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Abstract: The work presented in this paper focus on robot identification and presents a method based on 
the use of instrumental variables (IV). When dealing with en-bloc and offline identification of robots, the 
instrumental matrix constructed with the inverse dynamic model (IDM) and simulated data obtained from 
the simulation of the direct dynamic model (DDM). In this paper, a new recursive IV approach relevant for 
robot identification is presented. The instrumental matrix is constructed with the IDM and the references 
and their derivatives which are previously filtered by the transfer function of the position closed loop. This 
new way of building the instrumental matrix avoids the simulation of the DDM and offers some 
perspectives for online identification and real-time implementation. This recursive IV method termed 
IDIM-RIV (Inverse Dynamic Identification Model Recursive Instrumental Variables) is experimentally 
validated on the two degrees-of-freedom SCARA robot. Finally, some hints for real-time implementation 
are provided. 
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1. INTRODUCTION 

Dynamic models used in robotics are continuous-time models 
resulting from law of Newton and, like all mechanical 
systems, robots exhibit a double-integrator behavior. They 
must be identified while they are operating in closed loop 
(Khalil & Dombre 2002), (Swevers et al. 2007) and (Gautier 
et al. 2013) among others. The standard identification method 
makes use of the inverse model (IDM) which is linear in 
relation to the dynamic parameters and the Least-Squares 
(LS) estimation. This standard method is termed IDIM-LS 
(Inverse Dynamic Identification Model Least Squares). 
Although good results can be obtained provided that an 
appropriate data filtering is used (Swevers et al. 2007)  and 
(Gautier et al. 2013), the approach based on an instrumental 
variables (IV) method proposed in (Janot et al. 2014 a), 
termed IDIM-IV, should be preferred. Indeed, it is known 
that LS estimates are biased when the system is identified in 
closed loop (Van den Hof 1998) and (Gilson et al. 2011). 
However, both the IDIM-LS and IDIM-IV methods 
mentioned above are en-bloc techniques and their recursive 
variants were not discussed nor mentioned. 

For robot identification, the Extended Kalman Filter (EKF) is 
one the most popular algorithms for recursive identification 
of the dynamic parameters, see e.g. (Gautier and Poignet 
2001), (Lightcap and Banks 2010), (Ulrich and Sasiadek 
2011) and (Masi et al. 2012). However, as pinpointed out in 
(Gautier and Poignet 2001), the EKF does not outperform the 
standard approach while the friction parameters are not well 
identified. This may due to the fact that using the direct 
dynamic model (DDM) in order to estimate the dynamic 
parameters is not relevant because of the lack of sensitivity of 
the simulated joint positions, velocities and accelerations 
with respect to parameters’ variations. This was emphasized 
in (Janot et al. 2014 b). In automatic control, recursive IV 
schemes have been deeply investigated and applied to linear 

systems i.e. systems being linear in relation to both the states 
and parameters (Young 1970, 1981), (Söderström & Stoica 
1983), (Söderström & Stoica 1989) and (Young 2011). 
Unfortunately, such recursive approaches are not popular in 
robotics. This may be explained by the fact that the systems 
considered in these references are linear which means that the 
researchers and engineers do not see a clear and 
straightforward way to apply them. In (Boeren et al. 2017),  
the authors present an interesting recursive IV approach that 
makes use of the IDM in order to identify the mechanical 
parameters of a nanopositioning system and they made some 
relationships with (Janot et al. 2014 a). However, the authors 
focused on a batching strategy i.e. the IV estimates are 
calculating over a whole trajectory and not at each time 
sample. Further, the system was still linear with restect to 
states and the parameters. 

Motivated by the results presented in (Boeren et al. 2017), a 
recursive IV approach relevant for robot identification termed 
IDIM-RIV (Inverse Dynamic Identification Model Recursive 
Instrumental Variables) is presented in this paper. The 
instrumental matrix makes use of the IDM filled with the 
reference trajectories and their derivatives which are 
previously filtered by the transfer function of the position 
closed loop. Because simulated data are not used, this way of 
constructing the instrumental matrix avoids the simulation of 
the DDM and this offers interesting perspectives for online 
identification and real-time implementation. The 
experimental results obtained with a 2-DOF planar SCARA 
robot for online and online executions show the relevance of 
the IDIM-RIV method. 

The paper is organized as follows: Section 2 reviews the 
background of robotics while Section 3 presents the IDIM-
RIV method. The experimental results are given in Section 4 
and Section 5 gives some concluding remarks. 

 



 
 

     

 

2. BACKGROUND OF ROBOTICS  

2.1 Inverse dynamic model of robots 

The IDM of robots with n  moving links calculates the 

( )1n ×  joint torques vector τ  as a function of generalized 

coordinates and their derivatives (Khalil & Dombre 2002) 

( ) ( ),= +τ M q q N q qɺɺ ɺ ,   (1) 

where q , qɺ  and qɺɺ  are respectively the ( )1n ×  vectors of 

generalized joint positions, velocities and accelerations; 

( )M q  is the ( )n n×  inertia matrix; ( ),N q qɺ  is the ( )1n ×  

vector of centrifugal, Coriolis, gravitational and friction 
torques. The modified Denavit and Hartenberg (DHM) 
notation allows the user to obtain an IDM which is linear in 
relation to the ( )1b×  vector of base parameters β , i.e. 

( ), ,=τ IDM q q q βɺ ɺɺ ,   (2) 

where ( ), ,IDM q q qɺ ɺɺ  is the ( )n b×  matrix of basis functions 

of bodies dynamics; and b is the number of base parameters. 
Relation (2) represents the Inverse Dynamic Identification 
Model (IDIM). It is recalled that the base parameters are the 
minimum number of the dynamic parameters from which the 
IDM can be calculated. They are obtained from standard 
dynamic parameters by regrouping some of them with linear 
relations (Gautier & Khalil 1990). The standard parameters of 
a link j  are: jXX , jXY , jXZ , jYY , jYZ  and jZZ  the six 

components of the inertia matrix of link j  at the origin of 

frame j ; jMX , jMY  and jMZ  the components of the first 

moment of link j ; jM  the mass of link j ; jIa  a total 

inertia moment for rotor and gears of actuator j ; jFv  and 

jFc  the viscous and Coulomb friction parameters of joint j . 

2.2  Direct dynamic model of robots 

The DDM of a robot expresses the joint accelerations as 
function of the joint torques, positions and velocities (Khalil 
& Dombre 2002). From Newton's law, we have 

( ) ( ),= −M q q τ N q qɺɺ ɺ .   (3) 

Relation (3) shows that the DDM is nonlinear in relation to 
the states and the dynamic parameters. This is the reason why 
the DDM is rarely used in robot identification (Gautier et al. 
2013). 

2.3. Control and data acquisition 

In robotics, Proportional-Derivative (PD) and Proportional-
Integral-Derivative (PID) controls are often used to identify 
β . The joint j  torque, jτ , can be thus written as 

( )( )j j jj j j r jg g C s q qτ ττ ν= = − ,  (4) 

where ( )jC s  is the transfer function of the joint j  

controller; 
jrq  is  the joint j  position reference;  jq  is  the 

joint j  position; 
j

gτ  is the joint j  drive gain; ν  the joint j  

control signal; and s  is the Laplace's variable. The data 

available from the controller are q  and the ( )1n ×  vector of 

the control signals ν , (Gautier et al. 2013). 

2.4. The IDIM-LS identification method 

The IDIM given by (2) is sampled at a measurement 
frequency deonted mf  while robot is tracking the reference 

trajectories ( ), ,r r rq q qɺ ɺɺ . In (2), q  is estimated with q̂  

obtained by filtering the measurements of q  through a 

lowpass Butterworth filter in both the forward and reverse 

directions. ( )ˆ ˆ,q qɺ ɺɺ  are then calculated with a central 

differentiation algorithm of q̂ . Finally, τ  being perturbed by 

high-frequency disturbances, a parallel decimation procedure 
is applied to eliminate torque ripples. All the details are given 
in (Gautier et al. 2013). After the data processing described 
previously, the following over-determined linear system is 
obtained 

( ) ( )ˆ ˆˆ , ,= +y τ X q q q β εɺ ɺɺ ,   (5) 

where ( )y τ  is the ( )1r ×  measurements vector built from 

actual torques τ ; ( )ˆ ˆˆ , ,X q q qɺ ɺɺ  is the ( )r b×  observation 

matrix built from ( )ˆ ˆˆ , ,IDM q q qɺ ɺɺ ; ε  is the ( )1r ×  vector of 

error terms; er n n= ⋅  is the number of rows in (5); and en  is 

the number of samples of each joint j . The IDIM-LS 

estimates are given by 

( ) 1ˆ T T
LS

−
=β X X X y .   (6) 

The statistics of the IDIM-LS method is detailed in (Janot et 
al. 2014 a). 

2.5. The IDIM-IV method 

The IDIM-LS method can be improved by adopting an IV 
approach that requires the construction of an instrumental 
matrix denoted Z . To construct Z , the DDM given by (3) is 
simulated with the previous IV estimates denoted as 1ˆ it

IV
−

β and 

assuming the same references and the same control law 
structure for both the actual and the simulated robots. Sqɺɺ , the 

vector of the simulated joint accelerations, is given by 

( ) ( )1 1ˆ ˆ, , ,it it
S IV S S S S IV

− −= −M q β q τ N q q βɺɺ ɺ  where ,S Sq qɺ  are 

respectively the ( )1n×  vectors of the simulated joint 

positions and velocities calculated by numerical integration 

of the DDM while Sτ  is the ( )1n×  vector of simulated 

torques with 
jSτ , the jth element of Sτ , is given by 



 
 

     

 

( )( )j j j jS j r Sg C s q qττ = − . The instrumental matrix Z  is 

given by 

( )1ˆ, , , it
S S S IV

−=Z X q q q βɺ ɺɺ ,   (7) 

where ( )1ˆ, , , it
S S S IV

−X q q q βɺ ɺɺ  is the ( )r b×  sampled matrix of  

( )1ˆ, , , it
S S S IV

−IDM q q q βɺ ɺɺ . At iteration it , the IV estimates are 

given by 

( ) 1ˆ it T T
IV

−
=β Z X Z y .   (8) 

This iterative process is run until convergence. The statistics 
of the IDIM-IV method is detailed in (Janot et al. 2014 a). 
 

3.  A RECURSIVE INSTRUMENTAL VARIABLES 
APPROACH FOR ROBOT IDENTIFICATION 

In this section, a Recursive IV approach, termed IDIM-RIV, 
relevant for robot identification is presented. This section is 
the theoretical contribution of this paper. 

3.1. Choice of the set of instruments 

To be implementable online, the IDIM-RIV must avoid the 
simulation of the DDM. Otherwise, an IV variant based on a 
batching strategy must be preferred and adopted, as in (Boren 
et al. 2017). 

To do so, let us first consider a joint j  control illustrated in 

Fig. 1. In robotics, it is convenient to consider the nonlinear 
plant of robots as decoupled linear models. The joint j  

decoupled linear model denoted ( )jP s  is a double-integrator 

system, i.e. ( ) 21j jP s J s= , while the nonlinear coupling 

term jp  is considered as a perturbation given by 

( ) ( ), ,
n

j j i i j
i j

p M q N q q
≠

= − − q ɺɺ ɺ  where ( ),j iM q  is 

approximated by a constant inertia denoted jJ  given by 

( )( ),maxj j j j i j j
q

J ZZ Ia M ZZ Ia= + + − −q . Let us now 

consider the closed-loop relations that are given by 

( ) ( ) ( )
j j j jj j r p j qq H s q D s p D sε ε= + + , (9) 

where ( ) ( ) ( ) ( )
jj j jH s g C s P s Den sτ= ,

( ) ( ) ( )
jp jD s P s Den s= , ( ) ( )1

j
D s Den sε = , and 

( ) ( ) ( )1
j j jDen s g C s P sτ= + . 

From relation (6), 
jnfq , the noise-free part of jq , is given by 

( ) ( )
j j jnf j r p jq H s q D s p= +  ,   (10) 

and it follows that 
jnfq  given by (10) must be utilized to 

construct Z . However, because jp  still depends on the base 

parameter, so does 
jnfq . It follows that choosing (10) to 

construct Z  still requires the simulation of the DDM or at 
least the calculation of jp . 

Let 
jnω  be the bandwidth of the joint j  position closed loop. 

In robotics, the gains within ( )jC s  are tuned such that the 

influence of jp  proves to be negligible in order to obtain a 

good tracking (Khalil & Khalil 2002). Hence, below 
jnω , the 

following approximation holds 

( )
j j j

f
nf j r rq H s q q≈ = ,    (11) 

leading to construct Z  with (7) where sq  and its derivatives 

is replaced with f
rq , the ( )1n×  vector of filtered references 

and its derivatives. It yields that for the IDIM-RIV method, 
the instrumental matrix is then given by 

( ), ,f f f
r r r=Z X q q qɺ ɺɺ .    (12) 

Loosely speaking, the instrumental matrix constructed with 
(12)  is the IDM filled with the sampled vector of reference 
trajectories filtered by the position closed loop. Like the 
IDIM-IV method, the IDIM-RIV approach still makes use of 
the IDM. However, unlike the IDIM-IV method, the IDIM-
RIV technique does not require the simulation of the DDM. 

Indeed, the controller ( )jC s  as well as the value of jJ  

being known, the reference trajectories being designed and 
imposed by the user, and the basis functions of the IDM 
being literal expressions that can be explicitly calculated with 
the SYMORO+ software, it is therefore no longer necessary 
to simulate the DDM to construct Z . It results that choosing 

j

f
rq  defined by (11) instead of 

jSq  allows the user to 

construct Z  before running experiments which means that 
Z  is constructed once and for all. As we shall see later, this 
result is particularly promising for real-time implementation 
of the IDIM-RIV method. Interestingly, in (Boren et al. 
2017), the same kind of instrumental matrix is obtained in a 
somewhat different context. 

 

 
Fig. 1. Actual joint j 

 

3.2. Scheme of the IDIM-RIV algorithm 

The IDIM-RIV method is based on a standard recursive IV 
algorithm described by the following equations (see e.g. 
(Söderström and Stoica 1983) or (Young 2011) for the 
details) where kx  (resp. kz ) is the kth ( )n b×  line of X  

(resp. Z ), kk  is the ( )b n×  vector of correction at time k; 



 
 

     

 

and kP  is the ( )b b×  covariance of the IDIM-RIV estimates 

at time k: 

- update of the gain at time k 

( ) 1

1 1 1 1 1
T T

k k k n k k k

−

− − − − −= +k P z I x P z ,   (13) 

- update of the covariance matrix at time k 

1 1 1k k k k k− − −= −P P k x P ,    (14) 

- prediction of the parameters at time k 

( )1 1 1 1
ˆ ˆ ˆ

k k k k k k− − − −= + −β β k y x β .   (15) 

β  is initialized with the Computer Aided Design values 

(CAD values) which are usually given by the manufacturers. 
It is also possible to get an initial value of β  by running the 

IDIM-IV method which is not sensitive the initialization of β

. This way of doing is quite usual, see e.g. (Young 2011) p. 
173. 

3.3. Some hints for real-time implementation for embedded 
systems 

As indicated in the previous sections, the IDIM-RIV method 
does not require the simulation of the DDM resulting in an 
easy-to-implement recursive IV approach suitable for 
embedded systems such as electric motors, mobile robots 
UAV’s... Indeed, most of today microcontrollers are 
equipped of large-size volatile and non-volatile memory 
blocks as well as Floating Point Unit (FPU). It is recalled that 
volatile memory requires power to maintain the stored 
information (typically Random Access Memory - RAM) 
whereas non-volatile memory does not require power to 
maintain the information (typically Read Only Memory - 
ROM). Since the user has all the information needed to 
construct Z  in advance, it is thus possible to store Z  in a 
non-volatile memory and once the system powered on, to 
relocate it into a block of RAM in order to get an effective 
computing time. This relocation is needed because there are 
some wait states (or delays) when fetching the information 
stored in the non-volatile memory. This produces latencies 
while the code is running. Naturally, microcontroller must be 
chosen accordingly to the size of the matrices and vectors 
that are involved in the recursive IV algorithm; the larger the 
sizes of those matrices and vectors are, the more powerful 
microcontroller must be. 

In addition, instructions including matrix operations 
(addition, multiplication, inversion…) can be dealt with 
optimized libraries that are provided by the manufacturers. 
However, when the number of parameters is limited 
(typically less than 5 which is the number of base parameters 
of a 1-dof robot), the instructions can be expanded in order to 
obtain classical algebraic expressions. This way of doing is 
quite usual in real-time programming and limits the number 
of jumps that produce some delays. It should be stressed that 
nonlinear functions (e.g. sine, cosine, square and sign that are 

often present in the basis functions of the IDM) are also 
treated with appropriate and optimized libraries delivered by 
the manufactures. It is no longer required to approximate 
those nonlinear functions by a Taylor series. 

As an indication, let us consider the TMS320F28069 
manufactured and sold by Texas Instruments which has a 
clock rate of 90 MHz and is equipped of a FPU.  The 
equations (13), (14) and (15) were implemented and executed 
in order to simulate the behavior of the EMPS prototype 
which has the following features 4b =  and 1n = . It takes 
only 80.10-6 s to execute the RIV algorithm. 

 

4.  EXPERIMENTAL VALIDATION 

This section presents the experimental validations obtained 
with the SCARA robot. This section contents the 
experimental contribution of this paper. 

4.1 Presentation of the SCARA robot 

The SCARA robot presented Fig. 2 is a 2-dof planar robot. 
The SCARA robot is controlled with a simple PD controller 

whose the desired natural frequency 
j

d
nω  is chosen 

according to the driving capacity without saturation of the 
joint drive. For this robot, we obtain a full bandwidth with 

1
1

d
nω =  rad/s and 10

2

d
nω =  rad/s. It is worth noting that 

several controls including PID control and feedforward 
velocity/acceleration which give better tracking accuracy 
were tried and similar results have been obtained. This shows 
that the IDIM-RIV method is not sensitive to the control 
structure. 

 

Fig. 2. SCARA robot 

The data measurement frequency is mf = 200 Hz. The torque 

data are calculated with (4) while the positions are obtained 
through incremental encoders (2000 and 5000 (lines/rev) for 
joint 1 and 2, respectively) with a 4-fold subdivision of each 
encoder line (8000 and 20000 (pulses/rev) for joint 1 and 2 
respectively). 

The reference trajectories, ( ), ,r r rq q qɺ ɺɺ , are fifth order 

polynomials and their duration is 12s. Since one obtains 

( )( )ˆ ˆˆ , , 25cond =X q q qɺ ɺɺ , the parameters are well excited 

(Gautier and Khalil 1992). 

4.2 Offline experimental results 



 
 

     

 

The IDIM-RIV approach is evaluated offline by comparing 
its results with those obtained with the en-bloc IDIM-IV 
method. The two methods are carried out with the filtered 
positions, q̂ , calculated with a 10 Hz forward and reverse 

Butterworth filter and with the velocities, q̂ɺ , the 

accelerations, q̂ɺɺ , calculated with a central differentiation 

algorithm of q̂ . The maximum bandwidth for the second 

joint being 10
2

d
dyn nω ω= =  rad/s, this leads to choose 

5fq dynω ω≥ , 50fqω ≥  rad/s =8fqω  Hz. It is important to 

note that we can use a forward and reverse filter because the 
methods are evaluated offline; such filters cannot be used for 
online schemes. Finally, we choose a 10 Hz cutoff frequency. 
The parallel decimation is carried out with a lowpass 
Tchebyshef filter with a cutoff frequency 2fp dynω ω≥ , 

0fp 2ω ≥  rad/s =3.18fpω  Hz. Then we choose a 4 Hz cutoff 

frequency. The sample rate mf  is divided by a factor dn =20. 

The IDIM-IV method starts with the regular initialization. 
The IDIM-RIV estimates are initialized with the CAD values 

while 6
0 810=P I . The relative deviations denoted 

j
ˆ% βσ  are 

calculated as ( )
j

ˆ j
ˆ% 100 Cov j, jβσ β= ⋅  where ( )Cov j, j  

is the jth diagonal element of the covariance matrix of the 
IDIM-IV or IDIM-RIV estimates. Finally, the relative errors 

denoted ε̂ y  are computed with ˆˆ IDIM IV−= −ε y Xβ  (resp. 

ˆˆ IDIM RIV−= −ε y Xβ ) for the IDIM-IV method (resp. IDIM-

RIV method). 

 

Table 1. IDIM-IV estimates and IDIM-RIV estimates averaged over 
the 10 last seconds 

Parameters IDM-IV 
j

ˆ% βσ  IDM-RIV 
j

ˆ% βσ  

ZZ1 3.446 1.2% 3.445 1.3% 
FV1 0.010 59.5% 0.005 231.0% 
FC1 0.833 2.5% 0.815 5.3% 
ZZ2 0.063 2.1% 0.062 2.2% 
MX2 0.249 1.2% 0.249 1.4% 
MY2 0.010 452.3% 0.015 942.1% 
FV2 0.021 6.3% 0.020 9.5% 
FC2 0.129 5.1% 0.135 6.2% 

ε̂ y  3.9% 4.8% 

 
The IDIM-IV estimates and the average values of the IDIM-
RIV estimates calculated over the 10 last seconds i.e. when 
the variations of the IDIM-RIV estimates prove to be 
negligible are gathered in Table 1. Likewise their relative 
deviations and the relative errors, they are averaged over the 
ten last seconds. The IDIM-RIV estimates and their 95% 
interval bounds are plotted in Fig. 3 while in Fig. 4 are 
plotted the actual joint torque and the torque predicted with 
the IDIM-RIV estimates (direct comparisons). The IDIM-
RIV estimates being comparable with the IDIM-IV estimates, 
the relative error being less than 5%, the IDIM-RIV estimates 

converging rapidly to their steady-state values and the 
reconstructed torques matching the measured ones, it can be 
concluded that the IDIM-RIV method provides satisfactory 
results. 

 

 
Fig. 3. Convergence of the parameters ZZ1, FV1, FC1, ZZ2, MX2, MY2, 

FV2 and FC2 – 95% interval confidence 

 
Fig. 4. Direct comparisons: blue, measurement; red, estimation and black, 
error 

 

4.3. Online experimental results 
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The IDIM-RIV is now evaluated online. Because forward and 
reverse filters cannot be used, the data captured at time k i.e. 

the ( )2 1×  vector of positions, q , and the ( )2 1×  vector of 

control signal, ν , are filtered with a stable low-pass filter 

with an unitary gain and a bandwidth of =8fqω  Hz. ( )ˆ ˆ,q qɺ ɺɺ  

are then calculated with a backward differentiation algorithm 

of q̂  i.e. ( )1
ˆ ˆ ˆk k k dt−= −q q qɺ  where dt  is the sampling time 

with 1/ mdt f= . We still have mf = 200 Hz. The IDIM-RIV 

estimates are initialized with the CAD values while 
6

0 810=P I . Finally, the IDIM-RIV algorithm is executed via 

a Dspace card. 

The results obtained with the online IDIM-RIV method are 
very close to those exposed in Section 4.2.: the IDIM-RIV 
estimates are comparable with the IDIM-IV estimates, the 
relative error are less than 5%, the IDIM-RIV estimates 
converge rapidly to their steady-state values and the 
reconstructed torques match the measured ones. They are not 
re-shown here for sake of clarity. The IDIM-RIV method 
executed online provides satisfactory results which means 
that the IDIM-RIV method presented in Section 3 can be 
applied for online identification of robots. 

 

5. CONCLUSION 

In this paper, a recursive instrumental variables approach 
suitable for identification of rigid industrial robots, termed 
IDIM-RIV, has been presented and validated offline and 
online with a 2 degrees-of-freedom SCARA robot. The 
instrumental matrix makes use of the inverse dynamic model 
and is constructed with the references and their derivatives 
filtered by the transfer function of the position closed loop. In 
so doing, the instrumental matrix is constructed once for all 
since the simulation of an auxiliary model is no longer 
necessary. This makes the IDIM-RIV method suitable for 
embedded systems. The experimental results showed that the 
IDIM-RIV provides estimates that are comparable with those 
obtained with the en bloc IDIM-IV method and has a rapid 
convergence. 
Future works concern the use of the IDIM-RIV method to 
identify a 6-DOF industrial robot as well as its implantation 
and real-time programming for embedded systems. Finally, 
statistics will be addressed in order to obtain estimates with 
variances as small as possible. 
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