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Abstract—The best plano-convex quartz crystals res-
onators can have quality factors up to a few billion
at low temperature, which makes them interesting for
ultrastable clocks. For this application, it’s best they
are optomechanically actuated. The first step towards
this is to demonstrate they can be used as optical Fabry-
Perot cavities with almost no change to their typical
piezoelectric building. This paper is focused on the
feasability of such optical use.
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I. Introduction, Background
Quartz crystals are used in time standards routinely.

Moreover, the quality of synthetic materials have been
improved up to the point where the product Q× f gets
to 1013 for the best ones at room temperature.

Furthermore, such quartz resonators (QR) in the cryo-
genic 4K region can have quality factors (Q) as high as a
few billion [1].

Earlier studies [2] have shown that the flicker frequency
level of the power spectral density of the fractional fre-
quency fluctuations behaves as Sy(1 Hz)∝ 1

Qa with a≈ 4.
Very good performances can therefore be achieved, with
possible fractional frequency deviation floor, or Allan de-
viation floor, as low as 10−16.

All these considerations qualify cryo-cooled quartz as
a candidate for ultra-stable clock. We need to implement
some vibration control and a way to impede performance-
limiting frequency instabilities due to temperature fluctua-
tions. The latter problem has been solved[3] by the finding
of a specific compensated cut for the quartz crystal in this
temperature region.

To be able to actuate the quartz crystal, piezoelectricity
is usually called upon. In our setup however, this would
bring further noise to account for, because of variable
temperature fluctuations at different stages of the solid
link between the oscillation sustaining system (at room
temperature) and the QR which sits on the cold finger of
the cryorefrigirator.
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A way to circumvent this is to actuate the quartz
optically instead. Indeed, if we are able to use the radiation
pressure, we can avoid thermal dilation fluctations in the
excitation link. Because the radiation pressure is very
weak, we use the fact that the two electrodes used for
actuating the quartz piezoelectrically also are two mirrors
“glued” together with the QR. By sending a laser on these,
we can use the radiation pressure of the hence amplified
light intensity inside the cavity to create vibrations of our
QR. For this, we should modulate the laser intensity at
the acoustic frequency[4]. We will first demonstrate the
feasability of using such QR as Fabry-Perot cavities.

II. Quartz Crystal as a Fabry-Perot Cavity
Typical QR manufactured for frequency references here

at FEMTO-ST are plano-convex crystal cavities, with a
thickness of few mm with a thin layer (around 5−15 nm)
of Chromium on the quartz on top of which a much larger
layer of Gold (around 200 nm) is deposited. The reason
for the Chromium layer is that it sticks well to the quartz,
whereas the Gold does not. Gold, in turn, sticks well onto
the Chromium layer.

The particular QRs we use are plano-convex 1 mm thick
lenses, with a radius of curvature of 250 mm. Figure 1
shows such a metallized QR which does not seem of surface
quality incompatible with our uses. In these conditions, the
g stability factor for a Fabry-Perot cavity is g= 0.996, very
close to 1 when instability for optical cavities starts[5].

Fig. 1. Surface of one of our metallized Quartz Resonator
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Fig. 2. Our experimental setup

Gold, in the infrared region, is reflective to about 98%
[6] for ≈ 100 nm layers. It is generally considered[6] that
films more than ≈ 200 nm are certain to behave just like
their bulk counterpart whereas quantum effects need to be
taken into accout for films thinner than 20 nm.

All these considerations lead us to believe that a com-
mon metallized QR could be used in a straightforward
manner as an optical Fabry-Perot cavity. From these, we
expect a finesse F = π

√
R

1−R with R the intensity reflection
coefficient of the whole Fabry-Perot cavity. In our case, the
Finesse should amount to about F = 155. Furthermore, the
typical Fabry-Perot cavity gives a transmission maximum
and a reflection minimum for the resonance condition
λ= 2L

m with m ∈N∗.

III. Experiment, Results
In our experimental setup, the laser, optical isolator and

EOM are all fibered as seen in figure 2. We have put a λ
2

plate before the beam splitter to be able to compensate
for the birefringence of the QR, and align the polarization
of our beam to one of the QR’s fast or slow axes.

Because of the quartz having an index of refraction
nquartz ≈ 1.54, the wavelength inside is modified with
respect to that of vacuum. This phenomenon accounted
for, the mode-matching demands that we have a waist of
71 µm at the (entrance) plane side, so that the beam’s
radius of curvature matches that of the end mirror.

Our first results with Chromium-Gold coated QR were
discouraging, and it was found that Chromium was a
poor candidate for making a mirror[7]. It is indeed the
Chromium that the light inside the quartz first “sees”.
Eliminating altogether the Chromium layer was investi-
gated, but did not turn out well, as a “blistering”[8] effect
on the gold was observed.

This lead us to use Silver instead, whose intensity
reflection coefficient is comparable to that of Gold at our
wavelengths, and whose main defect with respect to gold is
that it gets oxydated whereas gold does not. On the other
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Fig. 3. Transmission and reflection for a 60-60 nm Ag metallized QR (noise
filtered data).

hand, Silver sticks better to the quart and the “blistering”
effect does not seem to happen as much.

The results obtained for a 60-60 nm Silver metallized
QR were surprising, as there was a frequency shift between
the extrema of the transmitted and the reflected peaks. As
it turns out, this is in fact a known phenomenon[9] and
it is due to the absorption of the mirrors. The measured
difference between the peaks is 58 MHz and the theoretical
value is 37.5 MHz

Contrary to the typical case, the theoretical extrema
of transmission and reflection are limited. In our case,
the transmission and reflection maxima are theoretically
limited to T = 4h and Rmin

Rmax
= 12%. We measure, however,

a reflection visibility of ≈ 3h and a transmission of
≈ 3.10−4.

IV. Conclusions

The common QR can be used as a Fabry-Perot cav-
ity, by adapting the metallization. Investigation is under
progress to better understand the discrepencies between
the theoretical and experimental values. A systematic
investigation of the bandwidths for the transmission and
reflection peaks will be lead.
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