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Abstract—Finding the roots of polynomials is a very important
part of solving real-life problems but the higher the degree of
the polynomials is, the less easy it becomes. In this paper, we
present two different parallel algorithms of the Ehrlich-Aberth
method to find roots of sparse and fully defined polynomials of
high degrees. Both algorithms are based on CUDA technology to
be implemented on multi-GPU computing platforms but each use
different parallel paradigms: OpenMP or MPI. The experiments
show a quasi-linear speedup by using up-to 4 GPU devices
compared to 1 GPU to find the roots of polynomials of degree
up-to 1.4 million. Moreover, other experiments show it is possible
to find the roots of polynomials of degree up-to 5 million.

Index Terms—root finding method, Ehrlich-Aberth method,
GPU, MPI, OpenMP

I. INTRODUCTION

Finding the roots of polynomials of very high degrees
arises in many complex problems of various domains such
as algebra, biology or physics. A polynomial p(x) in C in
one variable x is an algebraic expression in x of the form:

p(x) =

n∑
i=0

αix
i, αn 6= 0, (1)

where {αi}0≤i≤n are complex coefficients and n is a high
integer number. If αn 6= 0 then n is called the degree of the
polynomial. The root-finding problem consists in finding the n
different values of the unknown variable x for which p(x) = 0.
Such values are called roots of p(x). Let {zi}1≤i≤n be the
roots of polynomial p(x), then p(x) can be written as :

p(x) = αn

n∏
i=1

(x− zi), αn 6= 0. (2)

Most of the numerical methods that deal with the poly-
nomial root-finding problems are simultaneous methods, i.e.
the iterative methods to find simultaneous approximations of
the n polynomial roots. These methods start from the initial
approximation of all n polynomial roots and give a sequence
of approximations that converge to the roots of the polyno-
mial. Two examples of well-known simultaneous methods for

root-finding problem of polynomials are the Durand-Kerner
method [1], [2] and the Ehrlich-Aberth method [3], [4].

The convergence time of simultaneous methods drastically
increases with the increasing of the polynomial’s degree. The
great challenge with simultaneous methods is to parallelize
them and to improve their convergence. Many authors have
proposed parallel simultaneous methods [5], [6], [7], [8],
[9], [10], using several paradigms of parallelization (syn-
chronous or asynchronous computations, mechanism of shared
or distributed memory, etc). However, so far until now, only
polynomials not exceeding degrees of less than 100,000 have
been solved.

The recent advent of the Compute Unified Device Archi-
tecture (CUDA) [11], a programming model and a parallel
computing architecture developed by NVIDIA, has revived
parallel programming interest in this problem. Indeed, the
computing power of GPUs (Graphics Processing Units) has
exceeded that of traditional CPUs processors, which makes
it very appealing to the research community to investigate
new parallel implementations for a whole set of scientific
problems in the reasonable hope to solve bigger instances of
well known computationally demanding issues such as the one
beforehand. However, CUDA provides an efficient massive
data computing model which is suited to GPU architectures.
Ghidouche et al. [12] proposed an implementation of the
Durand-Kerner method on a single GPU Tesla 2070. Their
main results showed that a parallel CUDA implementation is
about 10 times faster than the sequential implementation on
a single CPU Intel(R) Xeon(R) CPU E5620@2.40GHz for
sparse polynomials of degree 48,000.

In this paper we propose the parallelization of the Ehrlich-
Aberth (EA) method which has a much better cubic con-
vergence rate than the quadratic rate of the Durand-Kerner
method that has already been investigated in [12]. In the
other hand, EA is suitable to be implemented in parallel
computers according to the data-parallel paradigm. In this
model, computing elements carry computations on the data
they are assigned and communicate with other computing
elements in order to get fresh data or to synchronize. Classi-



cally, two parallel programming paradigms OpenMP and MPI
are used to code such solutions. But in our case, computing
elements are CUDA multi-GPU platforms. This architectural
setting poses new programming challenges but offers also new
opportunities to efficiently solve huge problems, otherwise
considered intractable until recently. To the best of our knowl-
edge, our CUDA-MPI and CUDA-OpenMP codes are the first
implementations of EA method with multiple GPUs for finding
roots of polynomials. Our major contributions include:
• The parallel implementation of EA algorithm on a multi-

GPU platform with a shared memory using OpenMP
API. It is based on threads created from the same system
process, such that each thread is attached to one GPU.
In this case the communications between GPUs are done
by OpenMP threads through shared memory.

• The parallel implementation of EA algorithm on a multi-
GPU platform with a distributed memory using MPI
API, such that each GPU is attached and managed by a
MPI process. The GPUs exchange their data by message-
passing communications. This approach is more used on
clusters to solve very complex problems that are too large
for traditional supercomputers, which are very expensive
to build and run.

• Our method is efficient to compute the roots of sparse
and full polynomials of degree up to 5 million.

The paper is organized as follows. In Section II we present
three different parallel programming models OpenMP, MPI
and CUDA. In Section III we present the implementation of
the Ehrlich-Aberth algorithm on a single GPU. In Section IV
we present the parallel implementations of the Ehrlich-Aberth
algorithm on multiple GPUs using the OpenMP and MPI
approaches. In section V we present our experiments and
discuss them. Finally, Section VI concludes this paper and
gives some hints for future research directions in this topic.

II. PARALLEL PROGRAMMING MODELS

Our objective consists in implementing a root-finding al-
gorithm of polynomials on multiple GPUs. To this end, it
is essential to know how to manage the CUDA contexts of
different GPUs. A direct method to control the various GPUs
is to use as many threads or processes as GPU devices. We
investigate two parallel paradigms: OpenMP and MPI. In this
case, the GPU indices are defined according to the identifiers
of the OpenMP threads or the ranks of the MPI processes.
In this section we present the parallel programming models:
OpenMP, MPI and CUDA.

A. OpenMP

OpenMP (Open Multi-processing) is an application pro-
gramming interface for parallel programming [13]. It is a
portable approach based on the multithreading designed for
shared memory computers, where a master thread forks a
number of slave threads which execute blocks of code in
parallel. An OpenMP program alternates sequential regions
and parallel regions of code, where the sequential regions
are executed by the master thread and the parallel ones

may be executed by multiple threads. During the execution
of an OpenMP program the threads communicate their data
(read and modified) in the shared memory. One advantage of
OpenMP is the global view of the memory address space of
an application. This allows a relatively fast development of
parallel applications with easier maintenance. However, it is
often difficult to get high rates of performances in large scale-
applications.

B. MPI

MPI (Message Passing Interface) is a portable message
passing style of the parallel programming designed specifically
for distributed memory architectures [14]. In most MPI im-
plementations, a computation contains a fixed set of processes
created at the initialization of the program in such a way that
one process is created per processor. The processes synchro-
nize their computations and communicate by sending/receiv-
ing messages to/from other processes. In this case, the data
are explicitly exchanged by message passing while the data
exchanges are implicit in a multithread programming model
like OpenMP and Pthreads. However in the MPI programming
model, the processes may either execute different programs
referred to as multiple program multiple data (MPMD) or
every process executes the same program (SPMD). The MPI
approach is one of the most used HPC programming model
to solve large scale and complex applications.

C. CUDA

CUDA (Compute Unified Device Architecture) is a parallel
computing architecture developed by NVIDIA [11] for GPUs.
It provides a high level GPGPU-based programming model to
program GPUs for general purpose computations. The GPU
is viewed as an accelerator such that data-parallel operations
of a CUDA program running on a CPU are off-loaded onto
GPU and executed by this latter. The data-parallel operations
executed by GPUs are called kernels. The same kernel is
executed in parallel by a large number of threads organized
in grids of thread blocks, such that each GPU multiprocessor
executes one or more thread blocks in SIMD fashion (Single
Instruction, Multiple Data) and in turn each core of the
multiprocessor executes one or more threads within a block.
Threads within a block can cooperate by sharing data through
a fast shared memory and coordinate their execution through
synchronization points. In contrast, within a grid of thread
blocks, there is no synchronization at all between blocks. The
GPU only works on data filled in the global memory and
the final results of the kernel executions must be transferred
out of the GPU. In the GPU, the global memory has lower
bandwidth than the shared memory associated to each mul-
tiprocessor. Thus with CUDA programming, it is necessary
to design carefully the arrangement of the thread blocks in
order to ensure a low latency and a proper use of the shared
memory. As for the global memory accesses, it should also be
minimized.



III. THE EHRLICH-ABERTH ALGORITHM ON A GPU

A. The Ehrlich-Aberth method

The Ehrlich-Aberth method is a simultaneous method [4]
using the following iteration

zk+1
i = zki −

p(zk
i )

p′(zk
i )

1− p(zk
i )

p′(zk
i )

∑j=n
j=1,j 6=i

1
(zk

i −zk
j )

, i = 1, . . . , n (3)

This method contains 4 steps. The first step consists in
the initializing the polynomial. The second step initializes the
solution vector Z using the Guggenheimer method [15] to
ensure that initial roots are all distinct from each other. In step
3, the iterative function based on the Newton’s method [16]
and Weiestrass operator [17] is applied. In our case, the
Ehrlich-Aberth is applied as in (3). Iterations of the EA method
will converge to the roots of the considered polynomial. In
order to stop the iterative function, a stop condition is applied,
this is the 4th step. This condition checks that all the root
modules are lower than a fixed value ε.

∀i ∈ [1, n], |z
k
i − z

k−1
i

zki
| < ε (4)

B. Improving Ehrlich-Aberth method

With high degree polynomials, the EA method suffers from
floating point overflows due to the mantissa of floating points
representations. This induces errors in the computation of p(z)
when z is large.

In order to solve this problem, we propose to modify the
iterative function by using the logarithm and the exponential
of a complex and we propose a new version of the EA method.
This method allows us to exceed the computation of the
polynomials of degree 100,000 and to reach a degree up to
more than 1,000,000. The reformulation of the iteration (3) of
the EA method with exponential and logarithm operators is
defined as follows, for i = 1, . . . , n:

zk+1
i = zki −exp(ln(p(zki ))−ln(p′(zki ))−ln(1−Q(zki ))), (5)

where:

Q(zki ) = exp(ln(p(zki ))−ln(p′(zki ))+ln(

n∑
i 6=j

1

zki − zkj
)). (6)

Using the logarithm and the exponential operators, we can
replace any multiplications and divisions with additions and
subtractions. Consequently, computations manipulate lower
values in absolute values [18]. In practice, the exponential and
logarithm mode is used when a root is outside the circle unit
represented by the radius R evaluated in C language with:

R = exp(log(DBL_MAX)/(2 ∗ n)); (7)

where DBL_MAX stands for the maximum representable
double value and n is the degree of the polynomial.

C. The Ehrlich-Aberth parallel implementation on CUDA

The algorithm 1 shows sketch of the Ehrlich-Aberth method
using CUDA. The first step consists in the initialization of
the input data, for exemple the polynomial P, the derivative
of P and the vector solution Z. Then, all data of the root
finding problem are transfered from the CPU memory to
the GPU global memory, because the GPUs only work on
the data filled in their memories. Next, all the data-parallel
arithmetic operations inside the main loop (while(...))
are executed as kernels by the GPU. The first kernel named
Kernelsave in line 5 of Algorithm 1 consists in saving the
vector of polynomial roots found at the previous time-step
in GPU memory, in order to check the convergence of the
roots after each iteration (line 7, Algorithm 1). Then the new
roots with the new iterations are computed using the EA
method with a Gauss-Seidel iteration mode in order to use the
latest updated roots (line 6). This improves the convergence
compared to the Jacobi method. This kernel is, in practice,
very long since it performs all the operations with complex
numbers with the normal mode of the EA method as in Eq. 3
but also with the logarithm-exponential one as in Eq.( 6, 5).
The last kernel checks the convergence of the roots after each
update of Zk, according to formula Eq. 4 line (7). We used
the functions of the CUBLAS Library (CUDA Basic Linear
Algebra Subroutines) to implement this kernel. The algorithm
terminates its computations when all the roots have converged.

Algorithm 1: Finding roots of polynomials with the
Ehrlich-Aberth method on a GPU
Input: ε (tolerance threshold)
Output: Z (solution vector of roots)

1 Initialize the polynomial P and its derivative P ′;
2 Set the initial values of vector Z;
3 Copy P , P ′ and Z from CPU to GPU;
4 while error > ε do
5 Zprev = KernelSave(Z);
6 Z = KernelUpdate(P, P ′, Z);
7 error = KernelComputeError(Z,Zprev);

8 Copy Z from GPU to CPU;

Listing 1 shows the a simplified version of second kernel
code (some parameters in the kernels have been simplified in
order to increase the readability). As can be seen this kernel
calls multiple kernels, all the kernels for complex numbers and
kernels for the evaluation of a polynomial are not detailed.

Listing 1. Kernels to update the roots
/ / Normal v e r s i o n o f t h e E h r l i c h−Aber th method
_ _ d e v i c e _ _
cuDoubleComplex Firs tH_EA ( i n t i , cuDoubleComplex ∗Z ) {

cuDoubleComplex r e s u l t ;
cuDoubleComplex C , F , Fp ;
i n t j ;
cuDoubleComplex sum ;
cuDoubleComplex un ;



/ / e v a l u a t e t h e p o l y n o m i a l
F = F o n c t i o n ( Z [ i ] ) ;
/ / e v a l u a t e t h e d e r i v a t i v e o f t h e po ly .
Fp= Fonct ionD ( Z [ i ] ) ;

do ub l e mod=Cmodule ( F ) ;
sum . x =0; sum . y =0;
un . x =1; un . y =0;
C=Cdiv ( F , Fp ) ; / / P ( z ) / P ’ ( z )

/ / f o r a l l r o o t s , compute t h e sum
/ / f o r t h e E h r l i c h−Aber th i t e r a t i o n
f o r ( j =0 ; j <P . PolyDegre ; j ++ )
{

i f ( i != j )
{

sum=Cadd ( sum , Cdiv ( un , Csub ( Z [ i ] , Z [ j ] ) ) ) ;
}

}
sum=Cdiv (C , Csub ( un , Cmul (C , sum ) ) ) ; / / C/(1−Csum )
r e s u l t =Csub ( Z [ i ] , sum ) ;
r e t u r n ( r e s u l t ) ;

}

/ / Log Exp v e r s i o n o f t h e E h r l i c h−Aber th method
_ _ d e v i c e _ _
cuDoubleComplex NewH_EA( i n t i , cuDoubleComplex ∗Z ) {

cuDoubleComplex r e s u l t ;
cuDoubleComplex F , Fp ;
cuDoubleComplex one , denomina to r , sum ;
i n t j ;
one . x =1; one . y =0;
sum . x =0;
sum . y =0;

/ / e v a l u a t e t h e p o l y n o m i a l w i th
/ / t h e LogExp v e r s i o n
Fp = LogFonct ionD ( Z [ i ] ) ;
/ / e v a l u a t e t h e d e r i v a t i v e o f t h e p o l y n o m i a l
/ / w i th t h e LogExp v e r s i o n
F = LogFonc t ion ( Z [ i ] ) ;

cuDoubleComplex FdivFp=Csub ( F , Fp ) ;

/ / f o r a l l r o o t s , compute t h e sum
/ / f o r t h e E h r l i c h−Aber th i t e r a t i o n
f o r ( j =0 ; j <P . degrePolynome ; j ++ )
{

i f ( i != j )
{

sum=Cadd ( sum , Cdiv ( un , Csub ( Z [ i ] , Z [ j ] ) ) ) ;
}

}

/ / t h e n t e r m i n a t e t h e c o m p u t a t i o n
/ / o f t h e E h r l i c h−Aber th method
d e n o m i n a t o r =Cln ( Csub ( un , Cexp ( Cadd ( FdivFp , Cln ( sum ) ) ) ) ) ;
r e s u l t =Csub ( FdivFp , d e n o m i n a t o r ) ;
r e s u l t =Csub ( Z [ i ] , Cexp ( r e s ) ) ;

r e t u r n r e s u l t ;

}

/ / k e r n e l s t o u p d a t e a r o o t i
_ _ g l o b a l _ _
vo id Dev_EA ( i n t i , cuDoubleComplex ∗Z , i n t ∗ f i n i s h e d ,

i n t s i z e ) {
i n t i = b l o c k I d x . x∗blockDim . x+ t h r e a d I d x . x ;
i f ( i < s i z e ) {

/ / i f t h e r o o t needs t o be u p d a t e d
i f ( ! f i n i s h e d [ i ] ) {

/ / a c c o r d i n g t o t h e module o f t h e r o o t
i f ( Cmodule ( Z [ i ] ) <= maxRadius )

/ / s e l e c t s t h e normal v e r s i o n
Z [ i ] = Firs tH_EA ( i , Z ) ;

e l s e
/ / o f t h e Log Exp v e r s i o n
Z [ i ] = NewH_EA( i , Z ) ;

r e t u r n c ;
}

}
}

The development of this code is a rather long task due to the
development of all the kernels that compute the parts ported
on the GPU. This comes in particular from the fact that it
is very difficult to debug CUDA running threads like threads
on a CPU host. In the following section the GPU parallel
implementation of the Ehrlich-Aberth method with OpenMP
and MPI is presented.

IV. THE EHRLICH-ABERTH ALGORITHM ON MULTIPLE
GPUS

In order to manage the CUDA contexts of different GPUs,
two parallel paradigms are investigated: OpenMP and MPI.
In this section we present the OpenMP-CUDA and the MPI-
CUDA approaches used to implement the Ehrlich-Aberth
algorithm on multiple GPUs.

A. An OpenMP-CUDA approach

Our OpenMP-CUDA implementation of EA algorithm is
based on the hybrid OpenMP and CUDA programming model.
This algorithm is presented in Algorithm 2. All the data are
shared with OpenMP among all the OpenMP threads. The
shared data are the solution vector Z, the polynomial to solve
P , its derivative P ′, and the error vector error. The number
of OpenMP threads is equal to the number of GPUs, each
OpenMP thread binds to one GPU, and it controls a part of the
shared memory. More precisely each OpenMP thread will be
responsible for updating its own part of the vector Z. This part
is called Zloc in the following. Then all GPUs will have a grid
of computation organized according to the device performance
and the size of data on which it runs the computation kernels.

To compute one iteration of the EA method each GPU
performs the followings steps. First, roots are shared with
OpenMP and the computation of the local size for each GPU
is performed (line 4). Each thread starts by copying all the
previous roots inside its GPU (line 5). At each iteration,
the following operations are performed. First the vector Z is
transferred from the CPU to the GPU (line 7). Each GPU
copies the previous roots (line 8) and it computes an iteration
of the EA method on its own roots (line 9). For that all
the other roots are used. The local error is computed on the
new roots (line 10) and the maximum of the local errors is
computed on all OpenMP threads (line 11). At the end of an
iteration, the updated roots are copied from the GPU to the
CPU (line 12) and each CPU directly updates its own roots in
the shared memory arrays containing all the roots.



Algorithm 2: Finding roots of polynomials with the
Ehrlich-Aberth method on multiple GPUs using OpenMP

Input: ε (tolerance threshold)
Output: Z (solution vector of roots)

1 Initialize the polynomial P and its derivative P ′;
2 Set the initial values of vector Z;
3 Start of a parallel part with OpenMP (Z, error, P , P ′

are shared variables);
4 Determine the local part of the OpenMP thread;
5 Copy P , P ′ from CPU to GPU;
6 while error > ε do
7 Copy Z from CPU to GPU;
8 Zprev

loc = KernelSave(Zloc);
9 Zloc = KernelUpdate(P, P ′, Z);

10 errorloc = KernelComputeError(Zloc, Z
prev
loc );

11 error = max(errorloc);
12 Copy Zloc from GPU to Z in CPU;

B. A MPI-CUDA approach

Our parallel implementation of EA to find the roots of
polynomials using a CUDA-MPI approach follows a similar
approach to the one used in CUDA-OpenMP. Each processor
is responsible for computing its own part of roots using
all the roots computed by other processors at the previous
iteration. The difference between both approaches lies in the
way processors communicate and exchange data. With MPI,
processors need to send and receive data explicitly. So in
Algorithm 3, after the initialization phase all the processors
have the same Z vector. Then they need to compute the
parameters used by the MPI_AlltoAll routines (line 4). In
practice, each processor needs to compute its offset and its
local size. Processors need to allocate memory on their GPU
and need to copy their data on the GPU (line 5). At the
beginning of each iteration, a processor starts by transferring
the whole vector Z from the CPU to the GPU (line 7). Only
the local part of Zprev is saved (line 8). After that, a processor
is able to compute an updated version of its own roots (line 9)
with the EA method. The local error is computed (line 10) and
the global error is also computed using MPI_Reduce (line
11). Then the local roots are transferred from the GPU memory
to the CPU memory (line 12) before being exchanged between
all processors (line 13) in order to give to all processors the
last version of the roots (with the MPI_AlltoAll routine). If
the convergence is not satisfied, a new iteration is executed.

V. EXPERIMENTS

We study two categories of polynomials: sparse polynomials
and full polynomials.
A sparse polynomial is a polynomial for which only some
coefficients are not null. In this paper, we consider sparse
polynomials for which the roots are distributed on 2 distinct
circles:

∀α1α2 ∈ C,∀n1, n2 ∈ N∗; p(z) = (zn1 −α1)(z
n2 −α2) (8)

Algorithm 3: Finding roots of polynomials with the
Ehrlich-Aberth method on multiple GPUs using MPI
Input: ε (tolerance threshold)
Output: Z (solution vector of roots)

1 Initialize the polynomial P and its derivative P ′;
2 Set the initial values of vector Z;
3 Determine the local part of the MPI process;
4 Computation of the parameters for the MPI_AlltoAll;
5 Copy P , P ′ from CPU to GPU;
6 while error > ε do
7 Copy Z from CPU to GPU;
8 Zprev

loc = KernelSave(Zloc);
9 Zloc = KernelUpdate(P, P ′, Z);

10 errorloc = KernelComputeError(Zloc, Z
prev
loc );

11 error =MPI_Reduce(errorloc);
12 Copy Zloc from GPU to CPU;
13 Z =MPI_AlltoAll(Zloc);

A full polynomial is, in contrast, a polynomial for which all
the coefficients are not null. A full polynomial is defined by:

∀αi ∈ C, i ∈ N; p(x) =
n∑

i=0

αi.x
i (9)

In the following experiments, all the reported results have
been obtained on a machine equipped with a CPU Intel(R)
Xeon(R) CPU X5620@2.40GHz node with 64GB of ram and
4 Tesla Kepler K40 GPUs (2880 cores) with CUDA 7.5,
OpenMP and the OpenMPI 1.7.5.

In order to evaluate both the GPU and Multi-GPU ap-
proaches, we performed a set of experiments on a single
GPU and multiple GPUs using OpenMP or MPI with the
EA algorithm, for both sparse and full polynomials of differ-
ent degrees. All experimental results obtained are performed
with double precision floating-point data and the convergence
threshold of the EA method is set to 10−7. The initialization
values of the vector solution of the methods are given by the
Guggenheimer method [15].

A. Evaluation of the multi-GPUs approaches

In this part, we evaluate the performances of the CUDA-
OpenMP and CUDA-MPI approaches of the EA algorithm
on different GPU platforms composed each of 1, 2, 3 or 4
GPUs. In this experiments we report the experimental results
of the EA algorithms to find the roots of different sparse
and full polynomials of high degrees ranging from 100,000 to
1,400,000. Figures 1 and 2 show the execution times to solve,
respectively, sparse and full polynomials with the CUDA-
OpenMP algorithm, and Figures 3 and 4 show those to solve,
respectively, sparse and full polynomials with the CUDA-MPI
algorithm.

All these figures show that the CUDA-OpenMP and the
CUDA-MPI approaches of the EA algorithm, compared to the
single GPU version, are efficient and scale well with multiple



GPUs. Both approaches allow us to solve sparse and full
polynomials of very high degrees. Using 4 GPUs allows us
to achieve a quasi-linear speedup.

 1

 10

 100

 1000

 10000

 0  200000  400000  600000  800000  1e+06  1.2e+06  1.4e+06

E
x
e
c
u
ti
o
n
 t
im

e
 i
n
 s

e
c
o
n
d
s

Polynomial’s degrees

1 GPU 2 GPU 3 GPU 4 GPU

Fig. 1. Execution times in seconds of the Ehrlich-Aberth method to solve
sparse polynomials on multiple GPUs with CUDA-OpenMP.
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Fig. 2. Execution times in seconds of the Ehrlich-Aberth method to solve
full polynomials on multiple GPUs with CUDA-OpenMP.

B. Comparison between the CUDA-OpenMP and the CUDA-
MPI approaches

In the previous section we saw that both approaches are
very efficient to reduce the execution times to solve sparse
and full polynomials. In this section we try to compare these
two approaches. In this experiment three sparse polynomials
and three full polynomials of degrees 200,000, 800,000 and
1,400,000 are investigated. Figures 5 and 6 show the com-
parison between CUDA-OpenMP and CUDA-MPI algorithms
of the EA method to solve sparse and full polynomials,
respectively.

In Figure 5 there is one curve for CUDA-OpenMP and
another one for CUDA-MPI for each polynomial investigated.
We can see that the results are quite similar between OpenMP
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Fig. 3. Execution times in seconds of the Ehrlich-Aberth method to solve
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Fig. 6. Execution times to solve full polynomials of three distinct degrees on
multiple GPUs using OpenMP and MPI with the Ehrlich-Aberth method

and MPI for the polynomial degree of 200K. For the degree of
800K, the MPI version is a little bit slower than the OpenMP
version but for the degree of 1,4 million, there is a slight
advantage for the MPI version. In Figure 6, we can see that
when it comes to full polynomials, both approaches are almost
equivalent.

C. Solving sparse and full polynomials of the same degree on
multiple GPUs

In this experiment we compare the execution times of the
EA algorithm according to the number of GPUs to solve sparse
and full polynomials on multiple GPUs using OpenMP or MPI
approaches. We chose three sparse and three full polynomials
of degrees 200,000, 800,000 and 1,400,000. Figures 7 and 8
show the execution times to solve sparse and full polynomials
of the same degrees with the CUDA-OpenMP version and the
CUDA-MPI version, respectively.
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Fig. 7. Execution times to solve sparse and full polynomials of three distinct
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In Figure 7 the execution times of the CUDA-OpenMP
version to solve sparse polynomials are very low compared to
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Fig. 8. Execution times to solve sparse and full polynomials of three distinct
degrees on multiple GPUs using MPI.

those to solve full polynomials. With sparse polynomials the
number of monomials is reduced, consequently the number
of operations is reduced and the execution time decreases.
Figure 8 shows the impact of sparsity on the efficiency of the
CUDA-MPI approach. We can see that the impact follows the
same pattern, a difference in execution times in favor of the
sparse polynomials.

D. Scalability of the EA method on multiple GPUs to solve
very high degree polynomials

These experiments report the execution times of the EA
method for sparse and full polynomials of high degrees
ranging from 1,000,000 to 5,000,000. In Figure 9 we can
see that both approaches (CUDA-OpenMP and CUDA-MPI)
are scalable and can solve very high degree polynomials. In
addition, with full polynomial as well as sparse ones, both
approaches give very similar results.
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VI. CONCLUSION

In this paper, we have presented parallel implementations
of the Ehrlich-Aberth algorithm to solve full and sparse poly-
nomials, on a single GPU with CUDA and on multiple GPUs
using two parallel paradigms: shared memory with OpenMP
and distributed memory with MPI. These architectures were
addressed by a CUDA-OpenMP approach and CUDA-MPI
approach, respectively. Experiments show that, using parallel
programming model like OpenMP or MPI, we can efficiently
manage multiple graphics cards to solve the same problem
and accelerate the parallel execution with 4 GPUs and solve
a polynomial of degree up-to 5,000,000 four times faster than
on a single GPU.

Our next objective is to extend the model presented here
to clusters of GPU nodes, with a three-level scheme: inter-
node communications via MPI processes (distributed mem-
ory), management of multi-GPU nodes by OpenMP threads
(shared memory). Actual platforms may probably also contain
purely multi-core nodes without any GPU. This heterogeneous
setting may lead to the integration of load balancing algorithms
so as to allow an optimal use of hardware resources.
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