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Chapter 7
Geospatial Information Visualization
and Extended Reality Displays

Arzu Çöltekin, Amy L. Griffin, Aidan Slingsby, Anthony C. Robinson,
Sidonie Christophe, Victoria Rautenbach, Min Chen, Christopher Pettit
and Alexander Klippel

Abstract In this chapter, we review and summarize the current state of the art in
geovisualization and extended reality (i.e., virtual, augmented and mixed reality),
covering a wide range of approaches to these subjects in domains that are related
to geographic information science. We introduce the relationship between geovisu-
alization, extended reality and Digital Earth, provide some fundamental definitions
of related terms, and discuss the introduced topics from a human-centric perspec-
tive. We describe related research areas including geovisual analytics and movement
visualization, both of which have attracted wide interest frommultidisciplinary com-
munities in recent years. The last few sections describe the current progress in the
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use of immersive technologies and introduce the spectrum of terminology on virtual,
augmented and mixed reality, as well as proposed research concepts in geographic
information science and beyond. We finish with an overview of “dashboards”, which
are used in visual analytics as well as in various immersive technologies. We believe
the chapter covers important aspects of visualizing and interacting with current and
future Digital Earth applications.

Keywords Visualization · Geovisualization · User-centric design · Cognition ·
Perception · Visual analytics ·Maps · Temporal visualization · Immersive
technologies · Virtual reality · Augmented reality ·Mixed reality · Extended reality

7.1 Introduction

A future, fully functional Digital Earth is essentially what we understand as a
(geo)virtual reality environment today: A multisensory simulation of the Earth as-is
and how it could be, so we can explore it holistically, with its past, present, and
future made available to us in any simulated form we wish (Gore 1998; Grossner
et al. 2008). The concept of Digital Earth can be associated with the emergence of
the (recently popularized) concept of a ‘digital twin’, conceptualized as a digital
replica of a physical entity. Although several researchers have expressed skepticism
about the appropriateness and precision of the term ‘digital twin’ in recent publica-
tions (Batty 2018; Tomko and Winter 2019), it appears that the broad usage of the
term refers to a reasonably rigorous attempt to digitally replicate real-world objects
and phenomena with the highest fidelity possible. Such efforts currently exist for
objects at microscales, such as a wind turbines, engines, and bridges; but they are
also envisioned for humans and other living beings. A digital twin for an entire city
is more ambitious and requires information on the interoperability and connectivity
of every object. A true ‘all containing’ Digital Earth is still unrealized and is more
challenging to construct. However, as Al Gore (1998) noted in his original proposal
for a Digital Earth in 1998, making sense of the information a Digital Earth contains
is even more difficult than its construction. A key capability that supports sensemak-
ing is the ability to visualize geospatial information. There are countless ways to
visualize geospatial information. For thousands of years, humankind has used maps
to understand the environment and find our way home. Today, there are many visual
methods for depicting real, simulated, or fictional geospatial ‘worlds’.

This chapter provides an overview of key aspects of visualizing geospatial infor-
mation, including the basic definitions and organization of visualization-related
knowledge in the context of a future Digital Earth. As understanding related human
factors is necessary for any successful implementation of a visualization within the
Digital Earth framework, we include a section on cognition, perception, and user-
centered approaches to (geo)visualization.Becausewealso typically pose and answer
analytical questionswhenwe visualize information,we provide an overviewof visual
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analytics; paying special attention to visualizing and analyzing temporal phenom-
ena including movement because a Digital Earth would be clearly incomplete if it
only comprises static snapshots of phenomena. After this examination of broader
visualization-related concepts, because we conceptualize Digital Earth as a virtual
environment, we pay special attention to how augmented (AR), mixed (MR), and
virtual reality (VR) environments can be used to enable a Digital Earth in the section
titled “Immersive Technologies—From Augmented to Virtual Reality”. The Digital
Earth framework is relevant to many application areas, and one of the foremost uses
of the framework is in the domain of urban science. This is unsurprising given that
55 percent of the population now live in urban areas, with the proportion expected to
increase to two-thirds of the population by 2050 (United Nations Population Divi-
sion 2018). Urban environments are complex, and their management requires many
decisions whose effects can cause changes in other parts of the urban environment,
making it important for decision makers to consider these potential consequences.
One way of providing decision makers with an overview of urban environments
is through dashboards. Therefore, we feature “dashboards” and discuss the current
efforts to understand how they fit within the construct of Digital Earth. We finish the
chapter with a few concluding remarks and future directions.

7.2 Visualizing Geospatial Information: An Overview

Cartography is the process by which geospatial information has been typically visu-
alized (especially in the pre-computer era), and the science and art of cartogra-
phy remain relevant in the digital era. Cartographic visualizations are (traditionally)
designed to facilitate communication between the mapmaker and map users. As a
new approach to making sense of geospatial information in the digital era, specif-
ically in the development of digital tools that help map readers interact with this
information, the concept of geovisualization emerged (MacEachren 1994; Çöltekin
et al. 2017, 2018) and widened our understanding of how maps could help make
sense of a Digital Earth when used in an exploratory manner in addition to their
role in communication. Thus, geovisualization is conceived as a process rather than
a product, although the term is also commonly used to refer to any visual display that
features geospatial information (maps, images, 3D models, etc.). In the geovisual-
ization process, the emphasis is on information exploration and sensemaking, where
scientists and other experts design and use “visual geospatial displays to explore data,
and through that exploration to generate hypotheses, develop problem solutions and
construct knowledge” (Kraak 2003a, p. 390) about a geographic location or geo-
graphic phenomenon. How these displays (and associated analytical tools) could
be designed and used became a focus of scientific research within the International
Cartographic Association’s (ICA)Commission on Visualization and Virtual Environ-
ments, whose leaders described the term geovisualization as the “theory, methods
and tools for visual exploration, analysis, synthesis, and presentation of geospatial
data” (MacEachren and Kraak 2001, p. 3). Designing tools to support visualizing
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the geospatial information contained in a Digital Earth requires thinking about the
data, representation of those data, and how users interact with those representations.
Importantly, it requires the design of visual displays of geospatial information that
can combine heterogeneous data from any source at a range of spatiotemporal scales
(Nöllenburg 2007). To facilitate the ability to think spatially and infer spatiotemporal
knowledge from a visualization, the visualization must also be usable, support users’
tasks and needs, and enable users to interact with the data (Fuhrmann et al. 2005).
Visualizations of geospatial data connect people, maps, and processes, “leading to
enlightenment, thought, decision making and information satisfaction” (Dykes et al.
2005a, p. 4). Below, we describe three key areas of knowledge that support the design
of visualizations with the goal of helping users make sense of the information that
a Digital Earth contains. The data that are available for incorporation in a Digital
Earth are increasingly heterogeneous and more massive than before. These complex,
large datasets include both spatial and aspatial data, all of which must be combined,
‘hybridized’ (i.e., synthesized in meaningful ways), and represented within a visu-
alization environment. Users expect to be able to visualize complex spatiotemporal
phenomena to analyze and understand spatiotemporal dynamics and systems. To
support them in this, considering user interaction and interfaces is necessary to
develop and incorporate intuitive and innovative ways to explore visual displays.
This is especially relevant to virtual and augmented reality, to facilitate exploration
of data and experiencing spaces ‘without hassle’.
Data A key goal of geovisualization is “to support and advance the individual and
collective knowledge of locations, distribution and interactions in space and time”
(Dykes et al. 2005b, p. 702). This remains a challenge due to increases in the diversity
and quantity of data, users, and available visualization techniques and technologies
(Griffin and Fabrikant 2012). The age of the data deluge (Bell et al. 2009) resulted in
the generation of large quantities of spatial data (vector databases, maps, imagery, 3D
models, numeric models, point clouds, etc.), as well as aspatial data (texts, stories,
web data, photographs, etc.) that can be spatialized (Skupin and Buttenfield 1997).
The ‘covisualization’ of those data together, such as in multiple coordinated views
(or linked views, see Roberts 2007), is difficult due to their heterogeneity. This
heterogeneity can be in the data’s source, scale, content, precision, dimension, and/or
temporality. The visual integration of such heterogeneous data requires the careful
design of graphical representations to preserve the legibility of the data (Hoarau and
Christophe 2017).

7.2.1 Representation

Bertin’s seminal work (1967/1983) provides a conceptual framework, the visual
variables, that allows for us to consider the graphical representation of geospatial
information at a fundamental level (although it is important to note that Bertin’s
propositions were not evidence-based, it was rather based on intuition and qualitative
reasoning). Originally, Bertin proposed seven variables: position, size, shape, color
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value, color hue, orientation, and texture. Later work extended Bertin’s framework
to include dynamic variables such as movement, duration, frequency, order, rate of
change, synchronization, (Carpendale 2003; DiBiase et al. 1992; MacEachren 1995)
and variables for 3D displays such as perspective height (Slocum et al. 2008), camera
position, and camera orientation (Rautenbach et al. 2015). Visual variables remain
relevant as a core concept of visualization research and have generated renewed
interest in digital-era research questions, including in fields beyond geovisualization
(e.g.,Mellado et al. 2017).Notably, the information visualization community has also
embraced Bertin’s visual variables (e.g., Spence 2007). Visual complexity is a major
challenge in designing representations of geospatial data, and innovative measures
and analysis methods have been proposed to address this problem (Fairbairn 2006;
Li and Huang 2002; MacEachren 1982; Schnur et al. 2010, 2018; Touya et al. 2016).
Digital Earth’s ‘big data’ challenges these efforts, stretching the capacity of existing
tools to handle and process such datasets as well as the capacity of visualization
users to read, understand, and analyze them (Li et al. 2016). One application area
that is particularly afflicted by visual complexity is research on the urban and social
dynamics that drive spatiotemporal dynamics in cities (Brasebin et al. 2018; Ruas
et al. 2011). Developing approaches to represent spatiotemporal phenomena has been
a long-standing challenge and many options have been investigated over the years
(Andrienko and Andrienko 2006). Despite some progress, many questions remain
(see the “Visualizing Movement” section). Some potential solutions such as using
abstraction and schematization when visualizing urban datasets in Digital Earth can
be found in the fields of data and information visualization (Hurter et al. 2018).

Another key aspect of visual representation design for geospatial data in Digi-
tal Earth applications involves how to deal with uncertainty. Uncertainty, such as
that related to data of past or present states of a location or models of potential
future states, remains difficult to represent in visual displays, and this is a major
challenge for geovisualization designers. Which visual variables might aid in repre-
senting uncertainty? This question has been explored and tested to some degree (e.g.,
MacEachren et al. 2012; Slocum et al. 2003; Viard et al. 2011), although the majority
of research has focused on developing new visualization methods rather than testing
their efficacy (Kinkeldey et al. 2014). There are still no commonly accepted strate-
gies for visualizing uncertainty that are widely applied. MacEachren (2015) suggests
that this is because data uncertainty is only one source of uncertainty that affects rea-
soning and decision making and argues that taking a visual analytics approach (see
the “Geovisual Analytics” section) might be more productive than a communication
approach. Hullman (2016) notes the difficulty of evaluating the role of uncertainty
in decision making as a major barrier to developing empirically validated techniques
to represent uncertainty.
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7.2.2 User Interaction and Interfaces

Since geovisualization environments are expected to provide tools and interaction
modalities that support data exploration, user interaction and interface design are
important topics for geovisualization. The visual display is an interface for the infor-
mation, so users need effective ways to interact with geovisualization environments.
Interactionmodalities in geovisualization environments are ideally optimized or cus-
tomizable for the amount of data, display modes, complexity of spaces or phenom-
ena, and diversity of users (e.g., Hoarau and Christophe 2017). Interaction tools and
modalities are a core interest in human-computer interaction (e.g., Çöltekin et al.
2017) and, in connection with visualization, they are often investigated with con-
cepts explored in the information visualization domain (Hurter 2015; van Wijk and
Nuij 2003), among others. Interaction and how it is designed are especially relevant
for virtual and augmented reality approaches to visualization (see the “Immersive
Technologies—From Augmented to Virtual Reality” section). Some form of inter-
action is required for most modern 2D displays, and it has a very important role
in supporting exploration tasks, but seamless interaction is a necessity in a virtual
or augmented world. Without it, the immersiveness of the visualization—a critical
aspect of both VR and AR—is negatively affected. One approach that is notably at
the intersection of representation design and user interaction design is a set of meth-
ods that are (interactively) nonuniform or space-variant. An example is displays in
which the resolution or level of detail varies across the display in real time according
to a predefined criterion. The best known among these nonuniform display types are
the focus + context and fisheye displays (dating back to the early 1990s, e.g., see
Robertson andMackinlay 1993). Both the focus+ context and fisheye displays com-
bine an overview at the periphery with detail at the center, varying the level of detail
and/or scale across a single display. A variation on the focus + context display has
been named “context-adaptive lenses” (Pindat et al. 2012). Conceptually related to
these approaches, in gaze-contingent displays (GCDs), the level of detail (and other
selected visual variables) is adapted across the display space based on where the user
is looking. This approach draws on perceptual models of the visual field, mimicking
the human visual system. GCDs were proposed as early as the 1970s (see, e.g., Just
and Carpenter 1976) and have continued to attract research interest over time as
the technology developed (e.g., Bektas et al. 2015; Duchowski and Çöltekin 2007;
Duchowski and McCormick 1995). For more discussion of “interactive lenses” in
visualization, see the recent review by Tominski et al. (2017). Various other space-
variant visualization approaches have been proposed in which, rather than varying
the scale or level of detail, the levels of realism or generalization are varied across the
display to support focus+ context interactions with the data. These approaches aim
to smoothly navigate between data and its representation at one scale (e.g., Hoarau
and Christophe 2017), between different levels of generalization across scales (e.g.,
Dumont et al. 2018), or between different rendering styles (Boér et al. 2013; Semmo
and Döllner 2014; Semmo et al. 2012). Mixed levels of realism have been proposed
for regular maps used for data exploration purposes (Jenny et al. 2012) as well as
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for VR. In VR, egocentric-view-VR representations with selective photorealism (a
mix of abstract and photorealistic representations) have been tested in the context
of route learning, memory, and aging and have been shown to benefit users (Lokka
et al. 2018; Lokka and Çöltekin 2019).

Decisions on how to combine data to design representations and user interactions
should be informed by our understanding of how visualization users process visual
information and combine it with their existing knowledge about the location or
phenomenon to make sense of what they see. Thus, building effective visualizations
of geospatial information for a Digital Earth requires an understanding of its users,
their capabilities and their constraints, which we describe in the next section.

7.3 Understanding Users: Cognition, Perception,
and User-Centered Design Approaches for Visualization

A primary way that humans make sense of the world—the real world, an “aug-
mented world” with additional information overlaid, or a virtual word (such as a
simulation)—is by making sense of what we see. Because vision is so important to
human sense-making, visualizations aremajor facilitators of that process and provide
important support for cognition. When effectively designed, visualizations enable us
to externalize some of the cognitive burden to something we can (re)utilize through
our visual perception (Hegarty 2011; Scaife and Rogers 1996). However, our ability
to see something—in the sense of understanding it—is bounded by our perceptual
and cognitive limits. Thus, any visualizations we design to help workwith and under-
stand geospatial information must be developed with the end user in mind, taking
a user-centered design (UCD) approach (Gabbard et al. 1999; Huang et al. 2012;
Jerald 2015; Lloyd and Dykes 2011; Robinson et al. 2005). A UCD approach is use-
ful for understanding perceptual and cognitive limits and for adapting the displays to
these limits. It also helps to evaluate the strengths of newmethods of interacting with
visualizations (Roth et al. 2017). For example, a user-centered approach has been
used to demonstrate that an embodied data axis aids in making sense of multivariate
data (Cordeil et al. 2017). Similarly, UCDwas useful in determiningwhich simulated
city environments lead to the greatest sense of immersion to support participatory
design processes for smart cities (Dupont et al. 2016), assuming that immersion has
a positive effect in this context.
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7.3.1 Making Visualizations Work for Digital Earth Users

7.3.1.1 Managing Information

As briefly noted earlier, a key benefit—and a key challenge—for visualization in the
Digital Earth era is related to the amount of data that is at our fingertips (Çöltekin
and Keith 2011). With so much available data, how can we make sense of it all?
What we need is the right information in the right place at the right time for the
decisions we are trying to make or the activities we are trying to support. Thus,
understanding the context in which information and visualizations of information
are going to be used (Griffin et al. 2017)—what data, by whom, for what purpose, on
what device—is fundamental to designing appropriate and effective visualizations.
For example, ubiquitous sensor networks and continuous imaging of the Earth’s
surface allow for us to collect real-time or near real-time spatial information on fires
and resources available to fight fires, and firefighters would benefit from improved
situation awareness (Weichelt et al. 2018). However, which information should we
show them, and how should it be shown? Are there environmental factors that affect
what information they can perceive and understand fromanARsystem that visualizes
important fire-related attributes (locations of active burns, wind speed and direction)
and firefighting parameters (locations of teammates and equipment, locations of
members of the public at risk)? How much information is too much to process and
use effectively at a potentially chaotic scene?

A great strength of visualization is its ability to abstract: to remove detail and to
reveal the essence. In that vein, realism as a display principle has been called “naive
realism” because realistic displays sometimes impair user performance but users still
prefer them (e.g., Lokka et al. 2018; Smallman and John 2005). The questions of
how much abstraction is needed (Boér et al. 2013; Çöltekin et al. 2015) and what
level of realism should be employed (Brasebin et al. 2018; Ruas et al. 2011) do not
have clear-cut answers. In some cases, we need to follow the “Goldilocks principle”
because too much or too little realism is suboptimal. As Lokka and Çöltekin (2019)
demonstrated, if there is too much realism, we may miss important details because
we cannot hold all the details in our memory whereas if there is too little, we may
find it difficult to learn environments because there are too few ‘anchors’ for the
human memory to link new knowledge of the environment. These issues of how to
abstract data and how it can be effectively visualized for end users are growing in
the era of big data and Digital Earth.

7.3.1.2 Individual and Group Differences

Nearly two decades ago, Slocum et al. (2001) identified individual and group dif-
ferences as a research priority among the many “cognitive and usability issues in
geovisualization” (as the paper was also titled). There was evidence prior to their
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2001 paper and has been additional evidence since then that humans process informa-
tion in a range of ways. Such differences are often based on expertise or experience
(e.g., Griffin 2004; Çöltekin et al. 2010; Ooms et al. 2015) or spatial abilities (e.g.,
Liben and Downs 1993; Hegarty and Waller 2005), and are sometimes based on age
(Liben and Downs 1993; Lokka et al. 2018), gender (Newcombe et al. 1983); culture
(Perkins 2008), confidence and attitudes (e.g., Biland and Çöltekin 2017), or anxiety
(Thoresen et al. 2016), among other factors. For brevity, we do not expand on the root
causes of these differences, as this would require a careful treatment of the “nature
vs. nurture” debate. We know that many of the shortcomings people experience can
be remedied to different degrees based on interventions and/or training. For exam-
ple, spatial abilities, as measured in standardized tests, can be enhanced by training
(Uttal et al. 2013), and expertise/experience and education affect the ways that peo-
ple process information (usually in improved ways, but these forms of knowledge
can also introduce biases). Many of the above factors could be considered cognitive
factors and might be correlated in several ways. A key principle arising from the
awareness that individuals process information differently and that their capacities
to do so can vary (whatever the reason) is that the “designer is not the user” (Richter
et al. 2015, p. 4). A student of geovisualization (we include experts in this definition)
is a self-selected individual who was likely interested in visual information. With
the addition of education to this interest, it is very likely that a design that a geovi-
sualization expert finds easy-to-use (or “user friendly”, a term that is used liberally
by many in the technology sector) will not be easy-to-use or user friendly for an
inexperienced user or a younger/older user.

7.3.1.3 Accessibility

Related to the individual and group differences as described above, another key
consideration is populations with special needs. As in any information display, visu-
alization and interaction in a geovisualization software environment should ideally be
designed with accessibility in mind. For example, visually impaired people can ben-
efit from multimedia augmentation on maps and other types of visuospatial displays
(Brock et al. 2015; Albouys-Perrois et al. 2018). Another accessibility issue linked to
(partial) visual impairment that is widely studied in geovisualization is color vision
impairment. This is because color is (very) often used to encode important informa-
tion and color deficiency is relatively common, with up to eight percent of the world’s
population experiencing some degree of impairment (e.g., Brychtová and Çöltekin
2017a). Because it is one of the more dominant visual variables (Garlandini and
Fabrikant 2009), cartography and geovisualization research has contributed to color
research for many decades (Brewer 1994; Brychtová and Çöltekin 2015; Christophe
2011; Harrower and Brewer 2003). Two of the most popular color-related applica-
tions in use by software designers were developed by cartography/geovisualization
researchers: ColorBrewer (Harrower and Brewer 2003) for designing/selecting color
palettes and ColorOracle (Jenny and Kelso 2007) for simulating color blindness.
Color is a complex andmultifaceted phenomenon even for those who are not affected
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by color vision impairment. For example, there are perceptual thresholds for color
discrimination that affect everyone (e.g., Brychtová and Çöltekin 2015, 2017b), and
how colors are used and organized contributes to the complexity of maps (e.g., Çöl-
tekin et al. 2016a, b). Color-related research in geographic information science also
includes examination of the efficacy of color palettes to represent geophysical phe-
nomena (Spekat and Kreienkamp 2007; Thyng et al. 2016) or natural color maps
(Patterson and Kelso 2004). We include color in the above discussion because it is
one of the strongest visual variables. However, color is not the only visual variable of
interest to geovisualization researchers.Many other visual variables have been exam-
ined and assessed in user studies. For example, the effects of size (Garlandini and
Fabrikant 2009), position, line thickness, directionality, color coding (Monmonier
2018; Brügger et al. 2017), shading, and texture (Biland and Çöltekin 2017; Çöltekin
and Biland 2018) on map reading efficiency have been examined.

It is not possible to provide an in-depth review of all the user studies in the geovi-
sualization domain within the scope of this chapter. However, it is worth noting that if
a design maximizes accessibility, the users benefit and the (consequently) improved
usability of visuospatial displays enables other professionally diverse groups to
access and create their own visualizations: for example, city planners, meteorol-
ogists (e.g., Helbig et al. 2014) and ecoinformatics experts (e.g., Pettit et al. 2010),
all of which are support systems of a ‘full’ future Digital Earth.

7.4 Geovisual Analytics

The science of analytical reasoning with spatial information using interactive visual
interfaces is referred to as geovisual analytics (Andrienko et al. 2007; Robinson
2017). This area of GIScience emerged alongside the development of visual ana-
lytics, which grew out of the computer science and information visualization com-
munities (Thomas and Cook 2005). A key distinction of geovisual analytics from its
predecessor field of geovisualization is its focus on support for analytical reasoning
and the application of computational methods to discover interesting patterns from
massive spatial datasets. A primary aim of geovisualization is to support data explo-
ration. Geovisual analytics aims to go beyond data exploration to support complex
reasoning processes and pursues this aim by coupling computational methods with
interactive visualization techniques. In addition to the development of new technical
approaches and analytical methods, the science of geovisual analytics also includes
research aimed at understanding how people reason with, synthesize, and interact
with geographic information to inform the design of future systems. Progress in
this field has been demonstrated on each of these fronts, and future work is needed
to address the new opportunities and challenges presented by the big data era and
meeting the vision proposed for Digital Earth.
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7.4.1 Progress in Geovisual Analytics

Early progress in geovisual analytics included work to define the key research chal-
lenges for the field. Andrienko et al. (2007) called for decision making support using
space-time data, computational pattern analysis, and interactive visualizations. This
work embodied a shift from the simpler goal of supporting data exploration in geo-
visualization toward new approaches in geovisual analytics that could influence or
direct decision making in complex problem domains. Whereas the goal in geovisu-
alization may have been to prompt the development of new hypotheses, the goal in
geovisual analytics has become to prompt decisions and actions. To accomplish this
goal, GIScience researchers began to leverage knowledge from intelligence analysis
and related domains in which reasoning with uncertain information is required to
make decisions (Heuer 1999; Pirolli and Card 2005). Simultaneously, there were
efforts to modify and create new computational methods to identify patterns in large,
complex data sources. These methods were coupled to visual interfaces to support
interactive engagement with users. For example, Chen et al. (2008) combined the
SaTScan space-time cluster detection method with an interactive map interface to
help epidemiologists understand the sensitivity of the SaTScan approach to model
parameter changes and make better decisions about when to act on clusters that have
been detected. Geovisual analytics have been applied in a wide range of domain con-
texts, usually targeting data sources and problem areas that are difficult to approach
without leveraging a combination of computational, visual, and interactive tech-
niques. Domains of interest have included social media analytics (Chae et al. 2012;
Kisilevich et al. 2010), crisis management (MacEachren et al. 2011; Tomaszewski
andMacEachren 2012), andmovement data analysis (Andrienko et al. 2011; Demšar
and Virrantaus 2010). The following section on “Visualizing Movement” includes a
deeper treatment of the approaches to (and challenges of) using visual analytics for
dynamic phenomena.

A concurrent thread of geovisual analytics research has focused on the design
and evaluation of geovisual analytics tools. In addition to the development of new
computational and visual techniques, progress must also be made in understanding
how geovisual analytics systems aid (or hinder) the analytical reasoning process in
real-world decision making contexts (Çöltekin et al. 2015). Approaches to evaluat-
ing geovisual analytics include perceptual studies (Çöltekin et al. 2010), usability
research (Kveladze et al. 2015), and in-depth case study evaluations of expert use
(Lloyd andDykes 2011).Additionally, newgeovisual analytics approaches have been
developed to support such evaluations (Andrienko et al. 2012; Demšar and Çöltekin
2017), as methods such as eye tracking are capable of creating very large space-time
datasets that require combined computational and interactive visual analysis to be
made sense of.
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7.4.2 Big Data, Digital Earth, and Geovisual Analytics

The next frontier for geovisual analytics is to address the challenges posed by the
rise of big spatial data. Big data are often characterized by a set of so-called V’s, cor-
responding to the challenges associated with volume, velocity, variety, and veracity,
among others (Gandomi and Haider 2015; Laney 2001). Broadly, geovisual analyt-
ics approaches to handling big spatial data need to address problems associated with
analysis, representation, and interaction (Robinson et al. 2017), similar to the chal-
lenges faced by geovisualization designers. New computational methods are needed
to support real-time analysis of big spatial data sources. Representations must be
developed to render the components and characteristics of big spatial data through
visual interfaces (Çöltekin et al. 2017). We also need to know more about how to
design interactive tools that make sense to end users to manipulate and learn from
big spatial data (Griffin et al. 2017; Roth et al. 2017).

The core elements behind the vision for Digital Earth assume that big spatial
data will exist for every corner of our planet, in ways that support interconnected
problem solving (Goodchild et al. 2012). Even if this vision is achieved (challenging
as that may seem), supporting the analytical goals of Digital Earth will require the
development of new geovisual analytics tools and techniques. Major issues facing
humanity today regarding sustainable global development andmitigating the impacts
of climate change necessarily involve the fusion of many different spatiotemporal
data sources, the integration of predictive models and pattern recognition techniques,
and the translation of as much complexity as is possible into visual, interactive
interfaces to support sensemaking and communication.

7.5 Visualizing Movement

One of the most complex design issues in visualization is how to deal with dynamic
phenomena. Movement is an inherent part of most natural and human processes,
including weather, geomorphological processes, human and animal mobility, trans-
port, and trade. We may also be interested in the movement of more abstract phe-
nomena such as ideas or language. Although movement is a complex spatiotemporal
phenomenon, it is often depicted on static maps, emphasizing geographical aspects
of movement. In the context of visualization, “Digital Earth” implies use of a globe
metaphor, wheremovement data is displayed on a globe that can be spun and zoomed
(see Fig. 7.1). In this section, we review map-based representations of movement
that can be used within a 3D globe-based immersive environment. Visual representa-
tions that do not emphasize geographical location (e.g., origin-destination matrices
and various timeline-based representations) are less amenable to being used within a
global immersive environment, though they may have a supporting role as multiple
coordinated views.
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Fig. 7.1 Approaches to visualizing flows in a 3D immersive environment that were investigated by
Yang et al. (2019). Figure is modified based on Yang et al. (2019) with permission from the original
authors

Note that most techniques for visualizing movement on the Earth’s surface were
developed as 2D representations. However, many of these representations can be
placed on the surface of a 3D globe and we can identify where the 3D environment
may offer benefits and disadvantages. Notably, one disadvantage is that 3D environ-
ments often result in occlusion, and this occlusion is only partially addressed through
interaction (Borkin et al. 2011; Dall’Acqua et al. 2013). Below, we begin by visu-
ally depicting individual journeys and progressively review aggregated movement
data representations, which are more scalable and can synthesize and reveal general
movement patterns (the individual trajectories cannot).

7.5.1 Trajectory Maps: The Individual Journey

Individual journeys can be expressed as trajectories that represent the geometrical
paths (routes) of objects through time as a set of timestamped positions. For example,
if we were interested in migrating birds, GPS loggers attached to individual birds
could produce trajectories (see Fig. 7.2 for an example). These may help understand
the route taken, stop-overs, timing, and interactions between individuals. The detail
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Fig. 7.2 A (green) subset of bird tracked trajectories filtered on the spatial region on the map
indicated by the red circle linked to the mouse pointer. These trajectories are identified in green
on the timeline below (time vs altitude), indicating when the journeys occurred, with five of the
journeys shown at the top left (time vs distance, with hourly isochrones). Figure is modified, based
on Slingsby and van Loon (2016) with permission from the original authors

with which the geometrical path is captured depends on the temporal resolution of
the sampled locations. Trajectories can also be reconstructed by stringing together
locations from other sensors, for example, from multiple cameras with automatic
license plate recognition or from a set of georeferenced tweets from a single user.
One aspect of trajectories that is often overlooked is how they are segmented, that
is, where they start and stop over the course of the journey. For tracked animals,
algorithms that segment trajectories based on position or time intervals during which
where there is little movement are common (e.g., Buchin et al. 2011). In the example
above (Fig. 7.2), the nest location was used to segment trajectories into foraging
trips.
Trajectory maps depict individual movement by showing the geometrical traces of
individual journeys on a map. Where there are few trajectories, trajectory maps can
clearly illustrate specific journeys and facilitate visual comparison within an individ-
ual’s journeys or between journeys undertaken by different individuals. An excellent
book by Cheshire and Umberti (2017) uses a whole range of static visualization
methods to illustrate the movements of various types of animals, including trajec-
tory maps. As well as presenting movement traces, trajectory maps can be a useful
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precursor to more substantial and directed analyses (Borkin et al. 2011; Dall’Acqua
et al. 2013).

Map-based representations emphasize the geometry of the path, and it can be dif-
ficult to usemaps to determine temporal aspects of the trajectory, including direction
and speed. One option is to use animation, which only displays the parts of trajecto-
ries that are within a moving temporal window. Although animation may be effective
when presented as part of an existing narrative, it can be difficult to detect trends as it
is hard to remember what came before (Robertson et al. 2008). Various user studies
have investigated animation and its efficiency and effectiveness for spatiotemporal
tasks, with mixed results. The current understanding is that animations can intro-
duce too much cognitive load if the task requires comparisons, thus, animations
must be used cautiously (Robertson et al. 2008; Russo et al. 2013; Tversky et al.
2002). So-called small multiples (a series of snapshots, see Tufte 1983) can be bet-
ter than animations for some tasks. Another option that is similar to small multiples
in the sense that all of the presented information is visible at all times or is easily on
demand is the use of multiple coordinated views (briefly introduced above). With
multiple coordinated views, a temporal representation of the movement is interac-
tively linked to the map. When the mouse is “brushed” over parts of the trajectory
on the map, corresponding parts on the timeline are identified and vice versa (as
shown in Fig. 7.2). Brushing along the timeline has a similar effect as animation
but is more flexible. Although trajectory maps can be good to represent relevant
individual instances of journeys, they do not scale well to situations where there
are more than a few trajectories. The effect of over plotting with multiple crossing
lines often obscures patterns. Making trajectories semitransparent can help to some
degree, as it emphasizes common sections of routes by de-emphasizing those that are
less commonly used.Modifying the color hue—and/or other visual variables or sym-
bols—can help identify individuals or categories of journeys (whichmight include
the purpose of the journey or mode of transport). Hue typically does not facilitate
distinguishing more than approximately ten individuals or categories, but labels and
tooltips can provide such context. Sequential color schemes can indicate continuous
numerical data along trajectories such as speed or height above the ground. Arrows
or tapered lines can help show the direction of movement. To simplify displays, one
can also attempt to simplify the underlying data rather than tweak the display design.
Common approaches include filtering trajectories by various criteria, considering
only origin-destination pairs, or spatiotemporal aggregation (we elaborate on
these approaches below). Trajectory maps can also be shown in a 3D environment.
Space-time cubes (Hägerstrand 1970) are a form of 3D trajectory map (Andrienko
et al. 2003; Kapler and Wright 2004; Kraak 2003b) where the x- and y-axes rep-
resent geographical coordinates and the z-axis represents the progression of time
(see Fig. 7.3 for an example). As with trajectory maps, space-time cubes can indicate
spatiotemporal aspects of small numbers of journeys. However, when more trajecto-
ries are added, the occluding effects can be even more severe than in 2D. Interactive
rotation and zooming of the cube, highlighting trajectories, and interactive filtering
can address the problematic effects of such occlusion but do not scale well to many
trajectories.
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Fig. 7.3 A Space-Time Cube, showing a journey in which a person visits a pool, home, work, a
restaurant and home. Figure based on Kraak (2008) with permission from the original author

In 3D representations, the z-axis can also be used for nontemporal data, which
may create a conflict. Where trajectories define movement in 3D space, the z-axis
can be used to represent a third spatial dimension, that is, it can be used to depict
the height above the ground. There are also many opportunities to depict other
characteristics of trajectories along the z-axis, as illustrated by the “trajectory wall”
(Tominski et al. 2012) shown in Fig. 7.4.

Because the above approaches do not scale well when there are many trajectories,
we must consider simplifying the data and display, such as by filtering the data.
Notably, filtering serves two purposes. The first addresses the fact that trajectory
maps do not scale well in situations in which there are more than a few trajec-
tories. The second is to identify multiple trajectories or groups of trajectories
for comparison. Tobler (1987) suggested subsetting and thresholding to reduce
the number of trajectories on a single map. This involves filtering on the basis of
characteristics of trajectories, such as using geographical (see Fig. 7.5 below) and
temporal windows (see Fig. 7.7) through which trajectories can pass or filtering
the trajectory’s length, importance, or category. These are now routinely facilitated
using interactive methods that support visual exploratory data analysis. Identifying
multiple trajectories or groups of trajectories for comparison includes choosing rep-
resentative trajectories for a set of people or different times of the day or different
days of the week. This identification of trajectories may be manually achieved as
part of an exploratory analysis or geovisualization approach and can be assisted by
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Fig. 7.4 “Trajectory wall” in whichmultiple (and sometimes time-varying) attributes are displayed
vertically along a trajectory, based on Tominski et al. (2012), with permission from the original
authors

Fig. 7.5 Hurter et al.’s (2018) interactions in a 3D immersive environment to explore and filter
a huge set of trajectories. Figure based on Hurter et al. (2018), with permission from the original
authors
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statistical and data mining techniques in a geovisual analytics approach. For exam-
ple, “K-means” clustering can be used to group trajectories into “clusters” (based
on a chosen metric of trajectory similarity) and representative trajectories can be
compared (Andrienko and Andrienko 2011). Visualization techniques that facilitate
such comparisons are simply switching between displaying trajectories or groups of
trajectories by using interactive brushing, superpositioning (where trajectories are
displayed on the same map), or juxtaposition, where maps of groups of trajectories
are displayed side-by-side using small multiples (Tufte 1983).

In summary, trajectory maps are good for showing detailed examples of journeys
but do not scale well to more than a few trajectories. Characteristics of these individ-
ual trajectories can be explored through multiple coordinated views with brushing.
Trajectories are often displayed in maps in 2D, but 3D space-time cubes are also
common. Overplottingmany trajectories with semitransparent lines can help indicate
parts of routes that are commonly taken, and a selected trajectory can be highlighted
using a visual variable if there is a reason to emphasize a particular trajectory. In
addition, trajectories can be filtered, grouped, and visually compared. For higher-
level pattern identification, it is helpful to perform some aggregation, as discussed
in the next section.

7.5.2 Flow Maps: Aggregated Flows Between Places

Flow maps depict movement between locations or regions. Unlike trajectory maps,
they typically do not represent the route or path taken. This is suitable for cases in
which there are origin-destination pairs; for example, county-country migrations
(Fig. 7.6) and public bike hire journeys taken between pairs of bike docking stations
(Fig. 7.7).

Tobler’s (1987) early flowmaps connected locationswith straight lines. However,
curved lines help reduce the undesirable occluding effects of line crossings. Jenny
et al. (2018) provide a comprehensive set of guidelines for designing flow maps.
Wood et al. (2011) also used curved lines to distinguish and visually separate flow
in either direction, using asymmetry in the curve to indicate direction (Fig. 7.7).
Yang et al. (2019) provide specific guidance for designing flow maps on (3D) digital
globes. They recommend taking advantage of the z-axis to design flows with 3D
curvature to help reduce clutter and make the maps more readable and provide
evidence-based advice for displaying flows on 3D globes.

A characteristic of flow data is that it is usually aggregated, with the number
of flows between origin-destination pairs reported. This is facilitated by the fact
that there are often a finite number of spatial units (origins and destinations), as is
the case for bike docking stations or country-country migration data. This makes
them more scalable but, as shown in Fig. 7.6 (Wood et al. 2011), flow maps can
have clutter and occlusion issues similar to those observed in trajectory maps. These
can be partially addressed by filtering as in trajectory maps, but because flows are
usually already aggregated, filtering by geographical area is likely to reduce such
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Fig. 7.6 20,000 county-county USmigration vectors (3% random sample) between 2012 and 2016,
rendered with transparency and anti-aliasing to show ‘occlusion density’. Figure based on Wood
et al. (2011), redrawn by JoWood using data from https://vega.github.io/vega-lite/data/us-10m.json
and https://gicentre.github.io/data/usCountyMigration2012_16.csv

Fig. 7.7 As in Fig. 7.6, but clutter is reduced by filtering county-county flows to and from
Ohio (orange and purple, respectively), where line thickness is proportional to volume and
curved lines allow directions to be distinguished and reduce occlusion. Produced by Jo Wood
using data from https://vega.github.io/vega-lite/data/us-10m.json and https://gicentre.github.io/
data/usCountyMigration2012_16.csv

https://vega.github.io/vega-lite/data/us-10m.json
https://gicentre.github.io/data/usCountyMigration2012_16.csv
https://vega.github.io/vega-lite/data/us-10m.json
https://gicentre.github.io/data/usCountyMigration2012_16.csv
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clutter more effectively to make patterns visible and interpretable (Andrienko and
Andrienko 2011) [see the geographical filtering in the green trajectories shown in
Fig. 7.2]. There are other ways to reduce clutter and providemore interpretable visual
representations of movements, for example, by employing spatial aggregation or
applying edge bundling.

7.5.2.1 Spatial Aggregation of Flows

Spatial aggregation reduces the geographical precision of movement but benefits
visualization. In Fig. 7.6, although the US county-county migration data is already
aggregated by county pair, further aggregating the state-state migration would pro-
duce a more interpretable graphic. However, this additional aggregation is at the
expense of being able to resolve differences within states. In this example, we sug-
gested aggregating the input data by pairs of existing defined regions (counties
and states), but the data can also be aggregated into pairs of data-driven irregu-
lar tessellations (e.g., Voronoi polygons, Fig. 7.8) or regular tessellations (e.g.,
grid cells). Flows can also be generated from full trajectory data (see the above
section) by aggregating the start and end points to spatial units, provided they have
meaningful start and end points. When performing spatial aggregation, it is typical to
disaggregate by temporal unit (e.g., year) and/or by categorical attribute (e.g., gen-
der). This enables comparison of temporal and other attributes, for example, using
small multiples as described in the previous section (e.g., Fig. 7.7 could be arranged
in small multiples by the hour of the day).

Fig. 7.8 Aggregating flows into data-driven Voronoi polygons. Left: Car journey trajectory data,
using transparency to reduce clutter and occlusion. Middle and right: Aggregated flows into data-
driven Voronoi polygons of different scales. Figure based on Andrienko and Andrienko (2011) with
permission from the original authors
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7.5.2.2 Edge Bundling of Flows

Edge bundling is a class of techniques designed to layout flows in interpretable
ways, by ‘bundling’ parts of different flows that go in different directions (see the
example in Fig. 7.9). Bundling techniques are used to reduce occlusion and convey
the underlying movement structure (Holten and van Wijk 2009; Fig. 7.10). Jenny
et al. (2017) provide an algorithm to facilitate this. For cases with a specific origin
or destination of interest, Buchin et al. (2011) suggest an algorithm that aggregates
flows into a tree-like representation that clarifies the flow structure (Fig. 7.11).

7.5.3 Origin-Destination (OD) Maps

OD maps (Wood et al. 2011) are also an important tool. They aggregate flows into a
relatively small number of spatial units based on existing units (e.g., states) or those
that result from a Voronoi- or grid-based tessellation. OD maps are effectively small

Fig. 7.9 Examples of origin-destination maps that are subsetted on a single origin and where an
aggregated tree layout simplifies the visual complex complexity of flows to multiple destinations
(Buchin et al. 2011). Figure based on Buchin et al. (2011), with permission from the original authors

Fig. 7.10 USmigration graph (9780 aggregated origin-destination pairs), in which (a) simply uses
straight lines and the others are bundled using various algorithms (Holten and Van Wijk 2009).
Figure based on Holten and Van Wijk (2009) with permission from the original authors



250 A. Çöltekin et al.

Fig. 7.11 Internal migration in Ireland. Left: a flow map, where line thickness indicates flow.
Middle: spatially-arranged small-multiples of destination maps. Right: OD maps with the same
grid-based layouts at both levels of the hierarchy. Based on Kelly et al. (2013) with permission from
the original authors

multiple destination maps. Cases with irregular spatial units should be organized in a
grid layout that preserves as much of the geographical ‘truth’ as possible. The center
of the labels typically indicates the origin (e.g., of migrants or another phenomenon),
and the maps show the destinations from each origin (Fig. 7.9). Flow maps aid in
visually understanding the structure of movement between places (Jenny et al. 2017).
Below, we disregard the connection between the origin and destination and simply
consider the density of movement.

7.5.4 In-Flow, Out-Flow and Density of Moving Objects

This section concerns movement for which we do not have the connection between
origin and destination. This includes situations in which we only have data on the
outflow (but do not know where the flow goes), inflow (but do not know where the
flow originates from), or the density of moving objects. This can be expressed as
a single value describing the movement for each spatial unit, for example, the out-
migration flow from each county. As described above, the spatial units used may be
derived from existing units (e.g., states) or Voronoi/grid-based tessellations. These
values can be displayed as choropleth maps, in which regions are represented as
tessellating polygons on a map and a suitable color scale is used to indicate in- or
out-movement or the density of moving objects.

When performing spatial aggregation, the data in each spatial unit can be disag-
gregated by temporal unit or by category. Figure 7.12 provides a visual representation
of this, where the density of delivery vehicles is aggregated to 1-km grid squares and
the vehicles in each grid square are disaggregated into densities for five vehicle types,
the days of the week, and 24 h of the day. Many environmental datasets that describe
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Fig. 7.12 Represents the density of moving vehicles in London, by grid square, day of week, hour
of day and vehicle type, using a logarithmic colour scale. Figure based on Slingsby et al. (2010)
with permission from the original authors

the movement of water or air masses do not have a meaningful concept of indi-
vidual journeys. These datasets usually summarize movement as vectors depicting
the flow magnitude and direction within grid cells. Visual representations of these
movements usually take the form of regular arrays of arrows on maps (Fig. 7.13).
Here, vectors represent a summary of ‘movement’ within grid cells. These can be
explored using some of the methods described above, including filtering, temporal
animation, and small multiples. Doing so may result in multiple vectors per grid cell,
which provides an opportunity to symbolize multiple variables as glyphs (Slingsby
2018), for example, for climatic data (Wickham et al. 2012) or a rose diagram at
origin or destination locations. In spatial tessellations, the problem of overlapping
places is not as common. However, the on-screen size of spatial units must be large
enough for the symbolization to be interpreted.

In summary,movement data exists in different forms and can often be transformed.
This section provided an overview of map-based representations for three different
levels of precision for movement data. The reviewed approaches can be used with
digital globes, or a futureDigital Earthwith virtual dashboards throughwhich one can
integrate analytical operations within an AR or VR system. Hurter et al. (2018) show
how interactions in a 3D immersive environment (see the “ImmersiveTechnologies—
From Augmented to Virtual Reality” section) can enable the exploration of large
numbers of individual 3D trajectories. Next, we review the current state of the art in
immersive technologies.
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Fig. 7.13 A wind field map, in which arrows indicate wind direction (arrow orientation towards
the thin end) and strength (arrow length) for grid squares. It indicates aggregated movement per
grid cell. Based on https://github.com/gicentre/litvis/blob/master/examples/windVectors.md with
the original author’s permission and data from http://www.remss.com/measurements/ccmp/

https://github.com/gicentre/litvis/blob/master/examples/windVectors.md
http://www.remss.com/measurements/ccmp/
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7.6 Immersive Technologies—From Augmented to Virtual
Reality

In the virtual and augmented reality (VR and AR) domains, there is almost
“visible” excitement, both in academia (off and on for over 30 years)
and in the private sector (more recently). A 2016 Goldman Sachs analy-
sis predicted that VR and AR would be an 80 billion dollar industry by
2025 (reported on CNBC: https://www.cnbc.com/2016/01/14/virtual-reality-could-
become-an-80b-industry-goldman.html). Arguably, geospatial sciences will not be
the same once immersive technologies such as augmented (AR), mixed (MR), and
virtual reality (VR) have been incorporated into all areas of everyday life. In this
chapter, we use the shorthand xR to refer to all immersive technologies and use the
individual acronyms (AR/MR/VR) to refer to specific technologies. A closely related
term that has recently been gaining momentum is immersive analytics, described
as a blend of visual analytics, augmented reality, and human-computer interaction
(Marriott et al. 2018), which draws on knowledge and experience from several fields
described in this chapter to develop visualizations of geospatial information that
support thinking. We do not elaborate on immersive analytics; see, e.g., Billinghurst
et al. (2018) and Yang et al. (2019). Current technologies for xR hold promise for
the future, despite being strongly “gadget”-dependent and somewhat cumbersome
and ‘involved’ to set up (i.e., they require some technical skill and dedication). Thus,
it remains to be seen whether these immersive experiences will become common-
place. We describe and elaborate on these display technologies below. We begin by
outlining several concepts that are important for xR technology use.

7.6.1 Essential Concepts for Immersive Technologies

Concepts characterizing immersive technologies and their definitions are sometimes
subject to debate. This is mainly because their development involves multiple dis-
ciplines. Because there have been parallel developments in different communities,
similar concepts might be named using different terms. The related technology also
evolves quickly, and a newer/improved version of a concept/approach/method/tool
typically gets a new name to distinguish it from the older versions or because technol-
ogy actors want to “brand” their innovative approach, or there is a scientific paradigm
shift and a new name is needed even though it was based on an older concept. As
in many other interdisciplinary and fast-evolving scientific disciplines, there is con-
siderable discussion and occasional confusion about terminology. This process of
“maturing” terminology is not unique to immersive technologies. One of the first
taxonomies that provided an overview of all xR technologies, and perhaps the most
influential one, was proposed byMilgram and Kishino (1994), who used the concept
of a continuum from reality to virtuality (see Fig. 7.14).

https://www.cnbc.com/2016/01/14/virtual-reality-could-become-an-80b-industry-goldman.html
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Fig. 7.14 Shown are examples from projects in ChoroPhronesis that demonstrate the reality-
virtuality continuum proposed by Milgram and Kishino (1994). Figure designed by Mark Simpson

Their original definitions are more nuanced than this continuum and are challeng-
ing to apply in a fast-developing technology field. Nonetheless, it is useful to revisit
some of their main distinctions for a conceptual organization of the terms in xR.

A confusing, yet central, term is immersion (see the “Virtual Reality” subsection
below). Currently, the commonsense understanding of immersion is different than
its rather narrow focus in the technical VR literature. For example, Slater (2009)
distinguishes immersion from presence, with the former indicating a physical char-
acteristic of the medium itself for the different senses involved. Presence is reserved
for the psychological state produced in response to an immersive experience. To
illustrate a simple example, Fig. 7.15 shows three experimental setups that were
used in a recent study on how different levels of immersion influence the feeling of
being present in a remote meeting (Oprean et al. 2018).

In this study, Oprean et al. (2018) compared a standard desktop setting (the lowest
level of immersion) with a three-monitor setup (medium level of immersion) and an
immersive headset (the Oculus Rift, DK2). One can “order” these technologies along
a spectrum of immersiveness (as in Fig. 7.16), which helps in designing experiments
to test whether or not feeling physically immersed affects aspects of thinking or
collaboration (e.g., on the subjective feeling of team membership). Another key
concept for immersive technologies, and a research topic in itself, is interaction
(also discussed in the “Visualizing Geospatial Information” section). Interaction is
important for any form of immersive technology because the classical “keyboard
and mouse” approach does not work well (or at all) when the user is standing and/or
moving. Interaction, along with immersion, is one of the four “I” terms proposed as
the defining elements of VR; the other two are information intensity and intelligence
of objects, as proposed by MacEachren et al. (1999a) in the 1990s. We elaborate on
the four “I”s and other relevant considerations in the Virtual Reality section because
they are discussed most often in the context of VR, and are relevant for other forms
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Fig. 7.15 Different levels of immersion, with immersiveness increasing from top to bottom.
Increased immersion is supported by a combination of an increased field of view and the use
of an egocentrically fixed rather than an allocentrically fixed reference frame. Based on Oprean
et al. (2017) with the original author’s permission

of xR. In addition to Milgram and Kishino’s (1994) continuum, there are many other
ways to organize and compare immersive technologies. For example, a recent take
on levels of realism and immersion is shown Fig. 7.16. This example extends the
immersiveness spectrum by considering where visualization designs are located on
an additional continuum: abstraction-realism.
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Fig. 7.16 Extending the immersiveness spectrum by also considering where specific visualization
designs are located on an additional continuum: abstraction-realism.Figure byÇöltekin et al. (2016a,
b), CC-BY-3.0

7.6.2 Augmented Reality

In Milgram and Kishino’s (1994) model, the first step from reality toward virtuality
is augmented reality (AR). Augmented reality allows for the user to view virtual
objects superimposed onto a real-world view (Azuma 1997). Technological advance-
ments have allowed for augmented reality to evolve from bulky head-mounted dis-
plays (HMDs) in the 1960s to smartphone applications today (some examples are
featured below), and through specialized (though still experimental) glasses such as
Google Glass or Epson Moverio (Arth and Schmalstieg 2011). Although technology
has truly advanced since the early—bulky and rather impractical—HMDs, there are
still challenges in the adoption of augmented reality for dedicated geospatial appli-
cations in everyday life. These challenges are often technical, such as latency and the
inaccuracy of sensors when using smartphones, and result in inaccuracies in regis-
tration of features and depth ambiguity (Arth and Schmalstieg 2011; Chi et al. 2013;
Gotow et al. 2010). There are also design issues that should be considered and, ide-
ally, user-evaluated when developing and designing a “geospatial” AR application
(Arth and Schmalstieg 2011; Cooper 2011; Kounavis et al. 2012; Kourouthanassis
et al. 2015; Kurkovsky et al. 2012; Olsson 2012; Tsai et al. 2016; Vert et al. 2014).
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Akçayır and Akçayır (2017) and Wu et al. (2013) reviewed the current state of
AR in education. They concluded that AR provides a unique learning environment
because it combines digital and physical objects, an insight relevant to students
and scientists who are learning about geographical systems. An example of AR
in education and research is the “augmented reality sandbox” (https://arsandbox.
ucdavis.edu) that has been widely used, for example, in an urban/landscape design
experiment (Afrooz et al. 2018). A similar application is the “tangible landscape”
(https://tangible-landscape.github.io) (Petrasova et al. 2015). Both of these appli-
cations superimpose an elevation color map, topographic contour lines, and sim-
ulated water on a physical sand model that can be physically (re)shaped by the
user. A tourism-related science and education example is the “SwissARena”, which
superimposes a 3D model on top of topographic maps of Switzerland (Wüest and
Nebiker 2018), enabling smartphone and tablet users to visit museums and other
public spaces through an augmented experience. Motivated by a fundamental (rather
than an applied) question, Carrera and Bermejo Asensio (2017) tested whether the
use of AR improves participants’ (spatial) orientation skills when interpreting land-
scapes. They found a significant improvement in participants’ orientation skills when
using a 3D AR application. However, some pedagogical questions (e.g., how should
AR be used to complement the learning objectives; what is the gap between teaching
and learning?) and other usability gaps (e.g., it was difficult to use at first, unsuitable
for large classes, cognitive overload, expensive technology, and inadequate teacher
ability to use the technology) identified by Akçayır and Akçayır (2017) andWu et al.
(2013) regarding the use of AR in teaching need to be addressed. Given that early
research suggests that AR might aid in developing spatial skills, its potential in edu-
cation (especially in science education) appears to be reasonably high. Furthermore,
there appear to be several benefits of using AR in research. For example, it has been
suggested that AR is an excellent tool for collaborative work among researchers
(Jacquinod et al. 2016). At the time of this writing, there are no common examples of
these types of applications in use, but there have been various experimental imple-
mentations of AR in research and scientific visualization (e.g., Devaux et al. 2018).
Thus, most of the present excitement about AR seems to be based on belief and
intuition, which can be correct but may also mislead.

7.6.3 Mixed Reality

As conceptualized in the Milgram and Kishino (1994) model (Fig. 7.15), the term
Mixed Reality (MR)—sometimes referred to as Hybrid Reality—applies to every-
thing in between the real world and a virtual world. Therefore, the term includes
AR, and the issues described above about AR also apply to MR. MR also includes
augmented virtuality (AV). AV refers to virtual environments that are designed so
that physical objects still play a role. Of the two subcategories of MR (AR and AV),
AR is more developed at this point in time. Nonetheless, AV is relevant in a number
of VR scenarios. For example, when we want haptic feedback, we give users suits

https://arsandbox.ucdavis.edu
https://tangible-landscape.github.io
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or gloves. It is also relevant when we want to interact with the virtual world using
any kind of hardware. Using hardware to drive interaction is the current state of the
art; that is, although there are an increasing number of gesture tracking methods
that map functions onto the body’s natural movements, several of the controls are
physical objects, such as remote controls, often referred to as “wands”, or small
trackable objects attached to the viewers called “lights”. Any combination (hybrid)
environments of physical and virtual objects can be considered a form of MR.We do
not expound on MR in this chapter, and any information presented in the AR section
above and most of the information in the VR section below is relevant to MR.

7.7 Virtual Reality

How should we define virtual reality? There is no consensus on the “minimum
requirements” of VR, though it is understood that an ideal VR system provides
humans experiences that are indistinguishable from an experience that could be real.
Ideally, a VR should stimulate all senses. That is, a virtual apple you eat should
look, smell, and taste real, and when you bite, the touch and sounds should be just
right. Current VR technologies are not there yet. The sense of vision (and the associ-
ated visualizations) has been investigated a great deal and audio research has made
convincing progress, but we have a long way to go in terms of simulating smells,
tastes, and touch. There are no hard and fast rules for “minimum requirements”
for a display to qualify as VR, but there have been various attempts to systemati-
cally characterize and distinguish VR from other types of displays (see Fig. 7.16).
Among these, Sherman and Craig (2003) list four criteria: a virtual world (graph-
ics), immersion, interactivity, and sensory feedback. They distinguish interaction
and sensory feedback in the sense that interaction occurs when there is an inten-
tional user request whereas sensory feedback is embedded at the system level and
is fed to the user based on tracking the user’s body. In the cartographic literature,
a similar categorization was proposed even earlier by MacEachren et al. (1999b) in
which they describe the Four ‘I’s, adding intelligence of objects to Heim’s (1998)
original three ‘I’s: immersion, interactivity, information intensity. The Four ‘I’s and
Sherman and Craig’s criteria have clear overlaps in immersion and interactivity, and
links between a “virtual world” and “information intensity” and between “sensory
feedback” and “intelligence of objects” can be drawn. Notably, some authors make
a distinction between virtual reality and virtual environments: the term virtual real-
ity does not exactly refer to mimicking reality (but an experience that feels real to
the user). Nonetheless, because the word reality can invoke such an impression, the
term virtual environment emerged. The term originated because one can also show
fictional (or planned) environments using a visualization environment, and thus, the
term “environment” more effectively encapsulates the range of things one can do in
such a visualization environment. Below, we give a brief history of VR in domains
that are directly related to Digital Earth and elaborate on what was once described
as a “virtual geographic environment” (VGE).
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7.7.1 Virtual Geographic Environments

An extension of earlier conceptualizations of ‘virtual geography’ (e.g., Batty 1997;
MacEachren et al. 1999a), the term VGE was formally proposed at the beginning
of the 21st century (attributed to Lin and Gong 2001) around the same time as the
seminal book byFisher andUnwin (2001). Since its beginnings, theVGEconcept and
accompanying tools have significantly evolved. A modern description of a VGE is
a digital geographic environment “generated by computers and related technologies
that users can use to experience and recognize complex geographic systems and
further conduct comprehensive geographic analyses, through equipped functions,
includingmultichannel human-computer interactions (HCIs), distributed geographic
modeling and simulations, and network geo-collaborations” (Chen and Lin 2018,
p. 329). Since their conception, VGEs have attracted considerable attention in the
geographic information science research community over the last few decades (e.g.,
Goodchild 2009; Huang et al. 2018; Jia et al. 2015; Konecny 2011; Liang et al.
2015; Mekni 2010; Priestnall et al. 2012; Rink et al. 2018; Shen et al. 2018; Torrens
2015; Zhang et al. 2018; Zheng et al. 2017). Much like the “digital twin” idea,
and well-aligned with the Digital Earth concept, VGEs often aim to mirror real-
world geographic environments in virtual ones. Such a mirrored virtual geographic
environment also goes beyond reality, as it ideally enables its user to visually perceive
invisible or difficult-to-see phenomena in the real world, and explore them inside the
virtual world (e.g., looking at forests at different scales, examining historical time
periods, seeing under the ocean’s surface). As it can incorporate advanced analytic
capabilities, aVGEcan be superior to the realworld for analysts. In an idealVGE, one
can view, explore, experience and analyze complex geographic phenomena. VGEs
are not ‘just’ 3D GIS environments, but there are strong similarities between VGEs
and immersive analytics approaches. A VGE can embed all the tools of a GIS, but a
key point of a VGE is that they are meant to provide realistic experiences, as well as
simulated ones that are difficult to distinguish from real-world experiences. A VGE
would not be ideal if only analytics are needed, as 2D plans combined with plots
may better facilitate the analyst’s goals. The combination of a traditional GIS and
the power of immersive visualization environments offers novel ways to combine
human cognitive abilities with what machines have to offer (Chen and Lin 2018; Lin
et al. 2013a).

7.7.2 Foundational Structures of VGEs

Lin et al. (2013b) designed a conceptual framework that includes four VGE suben-
vironments: data, modeling and simulation, interaction, and collaborative spaces.
They posit that a geographic database and a geographic model are core necessities
for VGEs to support visualization, simulation, and collaboration. Below, we briefly
elaborate on the four VGE subenvironments (Lin et al. 2013b).
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7.7.2.1 Data Space

The “data space” is conceptualized as the first step in the pipeline of creating a VGE.
This is where data are organized, manipulated, and visualized to prepare the digital
infrastructure necessary for aVGE.One can also design this environment so that users
can “walk” in their data and examine it for patterns and anomalies (as in immersive
analytics). The data is ideally comprehensive (i.e., “information intensity” is desir-
able), such that semantic information, location information, geometric information,
attribute information, feature spatiotemporal/qualitative relationships and their evo-
lution processes are considered and organized to form virtual geographic scenarios
with a range of visualization possibilities (e.g., standard VR displays, holograms, or
other xR modes) and thus support the construction of VGEs (Lü et al. 2019).

7.7.2.2 Modeling and Simulation Space

Models and simulations, as the abstraction and expression of geographical phenom-
ena and processes, are important means for modern geographic research (Lin et al.
2015). With the rapid development of networks, cloud/edge computing, and other
modern technologies, modeling and simulation capabilities allow for a large range
of exploration and experimentation types (e.g., Wen et al. 2013, 2017; Yue et al.
2016). VGEs can also integrate such technologies. Chen et al. (2015) and Chen and
Lin (2018) propose that doing so would provide new modes for geographic problem
solving and exploration, and potentially help users understand the Digital Earth.

7.7.2.3 Interaction Space

In general, interaction is what shifts a user from being a passive ‘consumer’ of
information and makes them active producers of new information (see the “Geovi-
sualization” section earlier in this chapter). In VGEs, interaction requires a different
way of thinking than for desktop setups because the aspiration is to create experi-
ences that are comparable to those in the real world (i.e., mouse-and-keyboard type
interactions do not work well in VGEs). Thus, there have been considerable efforts
to track a user’s hands, head, limbs, and eyes to model natural interaction. Interaction
tools play an important role in information transmission between the VGE and its
users (Batty et al. 2017; Voinov et al. 2018).

7.7.2.4 Collaboration Space

In addition to the interaction between a human and a machine, it is important to
consider the interactions between humans, ideally, as it occurs in the real world
(or improving upon real-world collaboration). At present, there is an increasing
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demand for collaborative work, especially when solving complex problems. Com-
plex geographic problem solving may require participants from different domains,
and collaboration-support tools such as VGEs might help them communicate with
each other. There are many examples of collaborative research based on VGEs (e.g.,
Chen et al. 2012; Li et al. 2015; Xu et al. 2011; Zhu et al. 2015). If the four suben-
vironments are well-designed, VGEs could become effective scientific tools and
advance geography research: simulations in a VGE could be systematically and
comprehensively explored to deepen scientists’ understanding of complex systems
such as human-environment interactions. Virtual scenarios corresponding to real-
world scenarios with unified spatiotemporal frameworks can be employed to support
integration of human and environmental resources. With Digital Earth infrastructure
and modern technological developments, geographical problems at multiple scales
can be solved and related virtual scenarios can be developed for deep mining and
visual analysis (e.g., Lin et al. 2013b; Fig. 7.17). Importantly, VGEs can support
collaborative exploration beyond reality. Working with virtual scenarios, users can
communicate and conduct collaborative research free from the constraints of physical
space (and in some cases, time).

This chapter so far has focused on theoretical constructs and examples of geo-
graphical visualization that can be used to represent and provide insights into our
Earth system. However, it is also important to consider how such visualizations can

Fig. 7.17 A VGE example built for air pollution analysis (Lin et al. 2013a). Figure by Lin et al.
(2013a). CC BY-NC-SA 3.0
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be presented to policy and decision-makers to plan for a more sustainable future.
The next section outlines a number of platforms for engaging such end users with
packaged geographical information, known as dashboards.

7.8 Dashboards

A true Digital Earth describes Earth and all its systems, including ecosystems, cli-
mate/atmospheric systems, water systems, and social systems. Our planet faces a
number of great challenges including climate change, food security, an aging popu-
lation, and rapid urbanization. As policy-makers, planners, and communities grapple
with how to address these critical problems, they benefit from digital tools to monitor
the performance of our management of these systems using specific indicators. With
the rise of big data and open data, a number of dashboards are being developed
to support these challenges, enabled by geographical visualization technologies and
solutions (Geertman et al. 2017). Dashboards can be defined as “graphic user inter-
faces which comprise a combination of information and geographical visualization
methods for creating metrics, benchmarks, and indicators to assist in monitoring and
decision-making” (Pettit and Leao 2017).

One can think of dashboards as installations that can provide key indicators of the
performance of a particular Earth system, powered through the construct of Digital
Earth. In 2016, the United Nations launched 17 Sustainable Development Goals to
guide policy and funding priorities until 2030. Each of these goals include a number
of indicators that can be quantified and reported within a Digital Earth dashboard, as
illustrated, for example, such as in SDG Index and Dashboards (https://dashboards.
sdgindex.org/#/) (Sachs et al. 2018).

For illustrative purposes, we focus on one SDG 11—Sustainable Cities and Com-
munities, as there are a number of city dashboard initiatives that aim to provide
citizens and visitors access to a rich tapestry of open data feeds. Data in these feeds
are typically aggregated and presented to the user online and can include, for exam-
ple, data on traffic congestion, public transport performance, air quality, weather
data, social media streams, and news feeds. Users can interact with the data and
perform visual analyses via different/multiple views, which might include graphs,
charts, and maps. Examples include the London Dashboard (Gray et al. 2016) and
the Sydney Dashboard (Pettit et al. 2017a), illustrated in Fig. 7.18.

There are also advanced dashboard platforms that support data-driven policy and
decisions through analytics. For cities, there has been an increase in the number of city
analytics dashboard platforms such as the Australian Urban Research Infrastructure
Network (AURIN) workbench (Pettit et al. 2017b). The AURINworkbench provides
users with access to over 3,500 datasets through an online portal. This portal provides
data and includes more than 100 spatial-statistical tools (Sinnott et al. 2015). The
AURIN workbench (Fig. 7.19) enables users to visualize census data and a number
of other spatial datasets, including the results of statistical analyses through multiple
coordinated (i.e., linked) views. Thus, it enables geovisual analytics as the user

https://dashboards.sdgindex.org/#/
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Fig. 7.18 City of Sydney Dashboard. Figure provided by Chris Pettit

Fig. 7.19 The AURINWorkbench provides a rich geovisual analytics experience. Figure provided
by Chris Pettit

can brush between maps, graphs, charts, and scatterplots to explore the various
dimensions of a city (Widjaja et al. 2014). In an era of smart cities, big data, and
city analytics, an increasing number of geographical visualization platforms include
both data and simulations to benchmark the performance of urban systems.

Dashboard views of the performance of Earth systems such as urban systems have
a number of pros and cons. Dashboards can potentially provide the best available data
on the performance of an urban system or natural asset so that decisions can account
for multiple dimensions, including sustainability, resilience, productivity, and liv-
ability. Dashboards are also a window into the democratization of data and provide
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greater transparency and accountability in policy- and decision-making. However,
there are a number of challenges in developing and applying dashboards; without
good quality indicators and benchmarks, the utility of such digital presentations of
performance can be questionable. Traditionally, dashboards have provided a unidi-
rectional flow of information to their users. However, with the emergence of digital
twins, there may be an opportunity for a true bidirectional flow of data between
dashboards, their users and Earth systems.

7.9 Conclusions

Our understanding of the vision of Digital Earth is that it is a fully functional virtual
reality system. To achieve such a system, we need to master every aspect of relevant
technology and design and keep the users in mind. Visualization is an interdisci-
plinary topic with relevance in many areas of life in the digital era, especially given
that there is much more data to analyze and understand than ever before. Because the
Earth is being observed, measured, probed, listened to, and recorded using dozens
of different sensors, including people (Goodchild 2007), the data we need to build a
Digital Earth is now available (at least for parts of the Earth). Now, the challenge is
to organize these data at a global scale following cartographic principles so that we
can make sense of it. Herein lies the strength of visualization. By visualizing the data
in multiple ways, we can create, recreate, and predict experiences, observe patterns,
and detect anomalies. Recreating a chat with an old neighbor in our childhood living
room 30 years later (e.g., instead of looking at a photo album) is no longer a crazy
thought; we might be recording enough data to be able to do such things soon. The
possibilities are endless. However, as inspiring as this may be, one must understand
how to “do it right”; that is, we have much to learn before we will know what exactly
we should show, when and to whom. In this chapter, we provided an overview of the
current state of the art of topics related to visualization in the context of Digital Earth.
We hope this chapter provided some insights into our current broad understanding
of this challenge.
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Schnur S, Bektaş K, Salahi M et al (2010) A Comparison of Measured and Perceived Visual
Complexity for Dynamic Web Maps. In Proceedings of GIScience 2010, edited by Ross Purves
andRobertWeibel, 1–4. Zürich, Switzerland. http://www.giscience2010.org/pdfs/paper_181.pdf.

Semmo A, Döllner J (2014) An Interaction Framework for Level-of-Abstraction Visualization of
3DGeovirtual Environments. InMapInteract’14, 43–49. Dallas/FortWorth, Texas: ACM. https://
doi.org/10.1145/2677068.2677072.

SemmoA, TrappM, Kyprianidis JE et al (2012) Interactive Visualization of Generalized Virtual 3D
City Models Using Level-of-Abstraction Transitions. Computer Graphics Forum 31: 885–894.
https://doi.org/10.1111/j.1467-8659.2012.03081.x.

Shen S, Gong JH, Liang JM et al (2018) A Heterogeneous Distributed Virtual Geographic Envi-
ronment—Potential Application in Spatiotemporal Behavior Experiments. ISPRS International
Journal of Geo-Information 7: 54. https://doi.org/10.3390/ijgi7020054.

ShermanWR,CraigAB (2003)UnderstandingVR:UnderstandingVirtual Reality: Interface,Appli-
cation, and Design. San Francisco: Morgan Kaufmann Publishers, Inc.

SinnottRO,BaylissC,BromageAet al (2015)TheAustraliaUrbanResearchGateway.Concurrency
and Computation: Practice and Experience 27: 358–375. https://doi.org/10.1002/cpe.3282.

Skupin A, Buttenfield BP (1997) Spatial Metaphors for Visualizing Information Spaces. Account-
ing, Organizations and Society 32: 649–667. https://doi.org/10.1016/j.aos.2007.02.001.

Slater M (2009) Place Illusion and Plausibility Can Lead to Realistic Behaviour in Immersive
Virtual Environments. Philosophical Transactions of the Royal Society B: Biological Sciences
364: 3549–3557. https://doi.org/10.1098/rstb.2009.0138.

Slingsby A (2018) Tilemaps for Summarising Multivariate Geographical Variation. In Paper Pre-
sented at VIS 2018. Berlin, Germany: IEEE.

Slingsby A, van Loon E (2016) Exploratory Visual Analysis for Animal Movement Ecology. Com-
puter Graphics Forum 35 (3): 471–480. https://doi.org/10.1111/cgf.12923.

Slingsby A, Wood J, Dykes J (2010) Treemap Cartography for Showing Spatial and Temporal
Traffic Patterns. Journal of Maps 6: 135–146. https://doi.org/10.4113/jom.2010.1071.

Slocum TA, Blok C, Jiang B et al (2001) Cognitive and Usability Issues in Geovisualiza-
tion. Cartography and Geographic Information Science 28: 61–75. https://doi.org/10.1559/
152304001782173998.

Slocum TA, Cliburn DC, Feddema JJ et al (2003) Evaluating the Usability of a Tool for Visualizing
the Uncertainty of the Future Global Water Balance. Cartography and Geographic Information
Science 30 (4): 299–317. https://doi.org/10.1559/152304003322606210.

Slocum TA, McMaster RB, Kessler FC et al (2008) Thematic Cartography and Geovisualization
(3rd Edition). Upper Saddle Hall, NJ: Prentice Hall.

Smallman HS, John MS (2005) Naive Realism: Misplaced Faith in Realistic Displays. Ergonomics
in Design: The Quarterly of Human Factors Applications 13: 6–13. https://doi.org/10.1177/
106480460501300303.

Spekat A, Kreienkamp F (2007) Somewhere over the Rainbow –Advantages and Pitfalls of Colour-
ful Visualizations in Geosciences. Advances in Science and Research 1: 15—21. https://doi.org/
10.5194/asr-1-15-2007.

Spence R (2007) Information Visualization: Design for Interaction (2nd Edition). Harlow, Essex,
UK: Pearson Education Limited.

Thomas JJ, Cook KA (2005) Illuminating the Path: The Research and Development Agenda for
Visual Analytics. New York: IEEE.

Thoresen JC, Francelet R, Coltekin A et al (2016) Not All Anxious Individuals Get Lost: Trait Anx-
iety and Mental Rotation Ability Interact to Explain Performance in Map-Based Route Learning
in Men. Neurobiology of Learning and Memory 132: 1–8. https://doi.org/10.1016/j.nlm.2016.
04.008.

https://doi.org/10.1080/15230406.2017.1323676
http://www.giscience2010.org/pdfs/paper_181.pdf
https://doi.org/10.1145/2677068.2677072
https://doi.org/10.1111/j.1467-8659.2012.03081.x
https://doi.org/10.3390/ijgi7020054
https://doi.org/10.1002/cpe.3282
https://doi.org/10.1016/j.aos.2007.02.001
https://doi.org/10.1098/rstb.2009.0138
https://doi.org/10.1111/cgf.12923
https://doi.org/10.4113/jom.2010.1071
https://doi.org/10.1559/152304001782173998
https://doi.org/10.1559/152304003322606210
https://doi.org/10.1177/106480460501300303
https://doi.org/10.5194/asr-1-15-2007
https://doi.org/10.1016/j.nlm.2016.04.008


7 Geospatial Information Visualization and Extended Reality … 275

Thyng K, Greene C, Hetl R et al (2016) True Colors of Oceanography: Guidelines for Effective
and Accurate Colormap Selection. Oceanography 29: 9–13. https://doi.org/10.5670/oceanog.
2016.66.

Tobler WR (1987) Experiments In Migration Mapping By Computer. Cartography and Geographic
Information Science 14 (2): 155–163. https://doi.org/10.1559/152304087783875273.

Tomaszewski B, MacEachren AM (2012) Geovisual Analytics to Support Crisis Management:
Information Foraging for Geo-Historical Context. InformationVisualization 11: 339–359. https://
doi.org/10.1177/1473871612456122.

Tominski C, Gladisch S, Kister U et al (2017) Interactive Lenses for Visualization: An Extended
Survey. Computer Graphics Forum 36: 173–200. https://doi.org/10.1111/cgf.12871.

Tominski C, Schumann H, Andrienko G et al (2012) Stacking-Based Visualization of Trajectory
Attribute Data. IEEE Transactions on Visualization and Computer Graphics 18: 2565–2574.
https://doi.org/10.1109/tvcg.2012.265.

Tomko M, Winter S (2019) Beyond Digital Twins-A Commentary. Environment and Planning B in
press. https://doi.org/10.1177/2399808318816992.

Torrens PM (2015) Slipstreaming Human Geosimulation in Virtual Geographic Environments.
Annals of GIS 21: 325–344. https://doi.org/10.1080/19475683.2015.1009489.

Touya G, Hoarau C, Christophe S (2016) Clutter and Map Legibility in Automated Cartography:
A Research Agenda. Cartographica: The International Journal for Geographic Information and
Geovisualization 51: 198–207. https://doi.org/10.3138/cart.51.4.3132.

Tsai TH, Chang HT, Yu MC et al (2016) Design of a Mobile Augmented Reality Application: An
Example of Demonstrated Usability. In UAHCI 2016, 198–205. Cham, Switzerland: Springer
International Publishing. https://doi.org/10.1007/978-3-319-40244-4_19.

Tufte ER (1983) The Visual Display of Quantitative Information. Cheshire, CT: Graphics Press.
Tversky B, Morrison JB and Betrancourt M (2002) Animation: Can It Facilitate? International
Journal of Human-Computer Studies 57: 247–262. https://doi.org/10.1006/ijhc.2002.1017.

UnitedNations PopulationDivision (2018)World Urbanization Prospects: The 2018 Revision. New
York: United Nations.

Uttal DH, Meadow NG, Tipton E et al (2013) The Malleability of Spatial Skills: A Meta-Analysis
of Training Studies. Psychological Bulletin 139: 352–402. https://doi.org/10.1037/a0028446.

van Wijk JJ, Nuij WAA (2003) Smooth and Efficient Zooming and Panning. In INFOVIS’03 Pro-
ceedings of the Ninth Annual IEEE Conference on Information Visualization, 15–22. Seattle,
WA.

Vert S, Dragulescu B, Vasiu R (2014) LOD4AR: Exploring Linked Open Data with a Mobile
Augmented Reality Web Application. In 13th International Semantic Web Conference (ISWC
2014), 185–188. Trentino, Italy.

Viard T, Caumon G, Lévy B (2011) Adjacent versus Coincident Representations of Geospatial
Uncertainty: Which Promote Better Decisions? Computers & Geosciences 37 (4): 511–520.
https://doi.org/10.1016/j.cageo.2010.08.004.

Voinov A, Çöltekin A, Chen M et al (2018) Virtual Geographic Environments in Socio-
EnvironmentalModeling: A FancyDistraction or a Key to Communication? International Journal
of Digital Earth 11: 408–419. https://doi.org/10.1080/17538947.2017.1365961.

Weichelt B, Yoder A, Bendixsen C et al (2018) Augmented Reality Farm MAPPER Development:
Lessons Learned from an App Designed to Improve Rural Emergency Response. Journal of
Agromedicine 23: 284–296. https://doi.org/10.1080/1059924x.2018.1470051.

Wen YN, ChenM, Lu GN et al (2013) Prototyping an Open Environment for Sharing Geographical
AnalysisModels onCloudComputingPlatform. International Journal ofDigital Earth 6: 356–382.
https://doi.org/10.1080/17538947.2012.716861.

Wen YN, Chen M, Yue SS et al (2017) A Model-Service Deployment Strategy for Collaboratively
Sharing Geo-Analysis Models in an Open Web Environment. International Journal of Digital
Earth 10: 405–425. https://doi.org/10.1080/17538947.2015.1131340.

https://doi.org/10.5670/oceanog.2016.66
https://doi.org/10.1559/152304087783875273
https://doi.org/10.1177/1473871612456122
https://doi.org/10.1111/cgf.12871
https://doi.org/10.1109/tvcg.2012.265
https://doi.org/10.1177/2399808318816992
https://doi.org/10.1080/19475683.2015.1009489
https://doi.org/10.3138/cart.51.4.3132
https://doi.org/10.1007/978-3-319-40244-4_19
https://doi.org/10.1006/ijhc.2002.1017
https://doi.org/10.1037/a0028446
https://doi.org/10.1016/j.cageo.2010.08.004
https://doi.org/10.1080/17538947.2017.1365961
https://doi.org/10.1080/1059924x.2018.1470051
https://doi.org/10.1080/17538947.2012.716861
https://doi.org/10.1080/17538947.2015.1131340


276 A. Çöltekin et al.

Wickham H, Hofmann H, Wickham C et al (2012) Glyph-Maps for Visually Exploring Temporal
Patterns in Climate Data and Models. Environmetrics 23: 382–393. https://doi.org/10.1002/env.
2152.

Widjaja I, Russo P, Pettit C et al (2014) Modeling Coordinated Multiple Views of Heterogeneous
Data Cubes for Urban Visual Analytics. International Journal of Digital Earth 8: 558–578. https://
doi.org/10.1080/17538947.2014.942713.

Wood J, Slingsby A, Dykes J (2011) Visualizing the Dynamics of London’s Bicycle-Hire Scheme.
Cartographica: The International Journal for Geographic Information and Geovisualization 46:
239–251. https://doi.org/10.3138/carto.46.4.239.

Wu HK, Lee WY, Chang HY et al (2013) Current Status, Opportunities and Challenges of Aug-
mented Reality in Education. Computers & Education 62: 41–49. https://doi.org/10.1016/j.
compedu.2012.10.024.

Wüest R, Nebiker S (2018) Geospatial Augmented Reality for the Interactive Exploitation of Large-
Scale Walkable Orthoimage Maps in Museums. Proceedings of the ICA 1: 1–6. https://doi.org/
10.5194/ica-proc-1-124-2018.

Xu BL, Lin H, Chiu LS et al (2011) Collaborative Virtual Geographic Environments: A Case Study
of Air Pollution Simulation. Information Sciences 181: 2231–2246. https://doi.org/10.1016/j.ins.
2011.01.017.

YangYL,Dwyer T, JennyB et al (2019)Origin-Destination FlowMaps in Immersive Environments.
IEEE Transactions on Visualization and Computer Graphics 25: 693–703. https://doi.org/10.
1109/tvcg.2018.2865192.

Yue SS, ChenM,Wen YN et al (2016) Service-OrientedModel-Encapsulation Strategy for Sharing
and Integrating Heterogeneous Geo-Analysis Models in an OpenWeb Environment. ISPRS Jour-
nal of Photogrammetry and Remote Sensing 114: 258–273. https://doi.org/10.1016/j.isprsjprs.
2015.11.002.

Zhang F, Hu MY, Che WT et al (2018) Framework for Virtual Cognitive Experiment in Virtual
Geographic Environments. ISPRS International Journal of Geo-Information 7: 36. https://doi.
org/10.3390/ijgi7010036.

Zheng PB, Tao H, Yue SS et al (2017) A Representation Method for Complex Road Networks
in Virtual Geographic Environments. ISPRS International Journal of Geo-Information 6: 372.
https://doi.org/10.3390/ijgi6110372.

Zhu J, Zhang H, Yang XF et al (2015) A Collaborative Virtual Geographic Environment for Emer-
gency Dam-Break Simulation and Risk Analysis. Journal of Spatial Science 61: 133–155. https://
doi.org/10.1080/14498596.2015.1051148.

Arzu Çöltekin is an Associate Professor at the Institute of Interactive Technologies of University
of Applied Sciences and Arts Northwestern Switzerland. Her background is in geographic infor-
mation science and engineering; and her research interests are at the intersection of visuospatial
cognition, human-computer interaction, mixed reality and GIScience. She is a council member
with the ISDE, chairs ISPRS Working Group on Geovisualization, Augmented and Virtual Real-
ity; and is a co-chair of ICA Commission on Visual Analytics.

Amy L. Griffin is a Senior Lecturer in the School of Science at RMIT University in Melbourne,
Australia. Her research is focused on understanding how perceptual, cognitive and emotional pro-
cesses shape how people read maps and think with spatial information. She is currently a co-chair
of the ICA Commission on Cognitive Issues in Geographic Information Visualization.

Aidan Slingsby is a Senior Lecturer at giCentre, Department of Computer Science, City, Uni-
versity of London. He has a background in GIS, but now works more generally in information
visualisation and visual analytics. He is interested in the role of data visualization in the analysis
of data, particularly those that are spatial and temporal.

https://doi.org/10.1002/env.2152
https://doi.org/10.1080/17538947.2014.942713
https://doi.org/10.3138/carto.46.4.239
https://doi.org/10.1016/j.compedu.2012.10.024
https://doi.org/10.5194/ica-proc-1-124-2018
https://doi.org/10.1016/j.ins.2011.01.017
https://doi.org/10.1109/tvcg.2018.2865192
https://doi.org/10.1016/j.isprsjprs.2015.11.002
https://doi.org/10.3390/ijgi7010036
https://doi.org/10.3390/ijgi6110372
https://doi.org/10.1080/14498596.2015.1051148


7 Geospatial Information Visualization and Extended Reality … 277

Anthony C. Robinson is an Associate Professor of Geography at Penn State University. His
science focuses on improving the utility of geospatial information through cartographic design
and user evaluation. Dr. Robinson is Assistant Director of the GeoVISTA Center and Director of
Online Geospatial Education at Penn State, and co-chairs the Commission on Visual Analytics for
the International Cartographic Association.

Sidonie Christophe is a Senior Researcher in Geographic Information Sciences at the Paris-Est
University, at the research Laboratory in Sciences and Technologies in Geographic Information.
She focuses on the design, the perception and the uses of graphic representations for geovisualiza-
tion, augmented and mixed reality and visual spatio-temporal analysis of urban and environmental
dynamics. She is the co-chair of the ISPRS working group on “Geovisualization, VR & AR”, and
the co-chair of the ICA Commission on “Cognitive Issues in Geovisualization”.

Victoria Rautenbach is a Senior Lecturer in the Department of Geography, Geoinformatics and
Meteorology at the University of Pretoria, South Africa. Victoria is the scientific research secre-
tary of the ISPRS WG IV/9 Geovisualization, Augmented and Virtual Reality. She is passionate
about open source, open education and open data. Victoria currently serves on the OSGeo Board
of Directors and the co-chair of GeoForAll.

Min Chen is a Professor and the Vice Director of Key Lab of Virtual Geographic Environment
(Ministry of Education of PRC), Nanjing Normal University, China. His research interests are geo-
graphic modeling and simulation, virtual geographic environment. He is the executive editor of
Annals of GIS and an editor of Environmental Modelling & Software.

Christopher Pettit is a Professor and the Director of City Analytics, UNSW Sydney. His exper-
tise is in the convergence of the fields of city planning and digital technologies including Geo-
graphical Information Sciences (GIS). He is currently the Chair of the Board for CUPUM (Com-
puter in Urban Planning and Urban Management).

Alexander Klippel is a Professor in Geography and Information Sciences at Penn State and the
inaugural director of the Center of Immersive Experiences. This research interests lie at the inter-
face of technology and cognition and address questions such as immersive learning, immersive
decision-making, and the centrality of space for cognitive processes.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

View publication statsView publication stats

http://creativecommons.org/licenses/by/4.0/
https://www.researchgate.net/publication/339201877

	7 Geospatial Information Visualization and Extended Reality Displays
	7.1 Introduction
	7.2 Visualizing Geospatial Information: An Overview
	7.2.1 Representation
	7.2.2 User Interaction and Interfaces

	7.3 Understanding Users: Cognition, Perception, and User-Centered Design Approaches for Visualization
	7.3.1 Making Visualizations Work for Digital Earth Users

	7.4 Geovisual Analytics
	7.4.1 Progress in Geovisual Analytics
	7.4.2 Big Data, Digital Earth, and Geovisual Analytics

	7.5 Visualizing Movement
	7.5.1 Trajectory Maps: The Individual Journey
	7.5.2 Flow Maps: Aggregated Flows Between Places
	7.5.3 Origin-Destination (OD) Maps
	7.5.4 In-Flow, Out-Flow and Density of Moving Objects

	7.6 Immersive Technologies—From Augmented to Virtual Reality
	7.6.1 Essential Concepts for Immersive Technologies
	7.6.2 Augmented Reality
	7.6.3 Mixed Reality

	7.7 Virtual Reality
	7.7.1 Virtual Geographic Environments
	7.7.2 Foundational Structures of VGEs

	7.8 Dashboards
	7.9 Conclusions
	References




