
HAL Id: hal-02472577
https://hal.science/hal-02472577

Submitted on 10 Feb 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Temporal property patterns for model-based testing
from UML/OCL

Frédéric Dadeau, Elizabeta Fourneret, Abir Bouchelaghem

To cite this version:
Frédéric Dadeau, Elizabeta Fourneret, Abir Bouchelaghem. Temporal property patterns for model-
based testing from UML/OCL. Software & Systems Modeling, 2019, 18 (2), pp.865 - 888. �hal-
02472577�

https://hal.science/hal-02472577
https://hal.archives-ouvertes.fr

Temporal Property Patterns for Model-Based Testing
from UML/OCLI

Frédéric Dadeaua,∗, Elizabeta Fournereta,b, Abir Bouchelaghema

aUniversity of Bourgogne Franche-Comté – FEMTO-ST Institute CNRS UMR 6174
16 route de Gray, 25030 Besançon cedex, France

bSmartesting Solutions & Services, 18 rue Alain Savary, 25000 Besançon cedex, France

Abstract

This article describes a new property- and model-based testing approach us-
ing UML/OCL models, driven by temporal property patterns and a tool for
assisting the temporal properties formalization. The patterns are expressed in
the TOCL language, an adaptation of Dwyer’s property patterns to OCL. The
patterns are used to formalize temporal requirements without having to learn a
complex temporal logics such as LTL or CTL. From these properties, automata
are automatically computed. These can be used for two purposes. First, it is
possible to evaluate the quality of a test suite by measuring the coverage of a
property using its associated automaton. Second, the automaton can be used
to drive the test generation in order to produce complementary test cases. To
this end, we defined dedicated coverage criteria, targeting specific events of the
property, and aiming either at illustrating the expected behaviour of the system,
or checking its robustness w.r.t. the property. However, it was observed that
the semantics of the property language may be more subtle that it seems. To
facilitate the adoption of the language by industrials, we have proposed a tool-
supported assistant for property design, aiming to help the validation engineer
choosing which constructs faithfully correspond to his intention. This approach
has been experimented on several case studies with industrial partners. It has
shown its interest for software validation, providing useful information thanks
to adequate traceability features.

Keywords: behavioural model, property patterns, coverage measure, test
generation, property design

IThis article is an extension of a 2014 paper published at the Model-Based Testing work-
shop. The extension consists in the experiments section, and the complement on the assistance
on properties modelling.
This work has been partially funded by the French National Research Agency (ANR) under
grant ANR13-ASMA-0003.

∗Corresponding author
Email addresses: frederic.dadeau@femto-st.fr (Frédéric Dadeau),

elizabeta.fourneret@{femto-st.fr, smartesting.com} (Elizabeta Fourneret)

Preprint submitted to Journal of Systems and Software August 29, 2017

1. Introduction

Model-Based Testing (MBT) [1] consists in using a model to generate test
cases, and compute the test verdict, in terms of expected behavior of the sys-
tem under test (SUT). Models are designed based on the informal requirements
of the system, and exploited by model coverage criteria to compute test cases.5

In addition, the models make it possible to compute the test oracle, namely
the expected result of the test. After a concretization step, the abstract tests
can then be executed on the SUT and the test verdict can be automatically
assigned. MBT is thus a convenient way to automate test generation, and,
to some extent, test execution. Various approaches for MBT exist [2], based10

on different formalisms using, for example, automata (mealy machines, IOLTS,
IOSTS), or pre/postconditions notations (B, VDM, JML, UML/OCL), etc. As-
sociated to them, test selection criteria make it possible to generate test cases
that guarantee a given level of assurance that the system has been sufficiently
exercised.15

The work presented in this article aims to improve an existing MBT ap-
proach, based on UML/OCL models, that initially targets functional testing.
This first approach has been developed and successfully transferred into the
industry as the Smartesting CertifyIt test generator. This tool works by au-
tomatically applying a structural test selection criterion on the model, namely20

the branch coverage of the OCL specification [3] of operations contained in a
UML class diagram. Even if this approach is quite effective in practice, it suffers
from its subjectivity and thus, specific behaviours of the system, which require
a more intensive test effort, are not much targeted by this testing strategy.

To overcome this problem, dynamic test selection criteria are introduced.25

These consist in scenario-based testing approaches that aim to exercise more
extensively specific parts of the considered system. Such test scenarios are
expressed in a dedicated textual language that describes sequences of steps
(usually operation calls) that can be performed, along with possible intermediate
states reached during the unfolding of the scenario. Nevertheless, the design of30

the test scenarios remains a manual task that we aim to automate. During
previous experiments in the use of scenarios, we have noticed that scenarios
often originate from a manual interpretation of a given property that exercises
the dynamics of the system [4]. Our goal is now to express such properties,
in a simple formalism, that can be later exploited for testing purposes. To35

achieve that, Dwyer et al. introduced the notion of property patterns that can be
used to express dynamic behaviours of the systems without employing complex
temporal logics formalisms [5]. Patterns are intended to provide a means to
capture the best practices, or most common practices, of validation engineers
designing temporal properties. Patterns are close to natural language and thus,40

their adoption by non-specialists in formal methods, is expected to be facilitated.
They are expressed with a scope, that delimits the considered fragments of the
execution of the system, and a pattern that expresses occurrences, absences
or chains of given events inside the scope. These properties are mainly used
for verification [5], or passive testing (monitoring) [6]. Our key idea is to use45

2

Figure 1: Process of the property-based testing approach

these property patterns for active testing, to drive the test generation. To
achieve that, we have designed a temporal property language based on property
patterns, named TOCL (for Temporal OCL) [7, 8], aiming to be used with
UML/OCL models and the Smartesting CertifyIt test generator.

The proposed process is depicted in Fig. 1. TOCL properties are designed50

from the initial requirements of the system. These properties are automatically
translated into automata, that can be used for two purposes. First, it is possi-
ble to evaluate the relevance of a given test repository w.r.t. the property by
measuring the property coverage, using its associated automaton. At this stage,
a precious feedback can be given to the user to determine how the considered55

property, and its associated requirements, have been tested. Second, the prop-
erties can be used to generate complementary test cases, that target uncovered
parts of the property automata.

In this article, we propose three contributions:60

• two kinds of dedicated property automata coverage criteria:

– a first set of criteria that is inspired from classical automata cover-
age criteria and aims to characterize relevant tests highlighting the
behaviours described in the property;

– a second, mutation-based, coverage criterion that targets corner cases65

of the property and aims to provoke unexpected events in order to
validate the robustness of the system;

• an experimental evaluation of this approach on a realistic case study of
the PKCS#11 standard, and

• a tool that assists the validation engineer in writing TOCL properties,70

3

based on a decision tree that drives the choice of the appropriate property
patterns.

This article is organised as follows. Section 2 presents the context of the
present work, namely the historical approach implemented in the CertifyIt test
generator along with the considered subset of UML/OCL and the limitations of75

this approach. Section 3 presents the TOCL language that we introduced pre-
viously. Based on this language, we describe in Section 4 several test selection
criteria that target either the nominal coverage of the property, to select tests
that illustrate the property, or robustness coverage, to select tests that attempt
to violate the property. The three possible usages of these test selection crite-80

ria are presented in Section 5. The semantical issues of the language and the
subsequent assistant for designing TOCL properties is presented in Section 6.
Then, Section 7 describes the experimental assessment that we performed, on
a realistic case study of the PKCS#11, and additional experience reports from
research projects in which TOCL properties were used. Related work is summa-85

rized and compared to our approach in Section 8. Finally, Section 9 concludes
and presents the future works.

2. Context: Functional Testing from UML/OCL

This section presents the initial functional testing approach proposed by
the CertifyIt test generation tool. We first introduce the considered subset of90

UML/OCL, before presenting the functional test generation process. Finally,
we present the functional test generation process that we aim to complement.

2.1. UML4ST – a subset of UML for Model-Based Testing
The UML models we consider are those supported by the CertifyIt test

generator, commercialized by the Smartesting company. This tool automatically95

produces model-based tests from a UML model [9] with OCL specifications
describing the behaviors of the operations. CertifyIt does not consider the
whole UML notation as input, it relies on a subset named UML4ST (UML
for Smartesting) which considers class diagrams, to represent the data model,
augmented with OCL constraints [3], to describe the dynamics of the system.100

It also requires the initial state of the system to be represented by an object
diagram. Finally, a statechart diagram can be used to complete the description
of the system dynamics.

OCL provides the ability to navigate the model, select collections of objects
and manipulate them with universal/existential quantifiers to build first-order105

logic expressions.
Finally, it is important to notice that the semantics of OCL has been modified

to consider it as an action language. Thus, the equality operator is interpreted
differently depending of the context of the expression in which it appears. If
used in a conditional statement (IF), it is evaluated as an equality test. If used110

outside a conditional statement, it is interpred as an assignement of the left-hand
side attribute with the right-hand side value. This allows to write more complex
specifications, and improves the expressiveness of the OCL postconditions.

4

Figure 2: Class diagram of the eCinema model

UML4ST vs. standard UML. UML4ST is based on the UML notation (for class
diagrams and OCL constraints), but it differs from the usual UML standards.115

Regarding the OCL semantics, UML4ST does not consider the third logical
value undefined that is part of the standard OCL semantics. UML4ST relies on
existing constructs of OCL but apply a different semantics. Notably, expression
isOclUndefined() is applicable on 0..1-multiplicity roles sides and is used to
check if no object is linked with the current instance. In UML4ST, null values120

can exist when a link to a given object does not exist (multiplicity 0..1 in
the class diagram). Comparisons with null values are authorized, but only for
objects (contrary to the UML standard, null values for primitive types are not
supported). Nevertheless, all expressions have to be defined at evaluation-time
in order to be evaluated. The use of a null value in an expression (for example125

o.x where o is null) will generate an error in the OCL interpreter of the tool when
the OCL code is being processed for test generation (or, more generally, when
animating the model, which is the underlying technique for test generation). In
this case, the tool will request the user to ensure that the accessed object is not
null by guarding the access to the objects members with an IF statement or a130

precondition.
These restrictions w.r.t. the classical UML semantics originate from the

fact that the UML/OCL model aims at being used for Model-Based Testing
purposes. As such, it requires to use an executable UML/OCL model, since the
abstract test cases are obtained by animating the model.135

2.2. Running Example

We illustrate the UML/OCL models that are considered using a simple
model of a web application named eCinema. This application provides a means
for registered users to book tickets for movies that are screened in a cinema.

The UML class diagram, depicted in Fig. 2 contains the classes of the ap-140

plication: ECinema, Movie, Ticket and User. The ECinema class models the

5

system under test (SUT) and contains the API operations offered by the appli-
cation. This application proposes classical online booking features: a registered
user may login to application, purchase tickets, view his basket, delete one or
all tickets from his basket, and logout.145

Figure 3 shows the OCL code of the buyTicket operation. Upon invocation,
the caller provides the title of the movie for which the user wants to buy a
ticket. The operation first checks that a user is logged on the application,
and then checks if there exists an unallocated ticket for this movie. If all these
verifications succeed, a ticket is associated to the user. This operation is specified150

in a defensive style: its precondition is always true, and the postcondition is in
charge of distinguishing nominal cases from erroneous cases. We assume in the
rest of the article that all operations are specified this way, which is realistic in
the context of MBT.

The OCL code of this operation contains non-OCL annotations, inserted155

as comments, such as ---@AIM: id and ---@REQ: id. The ---@AIM:id tags
denote test targets while the ---@REQ: id tags mark requirements from the in-
formal specifications. These tags can be used to reference a particular behaviour
of the operation (e.g. @AIM:BUY Login Mandatory represents a failed invocation
of this operation, due to the absence of a user logged on the system). Notice160

that it is possible to know which tags were covered during the execution of the
model, inside the test cases, providing a feedback on the structural coverage of
the OCL by the test cases.

2.3. Functional Test Generation from UML/OCL with Smartesting CertifyIt

We present in this section the structural test selection criterion based on165

behavioral coverage that is implemented within the Smartesting CertifyIt test
generator.

The test generator takes as input the MBT model and computes the test
targets to cover, by considering structural decision coverage criterion. Thus,
each control path of the control flow graph of the operation represents a behavior170

of the operation. As OCL does not contain any iterative structure, and since we

context ECinema::buyTicket(in_title : ECinema::TITLES): oclVoid
effect:

---@REQ: BASKET_MNGT/BUY_TICKETS
if self.current_user.oclIsUndefined() then

message = MSG::LOGIN_FIRST ---@AIM: BUY_Login_Mandatory
else

let tm: Movie = self.all_listed_movies->any(m: Movie | m.title = in_title) in
if tm.available_tickets = 0 then

message= MSG::NO_MORE_TICKET ---@AIM: BUY_Sold_Out
else

let t: Ticket = (Ticket.allInstances())->any(owner_ticket.oclIsUndefined()) in
self.current_user.all_tickets_in_basket->includes(t) and
tm.all_sold_tickets->includes(t) and
tm.available_tickets = tm.available_tickets - 1 and
message= MSG::NONE ---@AIM: BUY_Success

endif
endif

Figure 3: OCL code of the buyTicket operation

6

do not consider recursive operation calls, the number of paths (only introduced
by if-then-else structures) is finite. A control-flow graph is built based on the
conjunction of the pre- and postcondition described by the OCL code. Finally,
each test target is identified by a set of tags (labelling the considered control175

path), which refer to a requirement covered by the behavior.
Figure 4 presents the test targets for the buyTicket operation described in

Fig. 3. Target 1 represents the case when the user is not connected to the reser-
vation system. Target 2 represents a logged user, who attempts to buy a ticket
for a movie that is already sold out. Finally, target 3 represents a successful180

purchase of a ticket, from an authenticated user who requested a ticket for a
movie for which places are still available.

From these test targets, the test generation engine will compute a test case,
as a sequence of operations that, from the initial state, reaches a state satisfying185

the guard of the behavior. To achieve that, CertifyIt uses an SMT solver that
performs symbolic animation. This technique consists in simulating the execu-
tion of the model using symbolic parameters. Each operation activation gathers
constraints (the path conditions in the operation code) that are evaluated by
the solver to check if there exists an instantiation of the symbolic variables that190

satisfies these constraints. If a solution is found, the considered sequence of
operations can be executed to reach the target state. The test case finally ends
with the incovation of the operation from which the test target was extracted.

A test case, such as given in Figure 5, is defined as a sequence of steps.
Each step is defined as a tuple (op, parameters, tags) in which op designates195

the operation that is invoked, param is the instantiation of the parameters, and
tags is the set of tags that are covered by this invocation. The test verdict can
be established by using the return values of the operations. In addition, the
model may contain a specific kind of operations, called observations, that can
be used to observe internal model state variables, to be compared to an actual200

value of the SUT, in order to refine the verdict. In this case, call to observations
are automatically added at each step. The set of tests based on a given test
selection criteria and a model is called a test suite.

3. The TOCL Language

We now present the TOCL property language and its different constructs.205

We then present the formal representation of the properties as automata that

Predicate REQ/AIM

1 self.current user.isOclUndefined() @AIM:BUY Login Mandatory

2 not(self.current user.isOclUndefined() @AIM:Buy Sold Out

and let tm... in tm.available tickets = 0

3 not(self.current user.isOclUndefined() @AIM:Buy Success

and let tm... in not(tm.available tickets = 0)

Figure 4: Test targets computed from operation buyTicket

7

Step Operation Behavior

1 sut.login(REG USER, REG PWD) @AIM:LOG Success

2 sut.buyTicket(TITLE1) @AIM:BUY Success

Figure 5: Test case covering Target 3

can be exploited in a testing process.

3.1. Property Pattern Language

The property description language is a temporal extension of OCL. This
language is based on patterns which avoid the use of complex temporal for-210

malisms, such as LTL or CTL. We ground our work on the initial proposal of
Dwyer et al. [5]. In a study reported in the paper, the property patterns were
able to cover 92% of existing properties, with a complete semantical equivalence
w.r.t. LTL. Besides, the authors showed that these property patterns consider-
ably simplified the expression of such properties w.r.t. to temporal logics, such215

as LTL.
We consider that a temporal property is a temporal pattern that holds within

a scope. Thus, the user can define a temporal property choosing a pattern and
a scope among a list of predefined schema. The scopes are defined from events
and delimit the impact of the pattern. The patterns are defined from events and220

state properties to define the execution sequences that are correct. The state
properties and the event are described based on OCL expressions.

Patterns. There are five main temporal patterns, that describe the absence,
occurrence, or succession of events:

(i) always P means that state property P is satisfied by any state,225

(ii) never E means that event E never occurs,

(iii) eventually E means that event E eventually occurs in a subsequent
state, this pattern can be suffixed by a bound which specifies how many
occurrences are expected (at least/at most/exactly k times),

(iv) E1 precedes E2 means that event E1 (directly) precedes event E2,230

(v) E1 follows E2 means that event E2 is (directly) followed by event E1.

A variant of the precedes (resp. follows) patterns exists to specify that event
E2 is directly preceded by (resp. directly follows) event E1. Notice that
the difference between these two patterns is subtle: E1 precedes E2 means that
E2 should not occur if E1 has not occurred. However, it is possible that E2 does235

not occur after having observed E1. On the opposite, E2 follows E1 specifies
that, once E1 has occurred, E2 has to occur. However, E2 does not require E1

to occur.

8

Figure 6: Graphical representation of the scopes

Scopes. Five scopes (and three variants), shown in Fig 6, can apply to a tem-
poral pattern TP :240

(i) globally means that TP must be satisfied on any state of the whole
execution,

(ii) before E means that TP must be satisfied before the first occurrence
of E,

(iii) after E means that TP must be satisfied after the first (resp. last)245

occurrence of E,

(iv) between E1 and E2 means that TP must be satisfied between any occur-
rence of E1 followed by an occurrence of E2,

(v) after E1 until E2 means that TP must be satisfied between any occur-
rence of E1 followed by an occurrence of E2 and after the last occurrence250

of E1 that is not followed by an occurrence of E2.

Variants on after and between scopes have been introduced to consider the
last occurrence of their respective opening events.

Events. In Dwyer’s seminal paper [5], events are not precisely defined, and left
to the user’s discretion. Based on our context, we have proposed that scopes255

and patterns refer to events that can be of two kinds. On the one hand, events
denoted by isCalled(op, pre, post, {tags}) represent operation calls. In
this expression, op designates the operation name, pre and post are OCL ex-
pressions respectively representing a precondition and a postcondition. Finally,
{tags} represents a set of tags that can be activated by the operation call. Such260

an event is satisfied on a transition when the operation op is called from a source
state satisfying the precondition pre and leading to a target state satisfying the
postcondition post and executing a path of the control flow graph of the oper-
ation op which is marked by at least one tag of the set of tags denoted {tags}.

9

Notice that the three components pre, post and {tags} are optional. On the265

other hand, events denoted by becomesTrue(P) where P is an OCL predicate,
are satisfied by any operation call from a state in which P evaluated to false,
reaching a state in which P evaluates to true.

Example 1 (Property Example). Consider the eCinema example given in
Sect. 2.2. An informal access control requirement expresses that: “the user must270

be logged on the system to buy tickets”. This requirement can be expressed by
the following three properties that focus on various parts of the execution of the
system.

never isCalled(buyTicket, {@AIM:BUY Success})
before isCalled(login, {@AIM:LOG Success}) (Property 1)

eventually isCalled(buyTicket, {@AIM:BUY Success}) at least 0 times
between isCalled(login, {@AIM:LOG Success})

and isCalled(logout, {@AIM:LOG Logout}) (Property 2)

never isCalled(buyTicket, {@AIM:BUY Success})
after isCalled(logout, {@AIM:LOG Logout})
until isCalled(login, {@AIM:LOG Success}) (Property 3)

275

Property (1) specifies that before a first successful login, it is not possible to
sucessfully buy ba ticket. Property (2) specifies that when the user is logged in, he
may buy a ticket. Notice that this property uses a workaround of the eventually

pattern to express an optional action. Finally, Property (3) specifies that it is
also impossible to buy a ticket after logging out, unless logging in again.280

These patterns simplify the specification of temporal properties which does
not require the validation engineer to master temporal logics such as LTL or
CTL. This property language makes it possible to express both safety (“some-
thing bad never happens”) and liveness (“something good keeps happening”)
properties, depending of the combination of scope/pattern that is used. In this285

work, we do not consider the test properties that express a liveness property. For
example, the combination of the globally or after scopes and the existence

pattern, describing a liveness property (“after some event, there exists eventu-
ally another event”) are not targeted by this work. Indeed, such combinations,
that are not bounded by an event of the future can not be properly exercised290

by a testing approach.

3.2. Property Semantics using Automata

The properties are interpreted on executions that are viewed as sequences
of pairs of a state and an event that represent a sequence of transitions. The
semantics of the test properties are expressed by means of automata. Indeed, the295

temporal language is a linear temporal logic whose expression power is included
in the ω-regular languages.

10

The semantics of a temporal property is a labelled automaton which is de-
fined by Def. 1. The method that associates an automaton to a temporal prop-
erty is completely defined in [10]. This automaton describes the set of accepted300

executions of the property and highlights specific transitions representing the
events used in the property description. In addition, the automaton may con-
tain at most one rejection state that indicates the violation of the property when
reached.

Definition 1 (Property Automaton). Let Σ be a set of events. An automa-305

ton is a quintuplet A = 〈Q, q0, F,R, T 〉 in which: Q is a finite set of states, q0
is an initial state (q0 ∈ Q), F is a set of final states (F ⊆ Q), R is a set of
rejection states (R ⊆ Q), T is a set of transitions (T ⊆ Q×P(Σ)×Q) labelled
by a set of events.

We call α−transitions the transitions of T that are labelled by the events310

expressed in the original property, and we call Σ−transitions the other transi-
tions. Σ−transitions are named after their expression as they are labelled by a
restriction on Σ (the set of all possible events).

Notice that, when considering safety properties (something bad never hap-
pens), the set R of rejection state is necessarily not empty. Notice also that,315

for a given state (resp. transition), it is possible to know if the state (resp.
transition) originates from the scope or the pattern of the property. The final
states catch that the scope has been executed at least once. Thus final states
are not accepting states as in traditional Büchi automata; they represent the
test goals in the sense that we expect test cases to reach such states at some320

point. Finally, it is possible that the automaton does not display any rejection
state, as some constructs may design a property that can never be violated (e.g.
Property 2 in Figure 1).

Events in the automaton are quadruplets [op, pre, post, {tags}] in which op
designates an operation, pre and post respectively denote pre- and postcondi-325

tions, and tags specifies a set of tags. The events used in the test properties
are thus rewritten to match this formalism: isCalled(op, pre, post, {tags})
rewrites to [op, pre, post, {tags}] and becomesTrue(P) rewrites to [, not(P), P,],
in which replaces any acceptable value of the corresponding component.

Example 2 (Automaton of a Temporal Property). Consider the property330

given in Example 1. Figure 7 shows the automata representation associated to
Property 1 (left), Property 2 (middle) and Property 3 (right). Notice that the
left-hand side (resp. right-hand side) automaton displays an error state, iden-
tified by “X”, that can be reached if the system authorizes to perform a ticket
purchase before logging in (resp. after logging out and before logging in again).335

The automaton of Property 2, in the middle, does not display an error state
meaning that the property can never be falsified. In addition, it exhibits a re-
flexive transition that represents the optional event, that may or may not occur
when the user is logged.

On these automata, the α−transitions are the transitions labelled by events340

E0, E1 and E2. The other transitions are Σ−transitions.

11

Property 1 Property 2 Property 3

E0: [login, , ,{@AIM:LOG Success}]
E1: [buyticket, , ,{@AIM:BUY Success}]
E2: [logout, , ,{@AIM:LOG Logout}]

Figure 7: Automata representation for the properties given in Example 1

These automata provide a means for monitoring the satisfaction of the prop-
erty by the execution of the model. We assume that the model is correct w.r.t.
the property. In that sense, only valid traces can be extracted from the model,
and no transition leading to an error state can possibly be activated.345

The next sections explains how to exploit these automata by defining ded-
icated test coverage criteria, that can be used either for evaluating an existing
test suite, or for generating new tests supposed to illustrate or exercise the
property.

4. Test selection criteria for TOCL properties350

We present in this section the automata coverage criteria that we propose.
These dedicated coverage criteria are motivated by the fact that classical cov-
erage criteria on automata are not relevant for our property automata:

• transition or transition-pair coverage criteria make no distinction between
the transitions of the automata. In the case of our property automata,355

all the transitions are not of equal importance. For example, consider
the automata provided in Fig. 7. Reflexive Σ−transitions only exist to
capture all possible executions of the model but their sole purpose is to
put the model in a state from which the α−transitions can be activated.
Classical coverage criteria would target these Σ-transitions, resulting in360

additional tests that are not necessary w.r.t. the property. Besides, such
transitions may not be all reachable, depending on the underlying model,
resulting in unfruitful computations.

• classical automata coverage do not take into account the origin of the
transition (from the scope or from the pattern) of the initial property.365

12

Thus, these criteria do not provide a fine-grained coverage of specific parts
of the property.

• classical automata coverage criteria are focused on covering the transitions
of the automata and thus they can only be used to illustrate a nominal
interpretation of the property. As a rejection state may exist, it could be370

relevant to provide a means to target these states, in an attempt to violate
the property.

To address these issues, we propose new coverage criteria, focused on α−tran-
sitions, aiming at activating them, but also focusing on different paths which
iterate over specific paths in the automaton. This first set of dedicated coverage375

criteria address nominal cases described by the property. In addition, we also
provide a robustness coverage criterion that targets corner cases of the property.
In this section, we present these criteria and illustrate, for each of them, their
relevance in terms of property coverage. Before that, we start by introducing
some preliminary definitions.380

4.1. Preliminary Definitions

An abstract test case is defined on the model as a finite sequence of steps,
formalized by si+1, ~oi, tagsi ← opi(~ini, si) (for i ≥ 0 and i < the length of the
test case) in which si (resp. si+1) is the model state before (resp. after) the
step, opi is a model operation called with inputs ~ini returning outputs ~oi and385

activating the behaviours identified by the tagsi set. We denote by s0 the initial
state of the model.

The conversion of a test case (computed from the model) into a path of the
automaton is made by matching the steps of the test case with the events of the
automaton, accordingly to the following definition.390

Definition 2 (Step/Event matching). A step formalized by si+1, ~oi, tagsi ←
opi(~ini, si) is said to match an event [op, pre, post, tags] if and only if the four
conditions hold: (i) op = opi or op is undefined (symbol), (ii) pre is satis-
fied in si (modulo substitution of ~ini in pre), (iii) post is satisfied in si+1, and
(iv) tags ∩ tagsi 6= ∅395

Given a test case, each step si+1, ~oi, tagsi ← opi(~ini, si) is matched against

the possible transitions q
ei→ q′ that can be activated from the current automaton

state q (initially, q0 when the first step is considered). When a given step/event
is matched, the exploration of the automaton restarts from q′ the state targeted
by the transition. As the property automata are deterministic and complete,400

there is exactly one transition that can be matched by each step of the test case.

4.2. Nominal Coverage Criteria for the Property Automata

Nominal coverage criteria aim to illustrate the property that is described. In
practice, these criteria expect the test cases to activate the sequences of events
that are identified in the property. Notice that, since the model is expected to405

13

satisfy the property, the paths inescapably leading to the error state are not
supposed to be activable, and thus, their transitions are not considered in the
coverage criteria that we now present.

The first two coverage criteria that we propose consider the α-transitions.

Definition 3 (α−transition coverage). A test suite is said to satisfy the410

α−transition coverage criterion if and only if each α−transition of the automa-
ton is covered by at least one test case of the test suite.

This first coverage criterion is an adaptation of the classical transitions-
coverage criteria from the literature [11]. It aims at covering the transitions
that are labelled by events initially written in the associated temporal property.415

A test suite satisfying this criterion ensures that all the events expressed at the
property level are highlighted by the test suite.

Example 3 (α−transition coverage). On the example shown in Fig. 7, for
Property 2, a test suite satisfying the α−transition coverage criterion ensures
that at least one test case illustrates the optional ticket purchase by covering420

transition 1
E1→ 1. Also, another test case should illustrate the fact that two

iterations of the scope are possible, by covering transition 2
E0→ 1.

Definition 4 (α−transition-pair coverage). A test suite is said to satisfy
the α−transition-pair coverage criterion if and only if each successive pair of
α−transitions is covered by at least one test case of the test suite.425

Notice that this criterion considers the coverage of pairs of α−transitions
reaching a particular state, and originating from the same state. However, it is
possible to display intermediate Σ−transitions between a pair of α−transitions.

Example 4 (α−transition-pair coverage). On the example shown in Fig. 7,
for Property 2, a test suite satisfying the α−transition coverage criterion en-430

sures the coverage of the following pairs: (0
E0→ 1, 1

E1→ 1), (0
E0→ 1, 1

E2→ 2),

(1
E1→ 1, 1

E2→ 2), (1
E2→ 2, 2

E0→ 1), (2
E0→ 1, 1

E1→ 1) and (2
E0→ 1, 1

E2→ 2). A
test suite satisfying this coverage criterion thus ensures the existence of tests
illustrating the buying of a ticket, but also tests performing a login followed
by a logout without intermediate ticket purchase, and also tests illustrating the435

optional ticket purchase in a second iteration over the scope.

The following two coverage criteria consider the structure of the property
and aim at covering internal or external loops inside the property automaton,
in order to iterate over the pattern or the scope of the property.

Definition 5 (k-pattern coverage). A test suite is said to satisfy the k-pattern440

coverage criterion if and only if the α−transitions of the pattern of the automa-
ton are iterated between 0 and k times, each loop in the pattern being performed
without exiting the pattern-part of the automaton.

14

This coverage criterion aims at activating the internal loops inside the pattern-
part of the automaton, without covering any transition of scope during these445

iterations. This coverage criterion is not applicable to any pattern; it only
applies to precedes, follows and some forms of the eventually pattern.

Example 5 (k-pattern coverage). On the example shown in Fig. 7, for Prop-
erty 2, a test suite satisfying the 2-pattern coverage criterion ensures the cover-

age of 0, 1, and 2 iterations of the reflexive α−transition 1
E1→ 1.450

Definition 6 (k-scope coverage). A test suite is said to satisfy the k-scope-
activation coverage criterion if and only if the α−transitions of the scope of the
automaton are iterated between 1 and k times, and covering each time at least
one α−transition of the pattern.

This coverage criterion aims at activating the external loops outside the455

pattern-part of the automaton. The k-scope criterion is not applicable to all
scopes, its application is restricted to repeatable ones, namely between and
after.

Example 6 (k-scope coverage). On the example shown in Fig. 7, for Prop-
erty 2, a test suite satisfying the 2-scope coverage criterion ensures the coverage460

of 1 and 2 logout-login sequences, by covering cycle 1
E1→ 2

E0→ 1.

These four coverage criteria are based on the property automata as is, and
thus, will only illustrate the property and show that they are correctly imple-
mented (e.g. the occurrences of events are authorized by the implementation,
along with the repetition of scopes, etc.) However, showing that unexpected465

events do not appear requires an additional and dedicated strategy for robust-
ness testing, that we now present.

4.3. Robustness Coverage Criteria

The nominal automata coverage criteria focus on activating events expressed
within the test properties. Thus, these coverage criteria aim at illustrating that470

the properties are correctly implemented. However, in the cases of safety prop-
erties (something bad should never happen), it might also be interesting to
produce test cases that attempt to violate the property. The property violation
is clearly identified in the automaton, being displayed through error states. Un-
fortunately, targeting the activation of transitions leading to these error states475

is irrelevant: since the model (used to compute the tests) is supposed to satisfy
the property, these transitions can not be activated as is.

To achieve that, we propose to weaken the events that label transitions
leading to the error states, so as to potentially attempt to violate the property.
Therefore, we propose mutation operators that apply to events so as to make480

them activable. As the model is expected to satisfy the property, we mutate this
latter so as to characterize executions of the model (i.e., model-based tests) that
lead to an error state of the automaton. Thus, we define a robustness coverage
criterion that aims to simulate an erroneous implementation of the property
that would allow the forbidden event to be activated.485

15

4.3.1. Event Mutation Operators

The goal of this approach is to provoke unexpected events. As these latter
can not be activated on the model, the idea is to get closer to the inactivable
event. To achieve that, we apply mutations on these events. These mutations
apply mainly to the uncontrollable part of the events (postconditions and tags),490

and keep the controllable part the lesser modified.
The mutations we propose modify the transitions of the automata. They

target the events labelling the transitions, and can be of two kinds: (i) predicate
mutation rules, inspired from classical mutation operators over predicates [12],
applied to pre- and postconditions, and (ii) tag mutation rules applied to the495

tag list of the events.

Postcondition/Tag Removal. This rule consists in removing the postcondition
and the tag list from the event.

[op, pre, post, T] [op, pre, ,]

Both tags and postconditions are systematically removed, as these two elements
are frequently related. Their combined removal thus avoids creating inactivable
events.

Precondition Removal. This rule consists in removing the precondition of the
event.

[op, pre, post, T] [op, , ,]

When applied, this mutation also removes the postcondition and tags, in order500

to weaken the event, and increase the chances that the mutation will produce
an activable event.

Predicate Weakening. The predicate removal mutation replaces each literal in
a conjunction by true. This removal applies to both pre- and postconditions.

[op,A ∧B,C ∧D,T] [op,A, ,], [op,B, ,], [op,A ∧B,C,], [op,A ∧B,D,]

When applied to the postcondition, this rule removes the tags from the event.
If applied to the precondition, this rule also removes the postcondition from the
event.505

Example 7 (Event mutation). Consider the examples provided on Fig. 7,
left-hand side or right-hand side. In both cases, event E1 = [buyticket, , , {@AIM :
BUY Success}] can be rewritten to E′1 = [buyticket, , ,]. This event rep-
resents the attempt to perform a ticket purchase but without any expectation
regarding the success or the failure of this operation.510

16

⇒

E1: [buyticket, , ,{@AIM:BUY Success}] E’1: [buyticket, , ,]

Figure 8: Mutation of the automaton for Property 3

4.3.2. Automata Mutation and Robustness Coverage Criteria

The mutation operators that we propose can be applied on a given property
automaton A. The automaton is modified as follows: (i) each transition leading
to the error state is mutated, and (ii) the targeted error state becomes the only
final state of the new automaton. We denote A′ the new automaton obtained515

after mutation.

Example 8 (Automaton mutation). Figure 8 displays the application of a
mutation on the automaton associated to Property 3. We see that the mutated
automaton makes it possible to match test cases that would perform an attempt
to purchase a ticket, before successfully logging in.520

Definition 7 (Robustness coverage). A test suite is said to satisfy the ro-
bustness coverage criterion for a property P if and only if the mutated transition
of each mutated automaton of property P is covered by at least one test case of
the test suite.

Example 9 (Robustness coverage). In order to activate the mutated event525

of Property 1, and thus, check the robustness of the system w.r.t. it, the valida-
tion engineer can design the following test case:

Step Operation Expected behavior

1 sut.buyTicket(TITLE1) @AIM:BUY Error Login First

2 sut.login(REG USER,REG PWD) @AIM:LOG Success

On a correct implementation, the system should not allow the first operation
(buyTicket) to be performed successfully. If the implementation conforms to530

the model, then it is expected to activate an erroneous behavior of this operation
(as predicted by the model). If the implementation is incorrect, the buyTicket

operation will return a success and display a behavior that differs from the model.

In order to activate the mutated event of Property 3, the validation engineer535

can design the following test case:

17

Step Operation Expected behavior

1 sut.login(REG USER, REG PWD) @AIM:LOG Success

2 sut.logout() @AIM:LOG Logout

3 sut.buyTicket(TITLE1) @AIM:BUY Error Login First

Similarly, on a correct implementation, the last operation (buyTicket) should
not succeed (as on the model). An incorrect implementation would allow this
operation to be performed successfully.540

5. Property-Based Testing with TOCL

We describe in this section the possible uses of the coverage criteria that
were presented previously. This approach has been initially tool-supported and
experimented in the context of the TASCCC project, during which a dedicated
tool has been developed as an Eclipse plug-in1. Since the end of the project,545

this tool has been transferred to the Smartesting Solutions & Services company,
and it is now integrated as a plug-in to the CertifyIt test generator (Figure 9).

5.1. Test Suite Evaluation

The coverage of a property can be measured using its associated automaton.
Each step of each test is matched (according to Definition 2) with a transition of550

the automaton. When replaying the abstract test cases on the model, it is pos-
sible to evaluate which transitions of the property automata have been covered,

1A demo video of this prototype is available at: http://vimeo.com/53210102

Figure 9: Screenshot of the TOCL plug-in in the CertifyIt test generator

18

Figure 10: A test suite coverage report for Property 1

and, by that, which coverage criteria are satisfied. This coverage measure can
be exported to be presented to the validation engineer as a web page indicating:

• the considered property,555

• the automaton, on which covered transitions are distinguished,

• the summary on the satisfaction of the test selection criteria

• the detail, for each test, of which transition is covered at each step.

Figure 10 shows a report that is produced after the analyze of one of the prop-
erties of the example. In case of robustness test cases, the report shows which560

mutations are possible on the property automaton, and among them, which
ones have been covered by the test suite, and the detail for each test.

For a given property, test cases can be classified into three categories.

(i) The test may reach (one of) the final state(s) of the automaton, which
makes it relevant, as it contains a sequence of events that is described in565

the property.

19

(ii) The test may never reach any final state, and thus, the test case is con-
sidered to be irrelevant w.r.t. the property.

(iii) The test may reach an error state. This case is not supposed to happen if
the model respects the property. However, its existence reports a violation570

of the property, and the test provides a counter-example showing that
there is a non-conformance between the model and the property. Two
reasons may explain this issue. The error may come from the model,
which is too permissive w.r.t. the property, or the property that is too
restrictive w.r.t. the system. In both cases, this information helps the575

validation engineer either to correct the model (which is used to compute
test cases) or the property (which is also used to produce complementary
test cases).

Once the property coverage has been measured, it is possible to use the
automaton to generate additional test cases that aim at improving the targeted580

coverage score.

5.2. Test scenarios generation

The test scenario generation that is proposed relies on the scenario-based test
generator provided by CertifyIt. This feature, described in [13] is named “Test
Purposes” and makes it possible, for a validation engineer, to write test sce-585

narios. These latter describe sequences of operations, with intermediate states
(characterized by a predicate).

Figure 11 illustrates the syntax of the test scenario language. It is composed
of structures that are voluntarily close to the natural language, so as to be easily
adopted by the validation engineers. Notice that the Test Purpose language590

allows to write partial scenarios, in which all the operations do not have to
be specified. Instead, the user can specify that, at some point, “any operation
can be used”, “any number of times”, until reaching a given model state, or
activating a given operation. The semantics of this language is close to regular
expressions. It is expected that the tests resulting from this scenario will match595

this expression.
Such a scenario is unrolled and processed by the CertifyIt test generation

engine, which computes automatically the unspecified parts (corresponding to
the any operation any number of times) and replaces them with concrete oper-
ation calls that instantiate the test scenario.600

For our approach, from the TOCL property automata, we have developed
a scenario generator that identifies the transitions that have to be covered (de-

use any operation any number of times then
use sut.buyticket to reach “self.currentUser.isOclUndefined()” on instance “sut” then
use any operation any number of times then
use sut.login to activate behavior with tags {AIM:LOG Success}

Figure 11: Example of test scenario

20

pending on the selected coverage criterion), and creates one scenario per tran-
sition to be covered. This step relies on a modified version of the McNaughton-605

Yamada algorithm [14] to compute regular expressions from an automaton. Our
version generates a regular expression on events that provides the path expres-
sions for the considered automaton, ending by a transition that leads to one of
the final states of the automaton. Once a regular expression has been computed,
its translation into a “test purpose” is straightforward.610

Figure 11 provides an example of the scenario that would be produced to
test the robustness of Property (1), in which the test attempts to perform a
ticket buying, before login in. An example of instantiation of this scenario is
thus given in Example 8.615

5.3. Model Validation

By extension, the property coverage measure and test generation can be
used as a means to partially validate the model, by testing it on a set of relevant
executions.

As explained previously, the property automata may display error states, i.e.620

states in which the property is violated. On the example on Fig. 7, Property (1),
state X represents a state that can be reached when the model authorizes a
sequence in which a successful buyTicket is followed by a successful login. When
replaying the tests computed from the model on the automaton, if this state is
reached, a non-conformance between the model and the property is detected.625

From there, the error can be at two levels, that need to be investigated by
the validation engineer:

• First, the error can be in the model, meaning that this latter is too lax
and does not respect the property that was written. In this case, the
consequences can be severe, as the model may have already been used to630

produce test cases, that may already have been executed to validate an
implementation.

• Second, the error can be in the property that is incorrectly written and
too restrictive.

The other way to validate the model uses the test generation phase. This635

latter consists in finding automatically a sequence of operation calls that, from
the initial state, reaches the considered test targets. The test generator can thus
be used with two different objectives.

• First, it is possible that the test generator fails to compute a test case,
because this latter represents a transition of the automaton (i.e. a test640

target) that can not be activated on the model. This indicates that either
the model is too restrictive, as it does not allow to perform certain se-
quences of operations, or the property is incorrectly written, as it expects
a behaviour that is not allowed by the model.

21

Figure 12: Model validation process using TOCL properties

• Second, the CertifyIt TOCL plug-in integrates a special mechanism that645

aims at targeting the error states of the automata to look for a counter-
example to the property. If the model is correct, these targets should
not result in a test reaching them. Otherwise, the test case represents a
counter-example to the validity of the property on the model.

Notice that, for both cases, as the reachability problem is undecidable in650

the general case, the test generator uses a bounded exploration of the state
space. It is thus possible that the test target is reachable within a deeper depth.
However, the results that are produced can give a preliminary feedback to the
validation engineer.

Figure 12 summarizes the process of model validation using the TOCL prop-655

erties. TOCL properties are designed based on the informal requirements of
the considered system. These properties are evaluated on the tests of the test
repository. This latter is composed of tests generated by the usual functional
approach as described in Sect. 2.3. However it can also be composed by tests
that are produced by considering TOCL properties (to avoid overloading the660

figure, only the first case is depicted). If an error state is reached, the feedback
that is given by the analysis of the test case, the model and the property, leads
to the correction of the model or the property. The process works iteratively
and incrementally.

665

During the application of this approach in research projects, we frequently
faced a misuse of the property. The validation engineers who worked with
TOCL often used this language as a means to express a test scenario (e.g. “I

22

want to see a test in which operation A precedes operation B”). However, the
sequencing they described were rarely applicable for all the possible executions of670

the model, leading to the design of incorrect properties that, when confronted
with the tests, raised errors (by reaching error states in the automaton). To
overcome this kind of issues, we have proposed an assistant for the design of
TOCL properties, that is now described.

6. Assistance to Property Design675

In our experiments, we have noticed the external users of the TOCL language
had some difficulties in understanding the correct semantics of each constructs.
Thus, we noticed several errors that were frequently encountered when TOCL
properties were written. Such errors may lead to severe consequences in the
testing process.680

To help the validation engineers who want to use TOCL, we have proposed a
tool-supported assistance that helps writing the appropriate TOCL properties
w.r.t. the test intention they had in mind. Before presenting the assistant
and its underling principles, we first illustrate how misleading the semantics of
TOCL can be.685

6.1. Issues with the TOCL property patterns

For example, consider the following informal requirement:

“before buying a ticket, the user has to successfully log in”

Intuitively, one may use the following construct:

before isCalled(sut.buyTicket, @AIM:Success)
eventually isCalled(sut.login, @AIM:Success)

Even though this construct seems to be straightforward from the informal
requirements, it is not as correct as it seems. Firstly, this property considers as690

correct a sequence in which the user logs in, then logs out and finally buys a
ticket. As a consequence, the informal requirement itself is not properly checked.
Secondly, this property only describes the first occurrence of the ticket buying.
Is it possible to buy a second ticket in a row or should the user re-authenticate
each time? Thus, the informal requirement is not completely described, and it695

would require additional properties to be used in order to accurately formalize
it.

To overcome this issue, we have proposed to assist the user in writing tempo-
ral properties using the appropriate patterns. To this end, we provide a decision
tree, based on frequent requirement wording, that helps the user selecting the700

appropriate (set of) temporal properties that captures at best what (s)he in-
tended.

23

6.2. Assistance to the Validation Engineer

We propose to assist the validation engineer in designing TOCL properties.
To achieve that, we have started by 4 sentences that express a frequent informal705

requirement, based on symbolic events X, Y Z:

• to execute Y, X must be executed first

• to execute Y, X should not be executed

• between X and Z, Y must be executed

• between X and Y, Y should not be executed710

These abstract sentences represent the starting point, from which additional
questions will be asked to the user to refine its mind. In the end, depending on
the different answers given at the different stages, some property patterns are
proposed, based on X, Y, and Z, that the user only has to replace with actual
TOCL event (e.g. isCalled events).715

To save space, we only give here an instance of these questions, by unrolling
the example: “to buy a ticket [Y], the user has to successfully log in [X]”, which
corresponds to the first formulation. Notice that some of these questions are
also used for the other constructs. The questions that are considered are the
following.720

Q1. Does X [login] directly precede Y [buyTicket] ?
This question checks if there is a direct succession of event X followed
by Y.

Q2. Can several executions of Y [buyTicket] occur after X [login]?
This question checks if X provides the privileges to execute Y only once725

(and thus it has to be called each time one wants to execute Y), or if the
privileges given by X are not limited (except by another operation that
will be identified in Q5). In practice, this question determines the number
of executions of Y that can be done after X.

Q3. Can several executions of X [login] occur before Y [buyTicket]?730

Similarly to Q2, this question checks if X can be repeated several times,
or if only one execution of X is enough to execute Y.

Q4. Is it mandatory to execute Y [buyTicket] after X [login]?
This question will be used to determine the minimal number of execution
of X in the considered scope.735

Q5. Does it exist an event Z that cancels the privileges given by X [login]
w.r.t. Y [buyTicket]? This question is used to determine the scope of
the properties. If Z does not exist, the scopes only consider X. If Z exists,
the intervals X – Z or Z – X are considered.

24

06. Is it possible to iterate the whole sequence? This question is used to740

determine if the generated scopes have to consider that several intervals
can be observed, or if the satisfaction of the pattern is always unique in a
given sequence.

On our example, the answer to the different questions produce the following
set of TOCL properties:745

• never buyticket before login

• login precedes buyticket before logout (Q1-No, Q5-Yes)

• eventually login at least 1 times between logout and buyticket (Q1-No,
Q3-Yes, Q5-Yes)

• eventually buyticket at least 0 times between login and logout (Q2-Yes,750

Q4-No, Q5-Yes)

• never buyticket after logout until login (Q5-Yes, Q6-Yes)

• never logout between login and buyticket (Q5-Yes)

6.3. TOC-heLp - an Assistant for designing TOCL Properties

We have implemented this assistant in a web application. This tool lets755

the user choose between a set of informal requirements that he wants to test.
Subsequently, several questions will be asked to the user, in order to guide the
decision on the combinations of scope/pattern that have to be used.

Figure 13 presents an overview of the tool2. The user can choose the in-
formal pattern in the top part. Then the associated questions appear on the760

left-hand side of the page. Each question can be answered by “Yes” (it then
becomes green) or “No” (it then becomes red). Simultaneously, the patterns
correponding to the current set of answers are shown on the right-hand side of
the page. In addition, it is possible to caption the X, Y, and Z symbolic events,
to replace them with keywords (e.g. “buyticket”) or TOCL events (e.g. “is-765

Called(sut.buyTicket,@AIM:BUY Success)”) so that the properties are directly
expressed in the correct syntax.

We now describe the experiments that we performed to valide the approach
on a realistic case study.

7. Experimental assessment with PKCS#11770

We present in this section the experimental assessment of the proposed ap-
proach. First, we describe the PKCS#11 case study, for which we present the
research questions and we describe the experimental settings and results we ob-
tained. Second we provide additional reports on two research projects in which
TOCL properties were used.775

2available at: http://projects.femto-st.fr/sites/femto-st.fr.mbt_sec/files/

content/TOC-heLp/tochelp.html

25

http://projects.femto-st.fr/sites/femto-st.fr.mbt_sec/files/content/TOC-heLp/tochelp.html
http://projects.femto-st.fr/sites/femto-st.fr.mbt_sec/files/content/TOC-heLp/tochelp.html

Figure 13: The TOC-heLP web application

7.1. The PKCS#11 case study

RSA Public Key Cryptography Standards (PKCS) propose various stan-
dards to promote interoperability and security. Our study focuses on the PKCS#11
V2.20 specification (the official version published in 2004), which defines the
Cryptoki interface, an API for cryptographic hardware, such as HSM or smart-780

cards. The adoption of this standard for communicating with cryptographic
tokens in the industry is nearly omnipresent, even though other complementary
interfaces are offered by the security tokens.

Shortly, an API based on the PKCS#11 specification initiates the communi-
cation with the token before any other function call. Then, in order to perform785

cryptographic functions, such as signing a message, it opens a session and logs
the user. When a function is called in the token’s API with a reference to a spe-
cific object (for instance a key used for signing a message), the token first checks
the permissions of the object in order to allow the usage of the function. Per-
missions are attributes that might be represented as boolean flags representing790

the properties of an object (for example CKA SIGN flag of a cryptographic key
indicates whether a key can be used for signing a message). Further, accesses
to operations and objects are controlled through the interface. In general, to
perform cryptographic operations, the user must log in to the application. To
guarantee security, Cryptoki implicitly or explicitly defines security requirements795

that must hold. Most of these requirements can be assimilated to sequencing
properties (e.g. “a signature verification operation must have been initialized”).

Thus, this case study is relevant to our approach and representative of the
kind of application it addresses.

7.1.1. Research Questions and Experimental Procedure800

PKCS#11 is a standard for encryption that is representative of the systems
that our approach targets. Indeed, it requires commands to be performed in a

26

row, and thus, it is relevant to describe operation sequences using TOCL.
The research questions we would like to address with this case study are the

following:805

• To what extent is TOCL relevant for expressing sequencing properties?

• To what extent is the TOC-heLp assistant useful for designing relevant
properties?

• To what extent do TOCL properties help validating the model?

• To what extent does this property-based testing approach improve the810

quality of a test suite?

To address these questions, we have designed the following experiment.

• First, a trained validation engineer is asked to write some TOCL prop-
erties from the informal security requirements of the standard. We thus
evaluate: the ability to use the language, how many requirements have815

been formalized using TOCL properties, and the impact on the initial
model, w.r.t. the usual approach that consists in instrumenting the model
by introducing artificial test targets that pollute the model code.

• Second, we ask the same user to use the TOCL-helper to consider the
same security requirements and derive TOCL properties. We compare820

the produced TOCL properties with the manually designed ones.

• Third, we perform an evaluation of an existing functional test suite, com-
puted using the Smartesting CertifyIt tool, completed by complementary
tests that can be either automatically computed or semi-automatically
designed (by means of test purposes) by the validation engineer.825

• Finally, we evaluate the error detection capabilities of the test cases that
were produced.

7.1.2. PKCS#11 Model

In an MBT approach, test requirements (functional and security functional
ones) are commonly identified from a defined testing perimeter, on the basis830

of the specifications and available documents. Thus, our case study relies on a
subset of the PKCS#11 specification, which, based on industry experts opinion,
was qualified as self-contained, realistic and sufficient to illustrate the main
aspects of the specification and as well to illustrate the use of model-based
testing for such security components. Classically, in the industry, security tokens835

support only sub-parts of PKCS#11. Thus, the considered perimeter of the
study are 24 functions most commonly present in the tokens: general purpose,
session, token, key and user management functions, as well as cryptographic
functions for digesting, signing messages and verifying signatures.

We designed a UML/OCL model for PKCS#11, covering a set of 24 func-840

tions. Figure 14 depicts a simplified class diagram of the PKCS#11 model,

27

Figure 14: PKCS#11 test model

which contains six classes: Cryptoki, User, Token, Slot, Session, Mechanism.
We represent the API Cryptoki that offers to a User an interface for commu-
nicating with cryptographic tokens, modeled by the class Token. Each token
is connected to the system through a Slot. Finally, once the user has been845

connected to a Session, Cryptoki offers cryptographic operations, such as sign-
ing a message (e.g. function ”C Sign”) or verifying a message signature (e.g.
function ”C Verify”), with different cryptographic algorithms, represented by
the class Mechanism. Figure 15 shows the OCL postcondition of the C SignInit
command.850

Table 1 summarizes the functional and security functional requirements of
the PKCS#11 case study, according to the groups of functions defined by the
PKCS#11 specification. The total number of functional requirements (FR) for
the considered subset of PKCS#11 is 158. In addition to these requirements we
have identified 49 security functional requirements (SFR).855

7.1.3. TOCL Properties Design

50 TOCL properties were designed to address the Security Functional Re-
quirements that could be handled by temporal properties. To reach this number,
we relied on the expertise of the validation engineer, who wrote nearly 40% of
these properties. The remaining 60% were produced using the TOC-heLp assis-860

28

---@REQ:C SignInit

if self.initialized = false then

---@AIM:CRYPTOKI NOT INITIALIZED

result = CKR CRYPTOKI NOT INITIALIZED

else

if session.loggedUser.oclIsUndefined() then

---@AIM:USER NOT LOGGED IN

result = CKR USER NOT LOGGED IN

else

---@AIM:OK

result = CKR OK

end if

end if

return result

Figure 15: OCL postcondition sample of C SignInit

tant. Notice that this latter produced 12 properties that were already designed
manually by the validation engineer. Also, in a few cases (3 properties), the as-
sistant helped correcting an inappropriate TOCL construct that was proposed
by the test engineer.

Especially, the assistant was used to systematize the design of sets of sequenc-865

ing properties for security functions (signing, hashing, etc.) that all worked on
the same principle. First, they have to be initiated (e.g. SignInit), then an
update has to be performed (e.g. SignUpdate). In the end, it is mandatory to
terminate (e.g. SignFinalize) the command. Another possibility is, after the
initiation of the security function, to call the function itself, once (e.g. Sign),870

which applies the crypto function in an atomic way. The TOC-heLp tool was
thus very convenient to design properties expressing this chain of events, based
on the informal pattern: between X and Z, Y must be executed. This latter was
declined with triplets OpInit, OpUpdate, OpFinalize for each security operation
Op among { Sign, Hash, Digest, Verify }.875

We provide hereafter a sample of the properties that were designed for the

Table 1: PKCS#11 case study perimeter

Test Requirement category #FR #SFR

general purpose 7 4
slot and token management 22 5
session management 32 9
object management 6 2
digesting 28 9
signing 32 10
verifying signatures 31 10
total 158 49

29

PKCS#11 case study. These properties can be classified into 4 categories,
for each we provide an example using a given cryptographic function (usu-
ally C Sign). Notice that, in the experiment, similar properties have also been
designed for the other cryptographic functions (C Hash, C Digest, C Verify).880

Access rights. The access to cryptographic functions of the component is re-
stricted to identified users. Therefore, it is mandatory to login before being
able to successfully execute such a function:

• eventually isCalled(C Login, @AIM:OK)
before isCalled(C SignInit, @AIM:OK)885

• eventually isCalled(C Login,@AIM:OK)
between isCalled(C Logout, @AIM:OK)
and isCalled(C SignInit, @AIM:OK)

Initialisation of cryptographic operations. These functions necessarily have to890

be initialized to be successfully invoked.

• isCalled(C SignInit, @AIM:OK) precedes isCalled(C Sign, @AIM:OK)
globally

• isCalled(C SignInit, @AIM:OK) precedes isCalled(C SignUpdate, @AIM:OK)
globally895

Context-dependant invocation restriction. In the PKCS#11 standard, it is not
possible to invoke cryptographic functions in parallel. Thus, we have to make
sure that no function can be re-initiated before its current execution is com-
pleted. Regarding cryptographic functions, it is possible either to invoke Cryp-
toUpdate functions several times before calling CryptoFinal, or to invoke a single900

time the Crypto function itself (where Crypto is a cryptographic function, such
as Sign, Hash, etc.)

• never isCalled(C SignUpdate, @AIM:OK)
after isCalled(C Sign, @AIM:OK)
until isCalled(C SignInit, @AIM:OK)905

• never isCalled(C Sign, @AIM:OK)
after isCalled(C SignUpdate, @AIM:OK)
until isCalled(C SignInit, @AIM:OK)

Termination of cryptographic operations. Finally, it is mandatory to ensure that
all initiated cryptographic operations are finalized.910

• isCalled(C SignInit, @AIM:OK) precedes
(isCalled(C SignFinal, @AIM:OK) or isCalled(Sign, @AIM:OK))
globally

30

Table 2: PKCS#11 test suites metrics

Test Selection #Test #Test Cov. in %
Criterion targets cases FR SFR

Structural 206 184 100 40
TOCL 311 90 31 58
Manual 24 24 45 16

Table 3: PKCS#11 test suites execution

Test Selection #Test Test execution
Criterion cases #Failed Tests #Distinct Faults

Structural 184 6 5
TOCL 90 12 3
Manual 24 0 0

7.1.4. Test Execution and Results

In order to distinguish the test execution results, we designed a test suite915

corresponding to the functional test suite generated using CertifyIt, and a test
suite corresponding to the tests generated from the TOCL properties. We also
considered a manual test suite of PKCS#11 that was provided with the imple-
mentation that we considered.

Table 2 summarizes the results of this evaluation. As given in the table,920

the manual tests cover barely 45% of the functional requirements, showing thus
the incompleteness of the manual test suite, compared to the automatically-
generated tests, with respect to the specification.

In addition, the TOCL tests on their own are not sufficient to cover the
FR, as the structural criteria are not sufficient to cover the security functional925

requirements (SFR). The coverage measure notified that the manual test suite
covers 14 TOCL properties, which represent about 16% of the SFR. We evalu-
ated the number of distinct faults revealed by the failed tests. As several tests
can reveal the same fault, we were specifically interested in the diversity of
the detected faults by each test selection criterion, that we refer to as distinct930

faults. We report these results in Table 3, showing that both test selection cri-
teria detected a panel of faults, while the manual test suite did not reveal any
fault.

In addition, Table 4 details the implementation (SoftHSM) discrepancies
with respect to the specification detected by the failed tests. For each one, we935

show the function, the expected return code and the actual code returned by the
function during the execution of the test. Results from Tables 3 and 4 show that
each test suite reveals different discrepancies complementary to the other test
suites, thus increasing the detection of distinct faults. We see that there is no
intersection between the different faults detected by each test suite, illustrating940

a real complementarity between the two approaches.

31

Table 4: SoftHSM discrepancies with PKCS#11 specification

Function Expected output Actual output
Test suite

Structural TOCL

C Logout CKR USER NOT LOGGED IN CKR OK X
C DigestInit CKR USER NOT LOGGED IN CKR OK X
C DigestInit CKR OK CKR OPERATION ACTIVE X
C SignInit CKR OK CKR OPERATION ACTIVE X
C SignUpdate CKR USER NOT LOGGED IN CKR OK X
C Sign CKR USER NOT LOGGED IN CKR OK X
C SignFinal CKR USER NOT LOGGED IN CKR OK X
C VerifyInit CKR OK CKR OPERATION ACTIVE X

7.1.5. Conclusions of the Experiment

We answer here the research questions that were considered.

• To what extent is TOCL relevant for expressing sequencing properties?
Before introducing TOCL, the validation engineers had to manually en-945

code the sequencing properties in the model, using ghost variables to en-
code the underlying automaton. To test these situations, the model was
originally polluted with additional branches in the code, so as to create
“artificial” test targets that can be considered by the functional test gen-
erator. TOCL thus considerably simplifies the model, as it removes pieces950

of code that were, in practice, only used for driving the test generation
phase. Besides, the test generation process is externalized and thus, sev-
eral coverage criteria can be proposed to test more or less extensively the
considered property.

• To what extent is TOC-heLp assistant useful for designing relevant prop-955

erties?
As reported in the experiment, the use of the assistant helped producing
a significant set of test properties that were not considered by the test
engineer. Besides, these properties helped detecting incorrect constructs
used by the validation engineer. The experiment has shown that this tool960

makes it possible to systematize the generation of sequencing properties.
Thus it is helpful to the validation engineer as it unburdens him/her from
having to consider all the different situations that may occur for a given
informal properties that (s)he wants to test.

• To what extent do TOCL properties help validating the model?965

During the design phase of the model, the TOCL properties help detecting
inconsistencies between the model and some of the requirements, especially
in terms of model variables describing the sequencing of cryptographic
operations (digest, sign and verify), that were incorrectly updated.

• To what extent do the proposed TOCL coverage criteria improve the qual-970

ity of a test suite?
The experiments have shown that the initial functional test suite did not
achieve an acceptable coverage of the properties. As a consequence, the

32

nominal situations described in the properties were not tested, and poten-
tial fault in them would be missed. We have seen that the TOCL tests975

complement the functional tests as they were able to detect faults that
were present in the considered implementation of PKCS#11, while being
undetected by the functional test suite, and vice-versa.

7.2. Other Experiments with TOCL

TOCL has been used in other projects that revealed its usefulness. We980

summarize here the context of these experiments and the conclusions that can
be drawn from them.

7.2.1. Experiments on GlobalPlatform during the TASCCC project.

GlobalPlatform is an industrial standard for managing resources for multi-
application smartcards. It describes all the functionalities and interfaces for985

managing the administrative aspects of a card all along its life cycle. An impor-
tant fact related to the GlobalPlatform standard is that it is designed to allow
different actors (phone companies, banks, transportation operators, etc.) to co-
exist on the same card. Such a possibility is offered by the notion of a Security
Domain (SD) that represents an application through which all interactions with990

the operating system are performed.
During the TASCCC project, we focused on GP UICC profile, and specif-

ically on the life cycle of the card, which is expected to comply with a simple
state machine displaying 5 states. The OP READY and INITIALIZED states
both indicate that the card is ready to receive commands from the issuer, but995

not from the card holder. State SECURED means that the card is ready to re-
ceive commands from the card holder. If a security violation happens, the card
goes to the CARD LOCKED state. Finally, when the card is TERMINATED,
no command can be successfully invoked. The life cycle of the card is controlled
by the applications, which use the ”setStatus” operation to set the life cycle1000

state, accordingly to the state machine.
This project was aimed to automate coverage reports in the context of Com-

mon Criteria (CC for short) [15] certifications. This certification process con-
sists, for a manufacturer, to provide evidences that the development of the
security product, here the smart cards, has been done following different guide-1005

lines. Depending on the Evaluation Assurance Level (EAL) that is targeted,
more or less detailed information has to be provided to the evaluator. TOCL
was used to evaluate the test cases produced by validation engineers at Gemalto
(the smartcard manufacturer involved in the project) and to automatically pro-
duce coverage reports of the property. As a proof of concept, we thus designed1010

4 properties that were intended to cover this life cycle, and we generated dedi-
cated reports for the CC evaluation, saving time for the industrials and efforts
for the evaluator who did not have to relate each test to the functional security
requirement that it was intended to cover.

The Common Criteria evaluator of the TASCCC project reported that (ex-1015

tract from evaluation report [16]):

33

It has been validated that the produced tests fully satisfy the usual
evaluation criteria applied for this kind of product [i.e. smart cards].
One of the most important criterion is the relevance of the test cases,
especially when automatic tools are used. The study shows that the1020

test cases of the TASCCC campaign have the same level of relevance
as test cases that would have been manually produced by a validation
engineer. The advantage of this approach is to produce more tests
and thus exercise the product in additional various contexts.

7.2.2. Use TOCL with a SCM Case Study1025

The second usage of TOCL we report here was realized during a national
research project named MBT Sec (MBT for security components) that involved
the French DGA3. The experimentation was performed in the context of an
evaluation process of cryptographic products. The agency requires that these
products have a qualification issued by a national authority, the French Network1030

and Information Security Agency (ANSSI). This qualification ensures the ro-
bustness of the security product against attackers of a defined skill: it indicates
that the product can protect information of a given sensibility level (potentially
classified information), under specified conditions of use. In this context, the
evaluation of cryptographic software supplies to the authority in charge of the1035

qualification all the technical elements needed for this assurance. This evalu-
ation focuses in particular on the ability of the product to ensure information
availability, confidentiality and integrity.

Our experimentation focused on a cryptographic library we call SCM for
Software Cryptographic Module. This library offers classical cryptographic ser-1040

vices like symmetrical and asymmetrical encryption, digital signature, hash com-
puting and random generation. It embeds an internal sequencing controller
which maintains a coherent state of the module in any state of the system. An
objective of our work was to address the underlying state-machine which can
not be manually validated due to its complexity (more than a thousand states1045

and sixteen thousand transitions). Initially, this automaton was modelled using
11 additional classes and 38 operations per class. This represented 418 oper-
ations and additional 2269 lines of OCL to guide the test generation engine,
which resulted in a very time consuming maintenance of the model.

Rather than exploiting this hardly maintainable model structure, the TOCL1050

mechanism allowed to systematize the testing phase. Indeed, the states of this
automaton are determined by the values of a given set of flags. For each com-
mand, a specific flag can be requested or forbidden, in order to execute the
command. Consequently, the command may set a flag, reset it, or invert it.
Thus, we defined, using the TOC-heLp assistant, 7 templates of TOCL proper-1055

ties that check the implementation of the commands sequencing, regarding the
values of the considered flags. These templates are the following:

3Armament Procurement Agency

34

• there is no erasure of a flag between its last setting and its subsequent
usage (as required).

• once a flag is set, and until it is erased, a command that requires this flag1060

can be invoked.

• in order to execute a command that requires the flag to be set, it has to
be set first.

• once a flag has been erased, it has to be set in order to execute a command
that requires it.1065

• there is no setting of a flag between the last erasure of the flag and its use
(as forbidden) to execute a command.

• once a flag is erased, and until it is re-set, a command that requests the
absence of this flag can be invoked.

• once a flag has been set, it has to be erased in order to execute a command1070

that forbids it.

Each template is then instantiated with a particular flag in order to provide
a TOCL property. Notice that it is possible to ensure the traceability of the
properties w.r.t. the considered flag and the test intention that is expressed by
the considered template.1075

By considering the SCM table of 18 flags and 37 commands (describing 44
combinations of before/after flags), we were able to easily generate an exhaus-
tive set of 935 TOCL properties. We evaluated the existing test suite on these
properties to check if they were covered by the tests. Notice that each property
could be documented by its informal expression, instantiated for the considered1080

flag and appropriate commands, providing an interesting and useful feedback
for the analysis of the coverage measure.

Due to confidentiality issues, it is not possible to provide further metrics for
this experiment. However, we can draw the following conclusions:1085

• TOCL properties made it possible to simplify the initial UML/OCL model
by externalizing a huge part of OCL (40%) that was initially only used to
drive the test generation ;

• the templates provided by the TOC-heLp assistant were evaluated in col-
laboration with DGA experts who validated the templates that were pro-1090

duced by the tool.

These two experiments, and the feedback from our industrial partners on
our approach, corroborate the conclusions of our case study on PKCS#11.

35

8. Related Work

In this section, we compare our model-based testing approach with the re-1095

lated works. First, we compare to other UML/OCL based test generation ap-
proaches. Second, we consider works on the use of properties for testing.

8.1. Model-Based Testing from UML/OCL

Many approaches have considered the use of UML, coupled with OCL, to
automatically generate test cases.1100

In [17] the authors propose the use of Higher-Order Logics to translate
UML/OCL models and automatically generate test cases. This approach is
similar to the function test generation described in Sect. 2.3. Similarly, a struc-
tural coverage is also considered in [18, 19] in which the authors decompose
the OCL constraints into Disjunctive Normal Form. The resulting formulae are1105

then solved by a constraint solver to generate test data activating the differ-
ent behaviors described in the specification. Also, in [20], the authors consider
search techniques to generate test cases. These works relate to the functional
test generation approach proposed by the CertifyIt tool. However, the notion of
properties is not considered and the coverage criteria that are considered focus1110

on the structure of the OCL constraints. Our approach aims to complement
such approaches by considering additional external entities

A lot of scenario-based testing works focus on extracting scenarios from
UML diagrams, such as the SCENTOR approach [21] or SCENT [22] using
statecharts. The SOOFT approach [23] proposes an object oriented framework1115

for performing scenario-based testing. In [24], Binder proposes the notion of
round-trip scenario test that cover all event-response path of a UML sequence
diagram. Nevertheless, the scenarios have to be completely described. Our
approach proposes to automatically generate the test scenarios from higher level
descriptions of the properties the validation engineer wants to test.1120

Close to our approach using mutations, the MoMut::UML tool [25] uses a
model mutation approach to generate test cases that reveal the mutants pro-
duced by a set of mutation operators. Our approach differs in the sense that
the mutations are performed on the property automata and not on the UML
model, reducing the number of mutants that can be produced, and focusing the1125

test cases on specific cases directly related to the property.
The RT-Tester tool [26] proposes various approaches to test from UML/SysML

models. In particular, it is both able to provide a functional test generation
strategy, and a requirement-based strategy based on LTL formulae that witness
a given property. Our approach goes one step further as we also consider corner1130

cases of the considered property. Besides, we do not rely on LTL but rather on
a simpler temporal language that is easier to handle by the test engineers.

8.2. Property-Based Testing

The notion of property-based testing is often employed in the test genera-
tion context. Several approaches [27, 28, 29] deal with LTL formulae, that are1135

negated and then given to a model-checker that produces traces leading to a

36

counter-example of this property, and thus defining the test sequences [30]. Our
work improves these approaches by defining both nominal and robustness test
cases, aiming either at illustrating the property or checking the system’s robust-
ness w.r.t. it. In [31], the authors define the notion of property relevant test1140

cases, introducing new coverage criteria that can be used to determine positive
and negative test cases. Nevertheless, our approach proposes several differences.
First, we do not rely on LTL, but on a dedicated language easier to manipu-
late than LTL by non-specialists. Second, the notion of property-relevance is
defined at the LTL level, whereas we rely on the underlying automata. Finally,1145

the relevance notion acts as an overlay to classical coverage criteria, while we
propose new ones.

In [32], the authors propose an approach for the automated scenario gener-
ation from environment models for testing of real-time reactive systems. The
behavior of the system is defined as a set of events. The process relies on an at-1150

tributed event grammar (AEG) that specifies possible event traces. Even if the
targeted applications are different, the AEG can be seen as a generalization of
regular expressions. Our approach goes further as it uses a property description
language that is close to a natural language. Carvalho et al [33] propose to use
controlled natural langauge to generate model-based tests. In this work, the re-1155

quirements are expressed using a case grammar and test cases are derived from
them. Our approach differs as the properties are in a semi-formal language, and
they do aim to replace the model.

Based on Dwyer’s work, jPost [6] uses a property expressed in a trace logic
for monitoring an implementation. Similarly, in [34] the authors introduce the1160

notion of observers, as ioSTS, that decide the satisfaction of the property and
guide the test generation within the STG tool. Our work differs in the sense
that the coverage criteria are not only used as monitors for passive testing,
but they can also be employed for active testing. Also using a passive testing
approach, [35] proposes to analyse event traces, coupled with test properties1165

to validate distributed systems. Closed to our approach, [36] proposes a set of
verification patterns, similar to Dwyer’s patterns, that are used to generate test
script templates, that the user has to complete. Contrary to our approach, this
work does not consider different coverage criteria for each pattern, and the test
generation phase is not automated.1170

In [37], the authors propose a property-based testing approach that relies
on FsCheck, and a set of business rules models as input. We share a common
vision of using properties for generting test cases and using them as a test oracle.
However, the properties considered in this work do not take into account the
dynamics of the system.1175

Recently, inspired from our work, an extension to OCL called OCLR [38] for
“OCL for Run-time verification” was proposed by Wei et al. This work adds
timing constraints to the same constructs that we initially published. However,
the authors did not experience active testing using these properties, limiting
their work to passive testing.1180

37

9. Conclusion and Future Work

In this paper, we have presented a model-based testing process based on test
properties. These latter are expressed in a dedicated formalism that captures
the dynamics of the system. Each property is translated into an automaton, for
which new coverage criteria have been introduced, in order to illustrate the prop-1185

erty. In addition, we propose to refine the automaton so as to exhibit specific
transitions that are closely related to error traces that are not accepted by the
property. This technique makes it possible to introduce a notion of robustness
testing to ensure that the property is correctly implemented. This approach
has been transferred into an industry-strength tool, and is now proposed as a1190

plug-in to the CertifyIt test generator. The advantages of this approach are
twofold. Mainly, it provides a means to produce test cases that can be directly
related to the property. Such a traceability makes it a suitable approach for in-
dustrial purposes. In addition, the automata and their refinements can be used
to measure the coverage of corner cases of a property for an existing test suite.1195

In addition, we have provided an assistant that can help the user to choose the
appropriate TOCL construct, and makes it possible to systematize the design
of test properties.

This approach has been evaluated in the context of industrial projects, which
gave us a very positive feedback on the usefulness of the coverage criteria, ex-1200

hibiting specific sequences of operations one may want to consider when testing.
Finally, notice that the proposed coverage criteria are not specific to UML/OCL
and could be adapted to any other notation that would use the same notions of
scope and patterns with a different representation of events.

1205

For the future, we plan to improve the test generation engine, so as to be
able to deal with multiple successive test targets, as this approach may produce.
During the experiments we sometimes failed to generate automatically test cases
that we were able to produce manually. One solution to do that, is to couple the
symbolic test generation engine with search-based testing algorithms. Further,1210

we plan to investigate the fault localization techniques, to help the validation
engineer in determining the origin of the discrepancies than can be found when
running the different test cases.

References

[1] B. Beizer, Black-box Testing: Techniques for Functional Testing of Software1215

and Systems, John Wiley & Sons, Inc., New York, NY, USA, 1995.

[2] M. Utting, A. Pretschner, B. Legeard, A taxonomy of model-based testing
approaches, Softw. Test. Verif. Reliab. 22 (5) (2012) 297–312.

[3] J. Warmer, A. Kleppe, The Object Constraint Language Second Edition:
Getting Your Models Ready for MDA, Addison-Wesley, 2003.1220

38

[4] P.-A. Masson, M.-L. Potet, J. Julliand, R. Tissot, G. Debois, B. Leg-
eard, B. Chetali, F. Bouquet, E. Jaffuel, L. Van Aertrick, J. Andronick,
A. Haddad, An access control model based testing approach for smart card
applications: Results of the POSÉ project, JIAS, Journal of Information
Assurance and Security 5 (1) (2010) 335–351.1225

[5] M. B. Dwyer, G. S. Avrunin, J. C. Corbett, Patterns in property speci-
fications for finite-state verification, in: ICSE’99: Proceedings of the 21st
international conference on Software engineering, IEEE Computer Society
Press, Los Alamitos, CA, USA, 1999, pp. 411–420.

[6] Y. Falcone, L. Mounier, J.-C. Fernandez, J.-L. Richier, j-POST: a Java1230

Toolchain for Property-Oriented Software Testing, Electr. Notes Theor.
Comput. Sci. 220 (1) (2008) 29–41.

[7] B. Kanso, S. Taha, Specification of temporal properties with ocl, Sci. Com-
put. Program. 96 (P4) (2014) 527–551.

[8] S. Taha, J. Julliand, F. Dadeau, K. C. Castillos, B. Kanso, A compositional1235

automata-based semantics and preserving transformation rules for testing
property patterns, Form. Asp. Comput. 27 (4) (2015) 641–664.

[9] F. Bouquet, C. Grandpierre, B. Legeard, F. Peureux, N. Vacelet, M. Utting,
A subset of precise UML for model-based testing, in: A-MOST’07, 3rd
int. Workshop on Advances in Model Based Testing, ACM Press, London,1240

United Kingdom, 2007, pp. 95–104.

[10] K. Cabrera Castillos, F. Dadeau, J. Julliand, B. Kanso, S. Taha, A compo-
sitional automata-based semantics for property patterns, in: E. Johnsen,
L. Petre (Eds.), iFM’2013, 10th Int. Conf. on integrated Formal Methods,
Vol. 7940 of LNCS, Springer, Turku, Finland, 2013, pp. 316–330.1245

[11] J. C. Huang, An approach to program testing, ACM Comput. Surv. 7 (3)
(1975) 113–128.

[12] R. A. DeMillo, Test adequacy and program mutation, in: ICSE, 1989, pp.
355–356.

[13] J. Botella, F. Bouquet, J.-F. Capuron, F. Lebeau, B. Legeard, F. Schadle,1250

Model-based testing of cryptographic components – lessons learned from
experience, in: ICST’13, 6th IEEE Int. Conf. on Software Testing, Verifi-
cation and Validation, 2013, pp. 192–201.

[14] R. McNaughton, H. Yamada, Regular expressions and state graphs for
automata, IEEE Transactions on Electronic Computers 9 (1960) 39–47.1255

[15] Common criteria for information technology security evaluation, version
3.1 (July 2009).

39

[16] D. Rouillard, Tasccc project - deliverable 5.4 - report on the integration of
the ate requirements, Tech. rep., Serma Technologies (2012).

[17] A. D. Brucker, M. P. Krieger, D. Longuet, B. Wolff, A specification-based1260

test case generation method for uml/ocl, in: Proceedings of the 2010 In-
ternational Conference on Models in Software Engineering, MODELS’10,
Springer-Verlag, Berlin, Heidelberg, 2011, pp. 334–348.

[18] M. Benattou, J.-M. Bruel, N. Hameurlain, Generating test data from ocl
specification, in: Proc. ECOOP Workshop Integration and Transformation1265

of UML Models, 2002.

[19] L. V. Aertryck, T. Jensen, Uml-casting: Test synthesis from uml models
using constraint resolution, in: AFADL’2003, 2003.

[20] S. Ali, M. Z. Iqbal, A. Arcuri, L. C. Briand, Generating test data from ocl
constraints with search techniques, IEEE Transactions on Software Engi-1270

neering 39 (10) (2013) 1376–1402.

[21] J. Wittevrongel, F. Maurer, Scentor: Scenario-based testing of e-business
applications, in: WETICE ’01: Proceedings of the 10th IEEE International
Workshops on Enabling Technologies, IEEE Computer Society, Washing-
ton, DC, USA, 2001, pp. 41–48.1275

[22] J. Ryser, M. Glinz, A practical approach to validating and testing software
systems using scenarios (1999).

[23] W. T. Tsai, A. Saimi, L. Yu, R. Paul, Scenario-based object-oriented testing
framework, in: Int. Conf. on Quality Software, IEEE Computer Society, Los
Alamitos, CA, USA, 2003, p. 410.1280

[24] R. V. Binder, Testing object-oriented systems: models, patterns, and tools,
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1999.

[25] W. Krenn, R. Schlick, S. Tiran, B. Aichernig, E. Jobstl, H. Brandl, Mo-
mut::uml model-based mutation testing for uml, in: 2015 IEEE 8th Interna-
tional Conference on Software Testing, Verification and Validation (ICST),1285

2015, pp. 1–8.

[26] J. Peleska, E. Vorobev, F. Lapschies, Automated test case generation with
smt-solving and abstract interpretation, in: M. G. Bobaru, K. Havelund,
G. J. Holzmann, R. Joshi (Eds.), NASA Formal Methods - Third Inter-
national Symposium, NFM 2011, Vol. 6617 of Lecture Notes in Computer1290

Science, Springer, 2011, pp. 298–312.

[27] A. Gargantini, C. Heitmeyer, Using model checking to generate tests from
requirements specifications, in: Procs of the Joint 7th Eur. Software Engi-
neering Conference and 7th ACM SIGSOFT Int. Symp. on Foundations of
Software Engineering, 1999.1295

40

[28] L. Tan, O. Sokolsky, I. Lee, Specification-based testing with linear temporal
logic, in: IRI’2004, IEEE Int. Conf. on Information Reuse and Integration,
2004, pp. 413–498.

[29] P. Amman, W. Ding, D. Xu, Using a model checker to test safety prop-
erties, in: 7th Int. Conf. on Engineering of Complex Computer Systems1300

(ICECCS’01), IEEE, 2001, p. 212.

[30] P. E. Ammann, P. E. Black, W. Majurski, Using model checking to generate
tests from specifications, in: Proceedings Second International Conference
on Formal Engineering Methods (Cat.No.98EX241), 1998, pp. 46–54.

[31] G. Fraser, F. Wotawa, Using Model-Checkers to Generate and Analyze1305

Property Relevant Test-Cases, Software Quality Journal 16 (2008) 161–
183.

[32] M. Auguston, J. Michael, M.-T. Shing, Environment behavior models for
scenario generation and testing automation, in: A-MOST’05: Proceed-
ings of the 1st international workshop on Advances in model-based testing,1310

ACM, New York, NY, USA, 2005, pp. 1–6.

[33] G. Carvalho, F. Barros, F. Lapschies, U. Schulze, J. Peleska, Model-based
testing from controlled natural language requirements, in: C. Artho, P. C.
Ölveczky (Eds.), Formal Techniques for Safety-Critical Systems: Second
International Workshop, FTSCS 2013, Queenstown, New Zealand, October1315

29–30, 2013. Revised Selected Papers, Springer International Publishing,
Cham, 2014, pp. 19–35.

[34] V. Rusu, H. Marchand, T. Jéron, Automatic verification and conformance
testing for validating safety properties of reactive systems, in: J. Fitzger-
ald, A. Tarlecki, I. Hayes (Eds.), Formal Methods 2005 (FM05), LNCS,1320

Springer, 2005.

[35] H. Hallal, S. Boroday, A. Ulrich, A. Petrenko, An automata-based approach
to property testing in event traces, in: Proceedings of the 15th IFIP Inter-
national Conference on Testing of Communicating Systems, TestCom’03,
Springer-Verlag, Berlin, Heidelberg, 2003, pp. 180–196.1325

[36] W.-T. Tsai, L. Yu, F. Zhu, R. Paul, Rapid embedded system testing using
verification patterns, IEEE Softw. 22 (4) (2005) 68–75.

[37] B. K. Aichernig, R. Schumi, Property-based testing with fscheck by deriving
properties from business rule models, in: 2016 IEEE Ninth International
Conference on Software Testing, Verification and Validation Workshops1330

(ICSTW), 2016, pp. 219–228.

[38] W. Dou, D. Bianculli, L. Briand, Oclr: A more expressive, pattern-based
temporal extension of ocl, in: Proceedings of the 10th European Conference
on Modelling Foundations and Applications - Volume 8569, Springer-Verlag
New York, Inc., New York, NY, USA, 2014, pp. 51–66.1335

41

	Introduction
	Context: Functional Testing from UML/OCL
	UML4ST – a subset of UML for Model-Based Testing
	Running Example
	Functional Test Generation from UML/OCL with Smartesting CertifyIt

	The TOCL Language
	Property Pattern Language
	Property Semantics using Automata

	Test selection criteria for TOCL properties
	Preliminary Definitions
	Nominal Coverage Criteria for the Property Automata
	Robustness Coverage Criteria
	Event Mutation Operators
	Automata Mutation and Robustness Coverage Criteria

	Property-Based Testing with TOCL
	Test Suite Evaluation
	Test scenarios generation
	Model Validation

	Assistance to Property Design
	Issues with the TOCL property patterns
	Assistance to the Validation Engineer
	TOC-heLp - an Assistant for designing TOCL Properties

	Experimental assessment with PKCS#11
	The PKCS#11 case study
	Research Questions and Experimental Procedure
	PKCS#11 Model
	TOCL Properties Design
	Test Execution and Results
	Conclusions of the Experiment

	Other Experiments with TOCL
	Experiments on GlobalPlatform during the TASCCC project.
	Use TOCL with a SCM Case Study

	Related Work
	Model-Based Testing from UML/OCL
	Property-Based Testing

	Conclusion and Future Work

