels (i, j) and wavelengths �. In finer
scales, these hyperparameters are computed using the algorithm
detailed in Section III-A3. The multi-resolution approach is
finally summarized in Algorithm 1.

V. SUBSAMPLING STRATEGY

Despite not being able to design compressive measurements
along the depth axis, we can still reduce the number of measure-
ments in the two spatial (horizontal and vertical) dimensions
and in the spectral dimension [16]. Given the point positions,
recovering their reflectivity profile reduces to a multispectral
image restoration problem using measured data corrupted by
Poisson noise. While many compressive sensing strategies have
been proposed for measurements under this noise assumption
[36]–[38], MSL datasets have an additional limitation if multiple
surfaces per pixel are considered: photon-detections belonging
to different wavelengths cannot be integrated into a single his-
togram, as the reconstruction problem generally becomes highly
non-convex, preventing practical reconstruction algorithms.4

Indeed, summing histograms associated with different wave-
lengths and including multiple peaks generates histograms with
even more peaks (possibly overlapping), which makes the 3D
reconstruction and the reflectivity estimation more difficult.
As a consequence, we only consider subsampling of depth
histograms, which incorporates all of the practical sampling
limitations. Following the formulation of the observation model
(2), the subsampling strategy consists of choosing the binary

4As mentioned in the introduction, the system presented in [9] considers the
integration of photons belonging to different histograms, but is limited to one
surface per pixel.

Fig. 6. Subsampling strategies for a Lidar cube with L = 8 wavelengths,
Nr = Nc = 32 pixels and total compression of 1/L, i.e., one observed band
per pixel. The sampled pixels at the first wavelength are shown in white. A
completely random strategy [16] is shown in (b), whereas the one proposed here
is shown in (a).

coefficients G for a given compression level W/L, with W the
average number of observed band per pixel. Several subsampling
strategies have been proposed for different applications, such as
halftoning and stippling [39], rendering, compressive spectral
imaging [40]–[42], compressive computed tomography [43],
[44], geometry processing [45], amongst others [46]–[48]. These
approaches exploit the sampling geometry of the sensing devices
to design a set of criteria. Similarly to coded aperture snapshot
spectral imaging systems, the distribution of reflectivity profiles
of 3D surfaces in real natural scenes suggests uniform sampling
in the row, column and spectral axes. Following the design in
Correa et al. [20], the coefficients are chosen according to the
spatiotemporal characteristics of blue noise, which distributes
the measurements in spectral and spatial dimensions as homo-
geneously as possible [49]. The binary cube G is obtained by
minimizing the variance of (weighted) measurements per local
neighbourhood, i.e.,

argmin
G

VAR

⎧⎨
⎩

L∑
�=1

∑

(i,′j′)∈M(i,j)
ss

wi,′j′gi,′j,′�

⎫⎬
⎭

subject to
L∑

�=1

gi,j,� = W ∀(i, j)

where VAR{·} denotes the variance operator, M(i,j)
ss denotes

the set of pixels in a local neighbourhood of (i, j) and wi,′j′ are
the weights. The minimization is simplified by dividing the data
in slices of L/W contiguous bands and running the algorithm
introduced in [20] per slice. As shown in Fig. 6, the proposed
strategy distributes the measurements uniformly in space, while
other random strategies [16] tend to exhibit clusters, leaving
some regions without measurements.

VI. EXPERIMENTS

To illustrate the efficacy of the proposed method, the new re-
construction algorithm is compared to other alternatives (based
on the work conducted in [6]) using a synthetic dataset. Subse-
quently, the new subsampling scheme is compared with other
random subsampling choices for a real MSL dataset. In all the
experiments, the performance was measured using the following
summary statistics:
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Fig. 7. Synthetic “Art” scene from Middlebury dataset with an additional
semitransparent surface (blue plane).

� True detections Ftrue(τ): Probability of true detection as a
function of the distance τ , considering an estimated point as
a true detection if there is another point in the ground truth
point cloud in the same pixel (xtrue

n = xest
n′ and ytrue

n = yest
n′ )

such that |ttrue
n − test

n′ | ≤ τ .
� False detections Ffalse(τ): Number of estimated points that

cannot be assigned to a ground truth point at a distance τ .
� Mean intensity absolute error at distance τ (IAE): Mean

across all the points of the intensity absolute error∑L
�=1 |rtrue

n,� − rest
n,′�|, normalized with respect to the total

number of ground truth points. The ground truth and esti-
mated points are coupled using the probability of detection
Ftrue(τ). Note that if a point was falsely estimated or a
ground truth point was not found, then they are considered
to have resulted in an error of

∑L
�=1 |rn,�|. The com-

parison is done with normalized intensity values, that is∑T
t=1 h�(t) = 1 for � = 1, . . . , L.

� Background normalized mean squared error NMSEB:
Mean of the normalized squared error of the esti-
mated background at each wavelength, i.e., 1

L

∑L
�=1∑Nr

i=1

∑Nr
j=1(b

true
i,j,�−b̂i,j,�)2∑Nr

i=1

∑Nr
j=1 (btrue

i,j,�)
2 .

A. Synthetic Data

We first assessed the performance of the proposed algorithm
using a synthetic dataset created from the “Art” scene of the
Middlebury dataset [50], as shown in Fig. 7. The measurements
were obtained by simulating the single-photon multispectral
Lidar system of [17], whose bin width is 0.3 mm. The gen-
erated dataset has Nr = 283 and Nc = 231 pixels, T = 4500
histogram bins and L = 4 wavelengths (red, green, blue and
yellow), where only W = 2 wavelengths out of 4 were sampled
per pixel using the coded aperture introduced in Section V.
The mean number of photons per wavelength per pixel is 10,
where approximately 3.4 photons are due to the background
illumination. As in mono-static Lidar systems, the background
levels are generated as a passive image of the scene (see Fig. 9).

We compared the proposed method to a two-stage algorithm
that first estimates the point positions using ManiPoP [15]
(single-wavelength multiple-return state-of-the-art algorithm)
by integrating the photons across wavelengths and then infers
the spectral signatures with fixed point positions, similarly to the
procedure suggested by Wallace et al. [6]. The resulting method,
referred to as ManiPoP #1, is summarized in Algorithm 2. We
also compared with ManiPoP in the strict single-wavelength
setting, by choosing the most powerful wavelength and using

Fig. 8. From left to right: Ftrue(τ), Ffalse(τ) and IAE(τ) for the proposed
method and the two alternatives.

Fig. 9. From left to right: Ground truth background levels, estimates ob-
tained by MuSaPoP and the two ManiPoP alternatives. Only the red, blue
and green channels were used to generate these images. The proposed method
provides smooth estimates due to the empirical prior distribution described in
Section III-A3. ManiPoP #2 only estimates one wavelength, which is shown in
grayscale.

Algorithm 2: ManiPoP #1 [6], [15].
Input: MSL waveforms Z
Depth estimation: Accumulate photons across
wavelengths z′i,j,t =

∑
� zi,j,�,t for all pixels (i, j)

(Φ̂, B̂)←ManiPoP(Z′)
for � = 1, . . . , L and � �= w do

Update (Φ̂, B̂) using ManiPoP(Z�) in a fixed
dimensional setting (only using background and
reflectivity moves)

end for

the same total acquisition time per pixel than in the multispectral
case (i.e., a per-pixel acquisition time W = 2 longer than the
one considered for each wavelength in MuSaPoP). This second
alternative is referred to as ManiPoP #2.

Fig. 8 illustrates Ftrue(τ), Ffalse(τ) and IAE for both meth-
ods. The proposed algorithm performs better than the other
alternatives, as it finds 97.7% of the true points, whereas
ManiPoP #1 and #2 only recover 95.34% and 89.6% respec-
tively. ManiPoP #1 relies on an approximate impulse response
h̃(t) =

∑L
�=1 h�(t), which biases the depth estimates, as the

true accumulated response varies across points depending on
their spectral signature.5 The bias degrades the performance
in terms of average depth absolute error (computed for true
detections within a distance of 9 mm from the ground truth
point). The proposed method obtains an average error of 3.9 mm,
whereas the estimates by ManiPoP #1 present an average error of
5.7 mm. Despite having double acquisition time for the single-
wavelength, ManiPoP #2 fails to find points corresponding to
materials that have very low reflectivity in the blue wavelength

5Note that this bias can be arbitrarily large depending on the variations of
h�(t) across wavelengths.
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Fig. 10. (a) is an RGB image of the target and (b) shows the 3-D reconstructed
scene (the colors were generated according to the CIE 1931 RGB color space).

(e.g., the red helicoidal structure shown in Fig. 7). The proposed
MuSaPoP algorithm performs slightly worse in terms of false
detections, finding 3 times more false points than the competitor
methods. In terms of intensity estimation, MuSaPoP obtains
better results, having an asymptotic IAE of 1 photon, whereas
the alternatives #1 and #2 provide IAE equal to 1.1 and 2.7. The
estimated background levels are shown in Fig. 9. The proposed
method yields a better background NMSE (0.04) than alterna-
tives #1 (0.14) and #2 (0.79). The improvement in background
estimation over the ManiPoP alternatives can be attributed to
the use of an empirical Bayes prior instead of a gamma Markov
random field. The total execution time was 811 s for MuSaPoP
and 294 and 348 s for alternatives #1 and #2.

B. Real MSL Data

The proposed subsampling scheme was evaluated on a real
MSL dataset [17]. The scene consists of L = 32 wavelengths
sampled at regular intervals of 10 nm from 500 nm to 810 nm,
Nr = Nc = 198 pixels and T = 4500 histogram bins. The tar-
get is composed by a series of blocks of different types of clay
and two leaves. Fig. 10 shows an RGB image of the scene
and the 3D reconstruction using acquisition times up to 10 ms
per wavelength per pixel. We compare the blue noise codes
mentioned in Section V with the random schemes introduced
in [16], all yielding the same total number of measurements and
acquisition time:

1) Random sampling without overlap: W out of L bands per
pixel are sampled without replacement (i.e., for a given
pixel, each wavelength is measured at most once).

2) Random sampling without overlap: For each wavelength,
W/L% of the pixels are sampled without replacement.

3) Proposed sampling method: For each wavelength, W/L%
of the pixels are chosen following the scheme presented
in Section V.

The codes were evaluated for W = 1, 2, 4, 8, 16 bands per
pixel and acquisition times of 0.1, 1 and 10 ms per measurement
(i.e., the histogram of one wavelength), using as ground-truth
the reconstruction obtained with all the measurements and an
acquisition time of 10 ms. Fig. 11 shows the percentage of
true detections, IAE and background NMSEs for all codes,
acquisition times and numbers of sensed bands per pixel W . All
the evaluated compressive strategies yield good results, where
a small improvement can be obtained by the use of blue noise
codes. In terms of total number of estimated points, the blue

Fig. 11. Ftrue(τ), Ffalse(τ) and IAE(τ) obtained with the proposed recon-
struction method for different acquisition times and sensed bands per pixel.

Fig. 12. Total execution time for different number of sensed bands per pixel
and acquisition times of 0.1, 1 and 10 ms.

noise codes achieve better performance in high compression
scenarios W = 1, 2 and low acquisition times (0.1 and 1 ms).
For example, for an acquisition time of 1 ms, almost all points
are reconstructed using blue noise codes, whereas the random
codes only yield around 97% of the ground-truth points. The
choice of blue noise codes has a stronger impact in terms of IAE,
achieving smaller IAE for all acquisition times and number of
bands per pixel. Fig. 12 shows the execution time for acquisition
times of 10, 1 and 0.1 ms and different numbers of sensed
bands. The proposed RJ-MCMC sampler has a complexity
proportional to the number of photon detections in the support
of the impulse response around the 3D point being modified,
whereas the background update has a complexity proportional
to the total number of active histogram bins in the Lidar scene.
The background extraction step required around 15% of the
total execution time, which could be significantly reduced if
all the bands were processed in parallel instead of sequentially
as it is done in the current implementation. All the experiments
were performed using a Matlab R2018a implementation on a
i7-3.0 GHz desktop computer (16 GB RAM).

Finally, we compared the performance of MuSaPoP with the
single-depth multiple-wavelength algorithm by Altmann et al.
[16]. The algorithm is referred to as Depth TV and considers
total variation regularizations for the background, reflectivity
and depth images. Note that this method requires a (global)
depth interval where all signal photons are found, which is given
manually by the user. We also considered a target detection
scenario (i.e., some pixels without surfaces), by removing the
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Fig. 13. From left to right: 3-D reconstructions obtained by the proposed
method and Depth TV for an acquisition time of 10 ms. Note that Depth TV
tends to smooth out fine scale details (zoom for better visualization). Moreover,
the thresholding step used in Depth TV removes some low intensity points in
the borders of each 3-D object.

Fig. 14. True and false point detections for MuSaPoP and Depth TV for the
real MSL dataset with (top row) and without (bottom row) backplane. Solid,
dashed and dotted lines represent the datasets with acquisition times of 1, 0.1
and 0.01 ms respectively.

TABLE I
HYPERPARAMETERS VALUES

backplane of the scene and keeping only photons associated with
background levels. In this case, we post-process the Depth TV
estimates, removing points with a mean normalized intensity
below 10%, which gave the best results across the evaluated
datasets. In both experiments, we used the blue noise codes with
W = 8 wavelengths per pixel out of L = 32. Fig. 13 shows the
3D reconstructions obtained by MuSaPoP and Depth TV using
an acquisition time of 10 ms. Fig. 14 shows the performance of
both algorithms in terms of true and false detections. MuSaPoP
performs better in the 1 and 0.1 ms cases, whereas Depth TV
obtains better depth estimates in the lowest acquisition time case
(0.01 ms). However, in the 0.01 ms case without backplane, the
intensity thresholding step does not remove backplane points,
hence obtaining a very large number of false detections. This
result illustrates the inefficiency of simple thresholding in target
detection scenarios, whereas MuSaPoP includes these cases
within its general formulation. Table II shows the performance
of both algorithms in terms of IAE, background NMSE and
execution time. The proposed method yields a better IAE than
Depth TV (approximately half), as the latter tends to smooth
out details within the blocks and leaves, as shown in Fig. 13.
Moreover, in terms of background NMSE, Depth TV fails to

TABLE II
IAE, BACKGROUND NMSE AND EXECUTION TIME OF DEPTH TV AND THE

PROPOSED METHOD FOR THE BLOCKS AND LEAVES DATASET WITH AND

WITHOUT THE BACKPLANE

provide good estimates in the low-photon cases, as it only
considers photon counts within the global interval without signal
returns. The execution time of Depth TV was significantly higher
than MuSaPoP.

VII. CONCLUSIONS

This paper has studied a new 3D reconstruction algorithm
referred to as MuSaPoP using multispectral Lidar data, which
is able to find multiple surfaces per pixel. The proposed method
leads to better reconstruction quality than other alternatives, as
it considers all measured wavelengths in a single observation
model. While based on some ideas initially investigated in
ManiPoP [15], MuSaPoP also relies on new strategies to deal
with the very high dimensionality of the multispectral prob-
lem. The first novelty is the use of an empirical Bayes prior
for the background levels, which speeds up significantly the
RJ-MCMC algorithm. A second improvement is the adapted
dilation/erosion and split/merge moves for the multispectral
case, profiting from SBR estimates to increase the acceptance
rate. Finally, the subsampling strategy further reduces both
the algorithm’s complexity and total number of measurements,
leading to faster acquisitions and reconstructions. The sparse
point cloud representation of the proposed method speeds up
the computations proportionally to the number of measurements,
whereas other dense models [13], [14] would not achieve similar
improvements.

Further work will be devoted to the design of compressive
systems that are not limited to subsampling the spectral cube.
Moreover, the compression can also be extended to depth infor-
mation, for example using a range-gated camera [18].

APPENDIX A
GAMMA MARKOV RANDOM FIELD

Most classical prior distributions (often referred to as regular-
ization terms in the convex optimization literature) for images,
such as Laplacian [26] and total variation [51], only penal-
ize variations between neighbouring pixels, ignoring the mean
intensity of the image. However, the gamma Markov random
field [31], includes a penalization on the mean intensity, which
promotes pixels with smaller values. This can be shown by
inspecting the marginal distribution (defined as [32]),

p(B|αB) ∝
L∏

�=1

Nc∏
i=1

Nr∏
j=1

bαB−1
i,j,�(∑

(i,′j′)∈MB
bi,′j,′�

)αB
(24)
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whereαB is a hyperparameter controlling the degree of smooth-
ness and MB denotes the set of pixels in the neighbourhood
of pixel (i, j). For an image of constant intensity c, we have
bi,′j,′� = bi,j,� = c for all pixels and spectral bands, yielding the
density

p(B|αB) ∝
L∏

�=1

Nc∏
i=1

Nr∏
j=1

c−1 =

Nc∏
i=1

Nr∏
j=1

c−L. (25)

This dependency on the mean promotes reconstructions with
lower background levels, decreasing the acceptance ratio of
death and erosion moves (that propose to increase the back-
ground levels). In the case of ManiPoP, only one band is con-
sidered (L = 1). Thus, the bias towards smaller background
levels does not impact the overall reconstruction significantly.
However, in the MSL case (L� 1), the reconstruction quality
is reduced, hindering the use of gamma Markov random fields.

APPENDIX B
EMPIRICAL PRIOR FOR THE BACKGROUND LEVELS

The prior for the background levels is chosen to minimize the
Kullback-Leibler divergence in (9), where the correlated model
q is given by (10). The minimization of (9) can be written as

(K,Θ) = argmin
(K,Θ)

−Eq{log p(B|K,Θ)}. (26)

Considering the product of independent gamma distributions in
(8), the problem reduces to

(ki,j,�, θi,j,�) = argmin
(ki,j,�,θi,j,�)

Eq{bi,j,�}
θi,j,�

− ki,j,� (Eq{log bi,j,�} − log θi,j,�)

+ log Γ(ki,j,�) (27)

for all pixels i = 1, . . . , Nr and j = 1, . . . , Nc and wavelengths
� = 1, . . . , L. The expected values Eq{bi,j,�} and Eq{log bi,j,�}
cannot be obtained in closed form for the Poisson-Gaussian
model of (10). Thus, we approximate them numerically by
obtaining MCMC samples of b̃i,j,�. As explained in [32], off-the-
shelf sampling strategies (e.g., Hamiltonian Monte Carlo [24,
Chapter 9]) do not scale well with the dimension of the prob-
lem, being inefficient when applied to large multispectral Lidar
datasets. Hence, we consider proposals from a Gaussian ap-
proximation of (10) (as detailed in [26]) using the perturbation
optimization algorithm [52], accepting or rejecting them ac-
cording to the Metropolis-Hastings rule [24], [26]. We generate
103 samples {b̃(s)i,j,�, s = 1, . . . , 103} and compute the desired
expected values as

Eq{bi,j,�} =
∑
s

exp b̃
(s)
i,j,� (28)

Eq{log bi,j,�} =
∑
s

b̃
(s)
i,j,�. (29)

Finally, the values of the hyperparameters are obtained by setting
θi,j,� = Eq{bi,j,�} and minimizing (27) with a one-dimensional
Newton method.

APPENDIX C
COMPLETE EXPRESSIONS OF THE RJ-MCMC MOVES

The birth move of point (cNΦ+1, rNΦ+1) has an acceptance
ratio given by ρ = min{1, r(θ,θ′)} with

r (θ,θ′) =

⎧⎪⎪⎨
⎪⎪⎩

C1 if |tNΦ+1 − tn| > dmin∀n �= NΦ + 1 :

xn = xNΦ+1 and yn = yNΦ+1

0 otherwise

where C1 is defined as

C1 =

L∏
�=1

T∏
t=1

⎛
⎝
∑

n:xn=i
yn=j

r′n,�h�(t− t′n) + b′i,j,�
∑

n:xn=i
yn=j

rn,�h�(t− tn) + bi,j,�

⎞
⎠

zi,j,t,�

pdeath

pbirth

× λaγ
−m

(
S(cNΦ+1)\

⋃
n′∈Mpp(cNΦ+1) S(cn′ )

)

a

× 1

NΦ + 1

( |P ′|
|P |

1

2πσ2

)L
2

L∏
�=1

exp

×
⎛
⎝−

∑
n′∈Mpp(cn)

(mNΦ+1,� −mn,′�)
2

2σ2d(cNΦ+1; cn′)
− mNΦ+1,�

2β

2σ2

⎞
⎠

× (1− u)−L
L∏

�=1

exp

×
(
gi,j,�rNΦ+1,�(1− w�

−1)

(
T∑

t=1

h�(t)

))

×
∏

(i,j)∈MB(bi,j)

L∏
�=1

(
b′i,j,�
bi,j,�

)ri,j,�−1
exp

(
bi,j,� − b′i,j,�

θi,j,�

)
.

Similarly, the death move is accepted with probability
ρ = min{1, C−11 }, where the term 1

NΦ+1 in the second line is
replaced by 1

NΦ
. The dilation move of point (cNΦ+1, rNΦ+1) is

accepted with probability ρ = min{1, r(θ,θ′)} with

r (θ,θ′) =

⎧⎪⎪⎨
⎪⎪⎩

C2 if |tNΦ+1 − tn| > dmin ∀n �= NΦ + 1

xn = xNΦ+1 and yn = yNΦ+1

0 otherwise

where C2 is defined as

C2 =

L∏
�=1

T∏
t=1

⎛
⎝
∑

n:xn=i
yn=j

r′n,�h�(t− t′n) + b′i,j,�
∑

n:xn=i
yn=j

rn,�h�(t− tn) + bi,j,�

⎞
⎠

zi,j,t,�

× perosion

pdilation
λaγ

−m
(
S(cNΦ+1)\

⋃
n′∈Mpp(cNΦ+1) S(cn′ )

)

a

×
( |P ′|
|P |

1

2πσ2

)L
2 NΦ(2Nb + 1)∑

m∈Mpp(cNΦ+1)
#Mpp(cm)

× 1∑NΦ+1
m=1 1Z+

(#Mpp(cm))

L∏
�=1

exp



TACHELLA et al.: BAYESIAN 3-D RECONSTRUCTION OF SUBSAMPLED MULTISPECTRAL SINGLE-PHOTON LIDAR SIGNALS 219

×
⎛
⎝−

∑
n′∈Mpp(cn)

(mNΦ+1,� −mn,′�)
2

2σ2d(cNΦ+1; cn′)
− mNΦ+1,�

2β

2σ2

⎞
⎠

× (1− u)−L
L∏

�=1

exp
(
gi,j,�rNΦ+1,�(1− w�

−1)

×
(

T∑
t=1

h�(t)

)) ∏
(i,j)∈MB(bi,j)

L∏
�=1

(
b′i,j,�
bi,j,�

)ri,j,�−1

× exp

(
bi,j,� − b′i,j,�

θi,j,�

)
.

A shift of the point (cn, rn) to the new position c′n = [xn, yn,
t′n]

T has an acceptance probability ofρ = min{1, r(θ,θ′)}with

r (θ,θ′) =

⎧⎪⎪⎨
⎪⎪⎩

C3 if |t′n − tm| > dmin ∀n �= m

xm = xn and ym = yn

0 otherwise

where

C3 =

L∏
�=1

T∏
t=1

⎛
⎝
∑

n:xn=i
yn=j

r′n,�h�(t− t′n) + b′i,j,�
∑

n:xn=i
yn=j

rn,�h�(t− tn) + bi,j,�

⎞
⎠

zi,j,t,�

×
L∏

�=1

exp

⎛
⎝− 1

2σ2

⎛
⎝ ∑

n′∈Mpp(c
′
n)

(mn,� −mn,′�)
2

d(c′n; cn′)

⎞
⎠
⎞
⎠

×
( |P ′|
|P |

)L
2

L∏
�=1

exp

⎛
⎝ 1

2σ2

⎛
⎝ ∑

n′∈Mpp(cn)

(mn,�−mn,′�)
2

d(cn; cn′)

⎞
⎠
⎞
⎠

× γ
−m

(
S(c′

n)\
⋃

n′∈Mpp(c′n) S(cn′ )
)
+m(S(cn)\

⋃
n′∈Mpp(cn) S(cn′ ))

a .

A mark update randomly picks a point (cn, rn) and pro-
poses a new spectral signature r′n = log(m′

n). Each spec-
tral log-intensity is accepted independently with probability
ρ = min{1, C4}, where

C4 =

L∏
�=1

T∏
t=1

⎛
⎝
∑

n:xn=i
yn=j

r′n,�h�(t− t′n) + b′i,j,�
∑

n:xn=i
yn=j

rn,�h�(t− tn) + bi,j,�

⎞
⎠

zi,j,t,�

× exp

⎛
⎝− 1

2σ2

⎛
⎝ ∑

n′∈Mpp(c
′
n)

(m′n,� −mn,′�)
2

d(c′n; cn′)
+m′n,�

2
β

⎞
⎠
⎞
⎠

× exp

⎛
⎝ 1

2σ2

⎛
⎝ ∑

n′∈Mpp(cn)

(mn,� −mn,′�)
2

d(cn; cn′)
+m2

n,�β

⎞
⎠
⎞
⎠

×
L∏

�=1

exp

(
gi,j,�(rn,� − r′n,�)(1− w�

−1)

(
T∑

t=1

h�(t)

))
.

The split move from (cn = [xn, yn, tn]
T , rn) to (c′k1

=
[xn, yn, t

′
k1
]T , r′k1

) and (c′k2
= [xn, yn, t

′
k2
]T , r′k2

) is accepted

with probability ρ = min{1, r(θ,θ′)}, where

r (θ,θ′) =

⎧⎪⎪⎨
⎪⎪⎩

C5 if |t′n − tm| > dmin ∀n �= m :

xm = xn and ym = yn

0 otherwise

and

C5 =
L∏

�=1

T∏
t=1

⎛
⎝
∑

n:xn=i
yn=j

r′n,�h�(t− t′n) + b′i,j,�
∑

n:xn=i
yn=j

rn,�h�(t− tn) + bi,j,�

⎞
⎠

zi,j,t,�

(u(1− u))−LNΦ(# points in Φ that verify (22))−1
( |P ′|
|P |

)L
2

L∏
�=1

exp

⎛
⎝− 1

2σ2

⎛
⎝ ∑

n′∈Mpp(c
′
k1

)

(mk1,� −mn,′�)
2

d(c′k1
; cn′)

⎞
⎠
⎞
⎠

L∏
�=1

exp

⎛
⎝− 1

2σ2

⎛
⎝ ∑

n′∈Mpp(c
′
k2)

(mk1,� −mn,′�)
2

d(c′k2
; cn′)

⎞
⎠
⎞
⎠

L∏
�=1

exp

⎛
⎝ 1

2σ2

⎛
⎝ ∑

n′∈Mpp(cn)

(mn,� −mn,′�)
2

d(cn; cn′)

⎞
⎠
⎞
⎠

γ
−m

(
S(c′

k1
)\⋃n′∈Mpp(c′k1

) S(cn′ )
)
+m(S(cn)\

⋃
n′∈Mpp(cn) S(cn′ ))

a

λaγ
−m

(
S(c′

k2
)\⋃n′∈Mpp(c′k2

) S(cn′ )
)

a 2(dmin + Lh)
pmerge

psplit
.

Finally, the merge move is accepted with probability ρ =
min{1, C−15 }.
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