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Abstract

In urban cluttered scenes, a photo provided by a wear-
able camera may be used by a walking law-enforcement
agent as an additional source of information for localizing
themselves, or elements of interest related to public safety
and security. In this work, we study the problem of locat-
ing the epipole, corresponding to the position of the mov-
ing camera, in the field of view of a reference camera. We
show that the presence of outliers in the standard pipeline
for camera relative pose estimation not only prevents the
correct estimation of the epipole localization but also de-
grades the standard uncertainty propagation for the epipole
position. We propose a robust method for constructing an
epipole location map, and we evaluate its accuracy as well
as its level of integrity with respect to standard approaches.

1. Introduction
When a photo is taken within the field of view of a ref-

erence camera, it is possible to pinpoint the person taking
the photo by locating the epipole in the reference view. Lo-
calizing the person wearing the camera has important appli-
cations in crowd surveillance for instance, when the wearer
follows a specific event in the crowd and needs to local-
ize accurately this event in an absolute reference system.
Generally, the epipole localization problem is of significant
interest for a wide range of tasks involving embedded cam-
eras, such as locating law enforcement agents or pedestrian
camera wearers in the field of view of static security cam-
eras, or mutual localization inside swarms of coordinating
UAVs. In these real applications, estimating the confidence
region as a candidate search area is more beneficial than a
single epipole position since a false epipole estimation may
mislead completely the localization of the target. For this
practical reason, the problem we address in this work is
more general than the epipole estimation itself, and it re-
gards its uncertainty estimation, especially how to improve
its reliability.

The epipole of an image pair is defined as the point of

intersection of the baseline with the image plane. The most
widely used approach for computing the epipole position is
derived from the fundamental matrix estimation by singular
value decomposition (SVD). Alternatively, the authors in
[8] attempted to use a direct method based on the invariance
of cross-ratio but fail to surpass the precision of the fun-
damental matrix method. Motion parallax methods [6, 5]
find the epipole by determining the epipolar line with two
points which coincide in the image. It requires to find firstly
the homography for one or two planes inside the observed
scene. In our work, we focus on the general method based
on the fundamental matrix. For the epipole uncertainty es-
timation, the authors in [9] develop a closed-form solution
for the Jacobian of the SVD and make it possible to esti-
mate the epipole uncertainty with a first order propagation
from the fundamental matrix, whose uncertainty is well de-
velopped in many existing works [1, 15, 12].

It is well known that the epipole estimation is unstable,
depending on image content and interest point detection
noise, but also due to the remaining outliers and to pos-
sible degenerate configurations. However, few work has
been done for the reliability of its uncertainty estimation
which is important in practice. Assuming that inliers can
be identified by robust estimation such as RANSAC and the
noise values follow a normal law with a small variance as
typically σ ∈ [0, 1] px, the standard propagation pipeline
proposed in [9] underestimates the epipole location uncer-
tainty and yields a low level of integrity for covering the
true epipole location due to the remaining false matches,
as illustrated by Figure 1. The influence of outlier obser-
vations missed by RANSAC outlier rejection on the uncer-
tainty has also been underlined in [11], when modeling the
uncertainty of the simpler homography transform for image
registration.

In order to set up a more reliable epipole location map,
we develop a method based on multimodal sampling of the
RANSAC process. In accordance with the considered ap-
plication of wearable camera localization, we focus on the
case when the epipole is visible in the view of the reference
camera. The basic idea is to empirically evaluate the uncer-



Figure 1: Illustration of an epipole uncertainty estimation.
For a given pair of images, the matches selected as inliers
by RANSAC (91 out of 208 initial matches) are shown with
green and red lines. There is only one false positive match
which is illustrated by the red line, all the other matches be-
ing true positives. In the figure below (close-up of the scene
in the reference view), the estimated epipole uncertainty on
all inliers (presented by blue ellipse) predicts a small stan-
dard deviation of the estimated epipole, and misses the true
epipole (the red dot). When the single false positive is re-
moved, the epipole ellipse (the green ellipse) predicts the
uncertainty reliably.

tainty by simulating stochastic realizations of the matched
point set. Our work focuses on a family of techniques which
avoid relying explicitly on error models for outlier observa-
tions during uncertainty evaluation. Each of these realiza-
tions is processed following the standard pipeline to com-
pute the epipole location and its uncertainty so that it pro-
vides an elementary geometric model. Global uncertainty is
then derived from the fusion of all these elementary models
using a tractable voting strategy.

The benefits of the proposed stochastic approach are
twofold. First, we propose an epipole localization map
which increases the accuracy in locating the true epipole
while avoiding at the same time to underestimate the under-
lying uncertainty, contrarily to existing approaches. Sec-
ond, our method has a low computational burden as the
sampling process exploits intermediate results performed
nevertheless during the robust estimation step which ad-
dresses outlier rejection.

2. Background

Let M = {xi, yi, x′i, y′i}1≤i≤n denote the set of n puta-
tive point matches between two views. A standard pipeline
to compute the epipole consists in applying firstly RANSAC
on M to filter out false matches, and in estimating the fun-
damental matrix F based on the inlier set I ⊂ M . The
epipole e is derived from F by SVD. As the epipole estima-
tion is based on the computation of the fundamental matrix,
we review first the approaches for the estimation of the fun-
damental matrix uncertainty.

2.1. Fundamental matrix uncertainty

The existing methods for the estimation of the F covari-
ance can be classified, depending on the estimation algo-
rithm, into three categories.

Uncertainty of the 8 point algorithm. With n = 8, F
may be derived by solving the linear system Af = c where
A is the stack of [x′ixi, x

′
iyi, x

′
i, y
′
ixi, y

′
iyi, y

′
i, xi, yi]1≤i≤8

with f = (F11, F12, F13, F21, F22, F23, F31, F32)T and c =
−(1, 1, 1, 1, 1, 1, 1, 1)T . F33 is set to be 1. Under this as-
sumption, we get

f = A−1c, Σf = JXΣXJ
T
X , (1)

where JX is the Jacobian matrix of f with respect to the set
of point matches X . To impose the constraint of rank 2 for
the fundamental matrix, the smallest singular value derived
by SVD of F is forced to be 0. We use Frank2 to denote the
rank 2 fundamental matrix. Then the covariance matrix for
Frank2 can be derived as

ΣFrank2
= JFrank2/f

[
Σf 0
0 0

]
JTFrank2/f

. (2)



where JFrank2/f is the Jacobian matrix of Frank2 with re-
spect to f . The explicit computation for JX and JFrank2/f

can be found in [12].
Uncertainty for least squares estimation (n > 8).

With n > 8, it is possible to apply the Jacobian of the
SVD [9] to least squares estimation for fundamental ma-
trix uncertainty as mentioned in [12]. F can be com-
puted as in [4] by SVD from the matrix B which is the
stack of [x′ixi, x

′
iyi, x

′
i, y
′
ixi, y

′
iyi, y

′
i, xi, yi, 1]1≤i≤n. By

setting f = (F11, F12, F13, F21, F22, F23, F31, F32, F33)T

with ‖f‖ = 1, The covariance matrix of f is

Σf = JSV DΣXJ
T
SV D (3)

One can use the same strategy as with the 8 point algorithm
to impose the rank-2 constraint.

Uncertainty for nonlinear minimization estimation.
When F is estimated iteratively, for example by minimiz-
ing the following criterion:

min
F

n∑
i=1

(d2(x′i, Fxi) + d2(xi, F
Tx′i)), (4)

the covariance of F may be computed with the formula pre-
sented in [15]:

ΣFp
=

2R

n− dp
H−T , ΣF =

∂F

∂Fp
ΣFp

∂F

∂Fp

T

, (5)

whereFp is theF parameterization vector for the estimation
of the fundamental matrix and R is the residual error for
the achieved minimum, dp is the number of independent
parameters of the problem, and n is the number of used
point matches. H is the Hessian matrix of the cost function
related to parameters for the achieved minimum.

The first method is specific for 8 point matches. The
second and third method can be used in general case. Let
us notice that the fundamental matrix uncertainty estimated
by the first and the second method are related to the uncer-
tainty in match localization (due to detector noise), as well
as to their geometrical structure (specified by their coordi-
nates). Differently, the uncertainty of F computed by the
third method depends mainly on the residual error and on
the number of point matches.

2.2. Epipole uncertainty

Building upon the strategies mentioned above, there are
two fundamental approaches to characterizing the uncer-
tainty of the epipole: the analytical solution based on the
introduced covariance matrix estimation for the fundamen-
tal matrix, and a statistical method based on Monte Carlo
simulation.

Analytical pipeline. Given the estimation of the funda-
mental matrix F and its covariance ΣF , the epipole e and

the corresponding e′ are computed by performing the SVD
of F , as the epipoles satisfy the constraints Fe = 0 and
e′FT = 0 respectively. For the epipole covariance, the au-
thors in [9] derive the analytical solution by computing the
Jacobian of the SVD:

Σe = JSV DΣFJ
T
SV D. (6)

Thus, the analytical pipeline consists in firstly estimating
ΣF with the previous presented methods on the inlier set I ,
by assuming that the noise of point matches in I follows
an independent Gaussian distribution with a small variance.
Then Σe is obtained with Equation (6). Specifically, the
epipole and its covariance matrix can be directly extracted
from the parameters Fp and its covariance ΣFp

in Equa-
tion (5) as the parameterization of Fp is based on epipoles
(we refer the reader to [15] for more details).

To visualize the epipole uncertainty related to the esti-
mates e and Σe, we use the k-hyper-ellipsoid based illustra-
tion [10] defined by the following equation:

(x− e)TΣ−1e (x− e) = k2. (7)

By choosing k2 = 5.991, the ellipse represents the 95%
confidence region according to the probability Pχ2(k, 2) for
the epipole to lie inside.

Monte Carlo Simulation. An alternative solution to es-
timate uncertainty is a statistical method based on a stan-
dard Monte-Carlo (MC) simulation [4]. Considering the in-
put point matches contaminated with Gaussian noise, one
can draw multiple point realizations by adding to the input
points some noise following the given noise distribution,
and estimate the epipole with a given estimation method.
The epipole uncertainty is characterized by the distribution
of all the computed epipole realizations. Compared to the
analytical solution, the MC approach avoids the computa-
tion of derivatives and the assumption of linearity with the
price of more expensive computations.

We argue that both the analytical solution and the MC
techniques based on simulating the measurement noise will
not avoid the issue highlighted in Figure 1, since the final
error is not due to the covariance matrix approximations,
but to the incorrect modelling of the observation noise. In
fact, the assumption of Gaussian noise with small variance
is not realistic at all for the outliers. Therefore, we pro-
pose in the following section a solution which overcomes
the above limitations by avoiding to rely on explicit assump-
tions about outlier noise.

3. Method
When the nature of observation noise is unknown, boot-

strapping has been proposed [3] for evaluating the robust-
ness of a solution. We firstly justify the interest of a boot-
strap resampling technique and then present how to inte-
grate it into epipole uncertainty estimation in our work.
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Figure 2: Method overview. The proposed algorithm is divided into two stages: Sampling and Voting. Given the input of
putative match set M , containing true point matches (green dots) and false point matches (red dots), we randomly sample T
sets of minimum number of point matches and then select the sets with the m first largest inlier support during the stage of
sampling. The second stage constructs the final map by cumulative voting of the estimations from these m sets.

Assuming the observations represent a set of indepen-
dent and identically distributed data points D, the bootstrap
process consists in generating different sets of data points
Di by resampling the same number of points from D with
replacement. The same parameter estimation procedure is
then performed on each generated Di. Although it belongs
to the stochastic approach category as well, boostraping dif-
fers from MC approaches, since the solution diversity does
not derive from any noise assumption but from dataset in-
trinsic variability. Instead of sampling data points by fol-
lowing a probably wrong noise distribution, the bootstrap
method samples points exclusively among the actual obser-
vation dataset D. As mentioned in [10], the basic idea is
that the dataset D itself is considered as the best and at the
same time the only available estimator for the underlying
probability distribution when the noise is unknown.

In order to deal with the unknown error distribution in-
troduced by outliers, we adopt an approach for epipole un-
certainty estimation inspired by the bootstrap method. A
key point is that it manages to exploit part of the computa-
tion performed for outlier rejection.

3.1. Proposed algorithm

The core idea is to draw different realizations by sam-
pling point matches inside the given dataset itself. A
straightforward way is to generate sample models by sam-
pling different sets of minimal number of point matches di-
rectly from M and draw the distribution of epipoles esti-
mated from each realization. Although this mechanism is
closely related to RANSAC, the difference is that the lat-
ter process considers all the models instead of only the best
one. For evaluating the uncertainty of the solution, it is not

reliable to rely only on the most consensual model as we
illustrated in Figure 1. However, considering any models is
not a wise choice either, since many of them do not provide
useful information because they capture few inliers, espe-
cially in difficult visual contexts.

In our work, we propose a solution which performs an
accelerated model set simulation by considering models
with a preference based on the number of captured inliers,
illustrated by Figure 2. Let S = {S1, S2, ..., Sk, ..., ST }
be the set of all sets of minimal number of point matches
randomly sampled from M during RANSAC, ranked in de-
creasing order with respect to the size of their inlier sup-
port, denoted by |ISk

|. The epipole uncertainty estimation
is based on these m models estimated from m first sets of
point matches in S: Sm = {S1, S2, ..., Sk, ..., Sm} ⊂ S. In
order to devise a continuous probability map for the epipole
location over the image domain, we present each model
with the epipole ek and the covariance matrix Σek , where
Σek is computed with the propagation formula related to 8
point algorithm (see Equation (2), (6)). For each model, the
uncertainty map of epipole localization is computed by

Pk(p) ∝ exp
{
−1

2
(p− ek)TΣ−1ek (p− ek)

}
, (8)

where p is the pixel position in image domain P of dimen-
sion [0, w]× [0, h]. Pk(p) denotes the probability of p being
the true epipole coordinate given the epipole and its covari-
ance matrix estimated on model Sk. Finally, we compute
the global uncertainty map as the cumulative vote of the
uncertainty map based on all m models, followed by a nor-
malization by dividing with the maximum value over the



map:

P (p) =

∑m
k=1 Pk(p)

max
p∈P

∑m
k=1 Pk(p)

. (9)

This uncertainty map P exhibits the coherence with the
distribution of {ek}1≤k≤m as the maximum value is still
located in the position of ek for each single uncertainty
map P (k). The cumulative voting guarantees to follow the
global consistency among all considered models instead of
only one single estimation. Although more complex fusion
strategies exist, voting is is widely used due to its tractabil-
ity for large numbers of hypotheses.

3.2. Discussion on parameters

The proposed approach has one key parameter, namely
m the number of considered models. The value of m is ex-
pected to relate to the distribution of the support sizes |ISi

|
for the most consensual models, as well as to the largest
number of inliers |IS1

| captured during random sampling
process. Otherwise stated, m is set to make sure that all
the chosen models capture a sufficiently large number of
inliers with respect to the best model. Following our vali-
dation in difficult visual contexts, we set a fixed, reasonably
large valuem = 1000 during the RANSAC sampling stage.
This choice is well adapted in case significant, frequent am-
biguities among models which capture similar numbers of
inliers which are also close to |IS1 |. In less ambiguous
contexts, when the process is most certain about the best
model and the values |ISi

| decay faster, the choice of a fixed
value m may introduce more unreliable, low quality mod-
els. This problem may be easily avoided by setting a thresh-
old τ for the number of inliers during the voting stage. If
|ISi | < τ × |IS1 |, then the model estimated from the set
of point matches Si will be discarded during the cumulative
voting (See Equation (9)). The threshold τ is suggested to
be set in the range 0.7 to 0.9.

3.3. Computational complexity

A significant computational advantage of our approach
is that it is tailored to benefit from the intermediate eval-
uations performed by RANSAC, that are generally wasted
by pose estimation algorithms. Therefore, we make a clear
difference below between the sampling cost which is con-
tained within the RANSAC algorithm, and the additional
incurred cost with respect to outlier rejection.

As it is well known, the number of iterations T per-
formed during RANSAC depends on the approximate ra-
tio of true inliers among the observations, irrespective of
our method. The sorting algorithm required for selecting
the m most consensual models may be performed by inser-
tion operations in a sorted vector, with an overall underlying
complexity of O(T log(m)). This additional cost is negli-

Algorithm Input Estimation Method
Least Squares SIFT ISIFT LS (Eq. (3)), Eq.(6)
Least Squares NN INN LS (Eq. (3)), Eq.(6)

Minimization SIFT ISIFT Min (Eq. (5)), Eq.(6)
Minimization NN INN Min (Eq. (5)), Eq.(6)

Ours SIFT MSIFT Sampling and Voting

Table 1: Summary of compared algorithms.

gible with respect to the F estimation and evaluation of its
support performed at each RANSAC iteration.

For the epipole location voting step (the vote domain be-
ing the image domain as well), the naive complexity will be
O(m × w × h) which may be significant for large images.
However, when applying Equation (8) in order to compute
the uncertainty map for each model, one may constrain the
domain of pixels to be updated p from P to the confidence
region C, where C is the k-hyper-ellipsoid defined in Equa-
tion (7). With this acceptable approximation, the complex-
ity may be significantly reduced to O(m × a × b), with a
and b being the main axes of the uncertainty ellipse. As for
most voting approaches, this second step which is specific
for our algorithm may be trivially parallelized if real time
constraints are critical.

4. Experiments and results
In the experiments part, we test the performance of the

proposed method for epipolar uncertainty estimation with
the public urban dataset used in [14]. Four variants based
on the existing literature are compared with the proposed
method in terms of accuracy and precision for qualitative
and quantitative evaluation.

4.1. Dataset

We firstly choose images from the given dataset with
various change of view and generate different pairs of im-
ages. We keep the ones whose epipole is visible in the refer-
ence view. In order to guarantee sufficient overlap between
two views with a fair estimation of the epipolar geometry,
we remove images pairs whose number of inliers found by
RANSAC is less than 10 or below 20% of putative matches.
The final number of image pairs is 1118. The ground truth
epipole location is computed from the provided calibration
information, which was acquired using Structure From Mo-
tion.

4.2. Implementation

Let MSIFT denote the set of putative point matches be-
tween two views, computed by SIFT with standard ratio test
0.75 [7] and ISIFT the inlier set selected by RANSAC from



(a) Source image (b) LS/Min SIFT (c) LS/Min NN (d) Ours SIFT

Figure 3: Qualitative performance. (a) presents the source image taken in the reference view. (b), (c) and (d) show the epipole
uncertainty estimation in the reference view with different algorithms as mentioned in Table 1. The red dot is the ground
truth epipole location. In (b) and (c), the blue ellipse presents 95% confidence region for the epipole location based on least
squares estimation and the green ellipse for minimization. The proposed estimation is illustrated in (d) by a heat color map
(the yellow color corresponds to the highest probability).

MSIFT . In order to compare with the method in [14], we
apply their geometric neural network onMSIFT to filter out
false matches and generate the inlier set INN .

The proposed method is applied directly on MSIFT .
During sampling stage, we set the number of RANSAC iter-
ations T = 100000 based on the expected ratio of outliers.
The number of considered modelsm = 1000. For voting, τ
is set to be 0.9. The output is an uncertainty map for epipole
location computed by Equation (9). Under this configura-
tion, the standard RANSAC process takes on average 21.3s,
with an addition 2.2s during our algorithm voting stage on
the domain of size 768 × 1024. To compare the proposed
uncertainty estimation of epipole with the standard pipeline
based on the analytical solution (See Section 2.2), we de-
velop four variants depending on the input point matches
and uncertainty estimation method, detailed in Table 1. We
compute a simple uncertainty map with estimated epipole
e and its covariance matrix Σe using Equation (8) for these
variants.

4.3. Evaluation Metric

Given the estimated epipole uncertainty map P and the
ground truth epipole location egd, the evaluation is based on
accuracy as well as precision, defined as follows.

Accuracy. The accuracy represents the predicted likeli-
hood for the true epipole and the precision underlines how
tightly the candidate area is delineated inside the image
space. The accuracy is measured with the score

s = P (egd), (10)

A large score is expected for a prediction with high con-
fidence level. We compute first the score for each pair of
images and then compute the success ratio by counting the
percentage of image pairs whose score is higher than a cho-
sen threshold τs. By setting different values for τs, we ob-
tain the curve of success ratio for each method.

Precision. The precision is measured in terms of
similarity between the estimated uncertainty map P and
ground truth map Pgd, which is defined by setting a value



Pgd(egd) = 1, and null values elsewhere over the domain
of image. This measure is complementary to accuracy,
since high scores across large areas of the image space in-
crease the accuracy. In the following, we present two mea-
sures considered for assessing the similarity between the
two maps. For both these measures, we first normalize the
estimated uncertainty map across the image space in order
to convert it to a proper probability distribution function.

• KL divergence based distance. Given distributions G
and Q, the KL divergence is defined as:

DKL(G ‖ Q) =
∑
x∈χ

G(x)log
G(x)

Q(x)
. (11)

In order to get a symmetric measure, one may also com-
pute the reverse DKL(Q ‖ G) and take the average of
DKL(G ‖ Q) and DKL(Q ‖ G). The Kullback-Leibler
(KL) divergence is widely used for measuring to what
extent two probability distributions are related (a diver-
gence of zero indicating actually identical distributions).
However, in the case of an indicator ground truth dis-
tribution, DKL(Pgd ‖ P ) is null ∀p ∈ P \ {egd}, as
Pgd(p 6= egd) = 0. Thus, it only depends on the value
of P (p = egd). Conversely, DKL(P ‖ Pgd) is not sensi-
tive to the values of P (p) for the same reason. Therefore,
in our setting the KL divergence provides a good estimate
for accuracy (as the score s), but fails to take into account
the overall spatial geometry of the uncertainty map in or-
der to provide helpful information about the localization
precision (i.e. the desirable property according to which
the inferred likelihood map P outputs significant values
around the true epipole location).

• Optimal transport based distance. Optimal transport
(OT) has emerged as a powerful tool to evaluate the sim-
ilarity of two distributions based on their spatial lay-
out [2, 13], by computing the minimal cost in order to
transform a distribution into the other one. In spite of
its suitable behaviour, the use of OT has been limited by
its computational cost in multidimensional spaces (more
details about the underlying formalism may be found
in [2]). However, in our case the optimal transport based
distance also has a simplified form due to the indicator
value in Pgd (viewed as a degenerated point distribution),
and it may be conveniently computed in an exact form as
follows:

DOT (P, Pgd) =
∑
p∈P

P (p) ‖ p− egd ‖2, (12)

when considering the Euclidean norm on R2, denoted by
‖ . ‖2. Unlike the KL divergence, the OT distance is able
to discriminate among multiple distributions which, for
the same score s, place more likelihood in the proximity
of the ground truth epipole location.

Based on the characteristics of the two distance mea-
sures, we choose DOT as the measure of precision. A small
value presents a high level of precision. We compute DOT

between P and Pgd for each pair of image and draw the
normalized histogram of DOT over all image pairs.

4.4. Results

Qualitative Evaluation. We present qualitative evaluation
results using three examples of image pairs in Figure 3. The
above row presents a successful scenario in which the pro-
posed algorithm performs very well in terms of accuracy
and precision with respect to existing algorithms. In this
case, the most consensual model (selected by RANSAC)
is invalid, therefore standard pipelines provide a false un-
certainty estimation. In the middle row, we present a case
where the methods we considered for comparison exhibit
very variable levels of performance, despite the fundamen-
tally similar pipeline used for uncertainty propagation. In
this case, our method still exhibits a very good accuracy. Fi-
nally, the last row shows a failure case, for which all meth-
ods provide wrong evaluations due to the degeneracy of the
fundamental matrix evaluation, since the inlier set is located
exclusively on the same facade.

Overall, the integrity of our method is excellent. In dif-
ficult scenes, it tends to enlarge the uncertainty area which
is a desirable behavior, and will fail only in the presence of
degenerate geometric configurations (very limited overlap
or in the presence of a single planar dominant structure).
Quantitative Evaluation. The quantitative evaluation is
based at the same time on the accuracy as well as on the
precision of the localization.

• Accuracy The accuracy evaluation is presented in Fig-
ure 4(a). The proposed method achieves the best perfor-
mance on accuracy. For other methods based on inliers
of standard RANSAC, even with a very small threshold
of score, their success rate is still below 40%. On the
contrary, the proposed method achieves 40% success rate
even with a large threshold such as 0.6. In agreement
with the behaviour predicted in Section 4.3, Figure 4(d)
shows the KL divergence based distance for the different
methods, which correlates with the score performance.

• Precision The evaluation on precision is shown in Fig-
ure 4(b). Due to a more conservative estimation of the
localization, the proposed method exhibits the largest dis-
tance histogram due to small value predictions over the
image domain, for which the OT distance is very sen-
sitive. However, Figure 4(c) shows the evolution of the
average DOT when the estimated probability maps are
set to zero below a threshold (specified on the horizontal
axis). Once the smallest values are gradually removed,
the average distance of the proposed method approaches
the distance of others methods, a fact which underlines



that the modes of the pdf are closely located to the real
location.
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Figure 4: Quantitative Evaluation. For all evaluated algo-
rithms, (a) compares the percentage of image pairs whose
score is larger than the correspondent threshold. (b) il-
lustrates the normalized histogram of the optimal transport
based distance for the precision evaluation. (c) is the aver-
age of the optimal transport based distance over the tested
image pairs with different score threshold. (d) compares the
histogram of the KL divergence based distance.

Both qualitative and quantitative evaluations reveal that
the proposed method improves the integrity of the estimated
epipole. Compared to the standard pipeline based on a sin-
gle estimation of inliers found by RANSAC, which yields
a low integrity of the estimated epipole due to the presence
of outliers, the proposed multimodal sampling method ex-
plores different model estimations on potentially valid sets
of point matches. The estimation on such sets of matches
helps to decrease the chance to include outliers. The voting
strategy by multiple models follows the global tendency and
finally outputs a reliable prediction for epipole localization.

5. Conclusion
To improve the epipole uncertainty estimation, we pro-

posed a majority voting strategy by sampling multiple mod-
els based on the standard RANSAC and uncertainty propa-
gation pipeline. The constructed probability map provides
at the same time, and contrary to baseline methods, a high
accuracy and a good precision for high probability areas.
Our work opens a promising avenue for coupling the algo-

rithm with a pedestrian detector in order to further constrain
the location of the person acquiring the photo in the refer-
ence view.

Also for future work, we intend to integrate our cumu-
lative sampling approach into a neural network by learning
the voting strategy. Following our study, the KL-divergence
based and OT based distances are good candidates for the
loss function supposed to guide the learning process.
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