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Abstract

Considering the overwhelming pressure on worldwide demand of fossil fuels and the climate change caused by air pollution,
hybrid electric vehicles have seen a promising future thanks to the development of renewable energy sources. Among various
kinds of energy sources that have been used in hybrid electric vehicles, lithium-ion battery and proton exchange membrane (PEM)
fuel cell exist to be the most favorable ones owing to their high energy density and power density. However, the degradation
issues of the energy sources tend to be neglected when designing the energy management strategies for the hybrid electric vehicles.
Concerning existing literature, degradation modelling methods of lithium-ion batteries and PEM fuel cells are reviewed and the
possibility of integrating them into health-conscious energy management is discussed. Besides, a variety of energy management
strategies that have taken the influence of degradations into consideration are reviewed and classified. The contribution of this
paper is to investigate the possibility of developing a health-conscious energy management strategy based on accurate estimation
of degradation to improve the durability of the system.
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Nomenclature

Abbreviations

HEV Hybrid electric vehicle

PEM Proton exchange membrane

EMS Energy management strategy

SOC State of charge

DOD Depth of discharge

RUL Remaining useful life

SEI Solid Electrolyte Interface

EIS Electrochemical impedance spectrometry

ECMS Equivalent consumption minimization strategy

EDMS Equivalent degradation minimization strategy

PSO Particle swarm optimization

PMP Pontryagin’s minimum principle

MPC Model predictive control

SVM Support vector machine

Physics symbols

δ f ilm SEI film thickness cm

Mp Average molecular weight of the compounds of
SEI −

an SEI surface area cm2

ρp Average density of the compounds of SEI kg/cm3

F Faraday constant −

JS Side reaction current density A/s

Rgas Gas constant −

T Absolute temperature K

R Internal resistance Ω

Q Battery capacity Ampere · hour

Ea Activation energy J/mol

Ah Charge throughput Ampere · hour

Vstack Fuel cell stack voltage V
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1. Introduction

At the beginning of 21st century, the United States National
Academy of Engineering (NAE) has identified the electrifica-
tion as the greatest engineering achievement of the 20th century
[1]. In recent years, the electrification in the automotive field is
making a change to the dominant place of internal combustion
engines in vehicle’s propulsion system. Given the overwhelm-
ing pressure on worldwide demand of fossil fuels and the cli-
mate change caused by air pollution, various types of new en-
ergy vehicles exist to be a promising and practical solution for
the upcoming social and environmental problems. Fuel cell hy-
brid electric vehicles (HEVs), which use fuel cells as the main
energy source and battery packs as the energy storage devices,
have generated considerable interests recently. Fuel cells and
battery packs are proved to be efficient when working together
to provide a zero-emission propulsion in electric vehicles. In a
battery/fuel cell HEV, the hydrogen fuel is converted into elec-
tricity by the on-board fuel cell system and provides most en-
ergy needs of the vehicle, while the on-board batteries are used
to store regenerated energy and to provide peak power demand.
This is because the fuel cell prefers to run in stable conditions
and can reach its maximum efficiency at partial load, while the
battery can run at high current to make up the weak points of the
fuel cell [2, 3]. Different to pure electric vehicles (battery-only
electric vehicles), the battery system in fuel cell HEVs could be
reduced in size and as a result, it decreases the overall weight
and cost of the vehicle [3, 4].

One of the possible configurations of battery/fuel cell HEVs
is shown in Figure 1 (a). In this series hybrid configuration, the
fuel cell is coupled to the batteries via DC/DC converters and
works as a range extender to increase the driving distance and
level up the speed. The battery system supplies the power to the
traction system directly and it is usually a non plug-in one that
is charged by the fuel cell with the continued supply of hydro-
gen [4, 5, 6]. But if it is needed, the battery system could also
be a plug-in one charged by the grid [7, 8, 9, 10]. Another con-
figuration is in parallel, as shown in Figure 1 (b). In this case,
the fuel cell system supplies the power to the electric motor di-
rectly and the size of the battery system is reduced since it is
only in charge of providing the transient power demand and ab-
sorb the regenerative braking energy. This kind of topology is
commonly found in the literature [11, 12, 13, 14, 15, 16, 17, 18].

Hybrid configuration usually goes with management prob-
lems, which should be solved to determine how the energy
sources operate with each other. A strategy that controls the
energy sources to feed the electric motor in HEVs is called
an energy management strategy (EMS). EMSs are usually de-
signed to achieve certain objectives, such as minimizing the
consumption and economic cost, optimizing the sizing of en-
ergy sources, improving the driving conditions for drivers, etc.
In recent years, health management of energy sources has taken
significant place when developing EMSs since the degradation
of energy sources cannot be neglected [19]. Batteries and fuel
cells may suffer from different degrees of degradation during
storage and under operation modes. Their current lifetime can-
not satisfy the commercial need. For example, fuel cell stacks

need roughly a 5000-hour life to enter the market for light-duty
electric vehicles while they can currently reach less than 2000
hours [20]. Therefore, health-conscious energy management
strategies have generated great interests and numerous studies
have proved that it is possible to exercise an active control over
the operation and in turn to mitigate the deleterious effects of
the degradation [21, 22]. Various EMSs have been applied to
vehicle applications and the classification of them can also be
found in [21, 23, 24, 25, 26].

However, heath-conscious energy management is still par-
ticularly challenging for the following two reasons. First, al-
though the degradation of energy sources are considered in
some EMSs, most of the researchers just set boundaries to bat-
tery’s state of charge based on data-sheets or roughly eliminate
the operation dynamics of the fuel cell [9, 16]. This kind of
strategy is not accurate and cannot reach the goal of improving
the durability due to the lack of the knowledge of the real-time
degrading situation. Although researchers have made many ef-
forts to precise the degradation model [27, 28, 29], the con-
flict between dealing with model dynamics and the complex-
ity of the strategy needs further discussions. To face this chal-
lenge, prognostics and health management (PHM) has existed
as a promising subject in evaluating the energy source degra-
dation and estimating the remaining useful life (RUL). Various
works that perform prognostics on both batteries and fuel cells
in order to capture their ageing phenomenon could be found in
[30, 31, 32, 33]. However, prognostics only provides a chance
to estimate the RUL by quantifying the degradation but the
post-decision part hasn’t been well investigated yet. Further
attention should be paid to the management aspect of PHM, i.e.
what could be done after a prognostics prediction is produced.
Therefore, a delicately designed EMS based on accurate degra-
dation estimation is demanding.

Second, health-conscious energy management is a non-trivial
problem with multiple inputs and various state and control
constraints. Numerous researches have been done to solve
multi-objective EMSs. For example, in [34], degradation phe-
nomenon is calculated as economic costs and optimized by for-
mulating an equivalent energy cost function. Ref. [35] de-
fines the cycling degradation model of the battery and super-
capacitor and optimizes a multi-objective fitness function by
generic algorithm. In order to improve on-line operation, Yu
et al. merge the parameters of fuzzy logic controller accord-
ing to the optimization results of non-dominated sorting genetic
algorithm-II [36]. However, how one objective should be com-
promised to the others is hard to determine and the optimality of
on-line EMSs can hardly reach the level of off-line calculation.

There have been a number of literature surveys on modelling
the degradation of batteries and fuel cells [29, 37]. The existing
review papers have focused on classifying various degradation
models into different categories and qualifying their effective-
ness. They rarely think about the feasibility of integrating them
into HEV energy management. In [38], authors have pointed
out that the health state estimation of the battery is usually a
separately task and there is a lack of numerical relationship be-
tween the time behavior of physical parameters and its state of
health. Moreover, no one reviews fuel cell degradation models
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Figure 1: Battery/fuel cell hybrid propulsion: series configuration and parallel configuration

for vehicle application. Therefore, this paper tends to fill this
gap, which contributes to review not only the existed degra-
dation modelling methods of both batteries and fuel cells in
HEV applications but also the existed health-conscious EMSs
that consider the energy source degradation using different ap-
proaches. The idea of developing an EMS based on prognostics
is proposed and believed to be a meaningful and promising so-
lution to the health management of the hybrid system.

The rest of this paper is arranged as follows: degradation
mechanisms and various degradation models of batteries and
fuel cells are reviewed in Section 2 and Section 3, respectively,
which give a basis for developing health-conscious EMSs for
battery/fuel cell HEVs. Taken into consideration the degrada-
tion phenomenon, various health-conscious EMSs in the exist-
ing literature are classified and discussed in Section 4, together
with some open challenges and expected solutions. Finally,
conclusions and perspectives are given which clarify the pos-
sible study orientations in this field.

2. Lithium-ion battery degradation modelling

Lithium-ion batteries are competitive in vehicle applications
thanks to their high energy density and high power density.
They have also shown good lifespan attributes without any
memory effect. However, the health of lithium-ion batteries can
be affected by various affects. The capacity fade and impedance
raise of an ageing lithium-ion battery will lead to the reduction
of its power output [29]. Figure 2 shows the operation princi-
ple of a lithium-ion battery, which consists of a cathode (posi-
tive electrode), an anode (negative electrode) and an electrolyte
as its conductor. The cathode is of metal oxide while the an-
ode is of porous carbon. During discharge, the ions flow from
the anode to the cathode through the electrolyte and separator.
The charging process reverses this direction and the ions flow
from the cathode to the anode. The change happening at the

electrode/electrolyte interface is the most dominant ageing phe-
nomenon of the battery, which is caused by Solid Electrolyte
Interface (SEI) formation, shown in the zooming part of Figure
2. The continuous growth of SEI leads to the change of sur-
face porosity, the decrease of active surface and the deposition
of metallic lithium, resulting in the loss of capacity and power
capability. In order to avoid repetition, other phenomenon re-
garding to battery’s ageing has been summarized in Table 1.
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Figure 2: Operation principle of a lithium-ion battery

Since lithium-ion battery is such a complex system that its
ageing process is even more complicated, accurately modelling
and estimating its degradation is of great significance before
developing a health-conscious EMS. Based on the analysis of
battery’s ageing mechanisms above, different degradation mod-
elling and estimation methods are studied in this section. Some
of them are electrochemical models which are closely related to
the chemical reactions happening inside the battery. This kind
of model is accurate but complicated and difficult to apply in
practice. Others are empirical models which can be obtained
by fitting experimental data. They are used to estimate the
health state of the battery and predict RULs. However, it is in-
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Table 1: Summary of ageing phenomenon of lithium-ion battery
Components Causes Phenomenon Results
Anode Overcharging; very high state of charge

(SOC);
Intercalation of solvent/ peeling of
graphite/ cracking;

Loss of capacity (loss of active material,
loss of lithium);

Anode High temperature; high SOC; Dissolution of electrolyte (cathodic oxi-
dation/ anodic reduction); dissolution of
binder;

Loss of capacity; loss of power capabil-
ity;

Anode High current; high depth of discharge
(DOD);

Growth of SEI/ change of surface poros-
ity;

Growth of impedance; loss of power ca-
pability;

Anode High temperature; high SOC; Decrease of active surface because of
continuous growth of SEI;

Growth of impedance; loss of power ca-
pability;

Anode Low temperature; high current; bad de-
sign of cells;

Deposition of metallic lithium/ forma-
tion of SEI;

Loss of capacity; loss of power capabil-
ity (loss of lithium);

Anode High current; high DOD; Loss of contact active mass particles be-
cause of volume change;

Loss of capacity;

Anode Low SOC; high DOD; Corrosion of conductor; Loss of power capability (over-voltage);
growth of impedance;

Cathode Storage condition; Structural disordering; Loss of storage places for lithium;
Cathode High temperature; high SOC; Migration of soluble species; Loss of capacity by firm formation on

anode;
Cathode High temperature; high SOC; Electrolyte decomposition; Loss of power capability;
Cathode Low SOC; deep discharge; Corrosion of conductor; Loss of power capability (overvoltage);

growth of impedance;

evitable that empirical models have the problems of inaccuracy
and huge dataset. Therefore, researchers start to place more
attention on finding a semi-empirical model, which combines
the theoretical aspects with data fitting. This kind of model is
more implementable compared to electrochemical ones and at
the same time, more accurate than empirical ones [29]. The
following part of this section has roughly reviewed these mod-
elling methods according to the output of the models. This work
may not be a complete one with an exhaustive survey on all ex-
isting battery degradation models but it is committed to finding
practical ones that can be used in the energy management of
HEVs.

2.1. SEI film thickness model

From an electrochemical point of view, the cell degradation
of the battery is, to a large extent, due to the loss of lithium on
the SEI. Therefore, researchers have proposed to use the SEI
film formation model to symbolize the degradation degree of
the battery [19, 36]. The change of the film thickness is written
as:

∂δ f ilm(x, t)
∂t

= −
Mp

anρpF
JS (x, t) (1)

where δ f ilm is the film thickness, Mp is the average molecular
weight of the SEI layer’s compounds, an is the specific surface
area, ρp is the average density of the compounds, F is Faraday’s
constant and JS is the side reaction current density calculated
by Tafel equation [19]:

JS (x, t) = −i0,sane
−0.5F
RgasT ηS (x,t) (2)

where i0,s denotes the exchange current density for the side re-
action, Rgas is the universal gas constant and T is the tempera-
ture. ηS represents the side reaction over potential, calculated
by:

ηS (x, t) = φ1(x, t) − φ2(x, t) − Ure f ,s −
Jtot(x, t)

an
R f ilm(x, t) (3)

where φ1 and φ2 represent solid and electrolyte potentials, Ure f ,s

denotes the equilibrium potential of the solvent reduction reac-
tion, Jtot is the total intercalation current calculated as a sum of
intercalation current in anode and R f ilm is the resistance of the
film.

However, this model consists of a large number of state vari-
ables and a large set of non-linear algebraic constraints, which
brings a heavy burden for calculation [39]. To simplify the
calculation, Forman et al. have proposed to linearize the con-
straints by a quasi-linearization method and a family of analytic
Padé approximations has been used to reduce the number of
state variables [40]. The implementation of this simplification
enables real-time operations without a trade-off on the system
accuracy.

2.2. Internal resistance model

Rather than using an electrochemical model, the internal re-
sistance of the battery can be estimated by equivalent circuit
models. As shown in Figure 3, the model with one ohmic re-
sistance and two RC brunches is commonly used. For example,
Remmlinger et al. have proposed to use this equivalent circuit
to estimate the internal resistance and derive a temperature-
related degradation index calculated from the increase of bat-
tery’s internal resistance [41]. The index kd is solved by the
equation:

Ri,actual = kdRi,new(T ) (4)

where i is the time step, R denotes the internal resistance and the
actual resistance is calculated by identification method using
terminal voltage and the measured current. The idea is to cal-
culate the proportion factor between the theoretical resistance
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of a new battery cell under actual temperature and the actual
internal resistance [41]. An exponential expression is used to
calculate the theoretical resistance value related to the temper-
ature:

Ri,new(T ) = ae−bT + c (5)

Figure 3: Equivalent circuit of a battery cell

Besides, Stroe et al. have found the dependence of the bat-
tery’s internal resistance on its storage time, SOC level and tem-
perature [28]. They used a two-step fitting procedure to develop
the model for 2.5 Ah LFP/graphite battery cells with all the
three aspects:

R = (a · eα·T ) · (b · S OCβ) · t (6)

where a, b, α and β are the fitting results.
In fact, the internal resistance of the battery can also be es-

timated through filter algorithm with the help of the equivalent
circuit. A broad variety of state estimation methods were pro-
posed and dual extended Kalman filter (EKF) is one of the key
scenarios [42, 43, 44]. Instead of observing only the state vari-
ables, the internal resistance is regarded as a parameter, which
can also be estimated through tracking the system performance
[44]. However, the effectiveness and adaptability of this method
are highly dependent on the credibility and robustness of the
prescribed battery models [45].

2.3. Capacity degradation model

The capacity of a battery refers to how much electrical charge
that the battery can hold in its fully charged state. When the ca-
pacity fades to the threshold, usually 20%-30% of its original
value, batteries are believed to be not able to operate their nor-
mal mode and should be replaced [46].

As battery’s capacity is the most widely used indicator of bat-
tery’s state of health (SOH), numerous approaches of capacity
estimation and prediction have been proposed in the literature.
He et al. have experimentally found that the sum of two ex-
ponential functions can well describe the capacity degradation
trends of several different batteries, which is frequently used
in the studies of battery prognostics [47]. He et al’s model is
expressed as:

Q = a · exp(b · k) + c · exp(d · k) (7)

where Q denotes the battery capacity and k denotes the full
charge-discharge cycle number.

Xing et al. have compared He et al.’s model with another ca-
pacity degradation model in the form of polynomial regression.

Particle filter estimation results have shown that the exponential
model had better predictive performance [48]. Base on that, the
authors have developed another model that have shown an even
better regression characteristic over the whole battery life. The
model is expressed as [49],

Q = γ1 · exp(γ2 · k) + γ3 · k2 + γ4 (8)

However, models in prognostics works are usually verified
through the degradation data with regular charge/discharge cy-
cles. When it comes to vehicle applications, randomized charge
and discharge process should be considered due to uncertain
driving conditions. In order to quantify this kind of capacity
fade, semi-empirical models are then proposed in the litera-
ture to take more physical parameters into consideration, such
as SOC, DOD, Ah throughput, current rate, etc. For example,
Wang et al. have carried out the battery ageing tests under dif-
ferent DODs (10%-90%), temperatures (-30◦C-60◦C) and dis-
charge rates (C/2-10C) [50]. To demonstrate the capacity loss,
a power law equation has been adopted with related to time,
charge throughput and an Arrhenius correlation of temperature,
which is expressed as:

Qloss = B · exp(−(
Ea + m ·Crate

RT
))(Ah)z (9)

where B is a pre-exponential factor, Ea is the activation en-
ergy, m is the compensation factor for C-rate and Ah is the total
charge throughput. This model can also be used to estimate
the SOH of the battery [51] and as a battery life indicator to
study the degradation issues in vehicle applications [52, 53, 54].
To further improve the accuracy, the parameter B in the above
equation has been introduced as a function of SOC in [27],
which extends the model to be SOC-related. Similarly, using
self-organizing maps, Fernandez et al. have yielded another
semi-empirical capacity fade model, in which both temperature
and DOD are identified to be the most related aspects of degra-
dation [55]. In order to study its ageing phenomenon under a
realistic vehicle driving cycle, Cordoba-Arenas et al. add an-
other parameter into this model, which is the ratio of charge
depleting time to total driving time, tCD

tCD+tCS
[56].

However, Baghdadi et al. pointed out that Ah-throughput
could lead to mistakes in separating calendar ageing and cy-
cle ageing [57]. Therefore, a total ageing expression with only
one ageing rate based on Dakin’s degradation approach was
proposed and tested over three different temperatures (30◦C,
45◦C and 60◦C) with three different SOC levels (30%, 65%
and 100%) for calendar ageing and four ageing factors includ-
ing current, charge throughput, temperature and DOD for cycle
ageing. The ageing rate k is express as:

k = e(a(T )×I) × e
cS OC

a × e
d
a × e

−b
aT (10)

The capacity is calculated by:

Q = Q0 · exp(±ktz) (11)

where the time-dependent parameter z is determined by fitting
the logarithm of battery capacity fade according to (11) and it
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varies with different kinds of batteries. Similarly, Schmalstieg
et al. have considered the calendar ageing and cycle ageing sep-
arately with different parameters [58]. The normalized capacity
is expressed as:

Q = 1 − α(T,V) · tz − β(S OC, I,V) ·
√

Ah (12)

where α is the calendar ageing coefficient related to the temper-
ature and voltage, while β is the cycle ageing coefficient related
to SOC, current, I and voltage, V .

Although semi-empirical models complete the problem by
adding physical interpretations of the aging sources, the draw-
back is that they are highly dependent on the design of ageing
experiments [57].

2.4. Residual lifetime model
Estimating the residual lifetime of the battery is another ap-

proach to indicate the degradation degree if same conditions
were maintained during its lifetime [29]. Some researchers
have proposed to use rainflow counting technique to estimate
the lifespan of the battery [34, 35]. The model is established
based on cycle numbers and DOD. The battery degradation is
accumulated by counting the swapping SOCs. For example, the
effect of cycling is considered in [35] where the rainbow algo-
rithm records the number of charge/discharge cycles with dif-
ferent values of DOD until the end of life. The battery lifetime
(L) is calculated by:

L(year) = min
[
Lnom ·

1∑9
j=1(k · 365/L j)

]
(13)

where Lnom is the nominal value of battery’s cycle life with no
degradation, k is the counted charge/discharge cycle number
according to the rainbow algorithm and L j is the pre-defined
number of life cycles for nine different values of DOD.

Besides, an empirical lifetime prediction model have been
proposed in [59] takes into consideration the influence of tem-
perature, SOC as well as DOD, written as:

∆L1

L
=

∫
1

8760 · L(T + R· | P(t) |)
dt +

tmax − tch

8760 · L · T

−
tmax

8760 · L(Pmin · R + T )

(14)

∆L2

L
=

m · S OCavg − d
CFmax · 15 · 8760

(15)

∆L3

L
=

ET,used − ET,base

ET L
(16)

Equation (14) denotes the temperature-related degradation
where P is the charging power. L denotes either the power life-
time or the capacity lifetime which is inversely proportional to
the Arrhenius relationship (r = A · e−E/kT ). The second term
and the third term indicate the life expense of no charging plug-
ging in and slow charging, respectively. Equation (15) suggests
the SOC-related degradation where CFmax is the maximum ca-
pacity fade at the end of life and m and d are tuned parame-
ters. Equation (16) is the DOD-related degradation where ET L

is defined as the lifetime energy throughput, ET,used is the total
change in the remaining energy throughput, and ET,base is the
minimum energy throughput required to recharge the battery
[59]. This modelling method has also been used in [60] as an
analysis tool to demonstrate the effectiveness of the designed
EMS.

2.5. Synthesis
Since batteries in HEVs usually have a limited life, health

monitoring of battery is of considerable importance in the im-
provement of the durability of the system. Numerous studies
have been done to evaluate the health state of the battery and
to quantify the degradation in order to implement health man-
agement, as summarized in Table 2. In addition to the above
mentioned battery degradation models, some researchers have
also transferred the degradation of battery into the economic
cost of the system. This kind of method can reduce the number
of state variables and make the multi-objective problem into a
single-objective one but the accuracy is sacrificed to some ex-
tent.

Nevertheless, battery’s ageing models on an experimental
scale or a simulation scale are insufficient to describe the battery
in actual use because the power profiles in automotive applica-
tions are completely random. Well-designed ageing tests are
helpful in developing models and saving time and costs. How-
ever, they can hardly cover all operating conditions. Therefore,
in order to develop an effective health-conscious EMS, mod-
elling and estimating battery’s ageing performance is one of
most crucial problem to solve. Using the same structure of this
section, next section gives an introduction to PEM fuel cell as
well as its degradation modelling methods.

3. PEM fuel cell degradation modelling

PEM fuel cell is widely used in vehicle applications since
it has shown high power density, relatively lower operating
temperature (60-80 ◦C) and low corrosion compared to other
types of fuel cells [62]. According to Jouin et al., ”PEM fuel
cell system” refers to a PEM fuel cell stack and all its aux-
iliaries (reactant storages, pumps, etc.), while the stack is the
part which converts the energy and is referred as the fuel cell
[63]. The stack contains several cells and one cell contains
different components, namely, electrodes, membrane, gas dif-
fusion layer (GDL) and bipolar plate, as shown in Figure 4.
All of these components may suffer from different processes of
degradation during usage and the degradation mechanisms on
each component are summarized and listed in Table 3. How-
ever, degradation happening on each area of the stack cannot
reach the same degree, for example, cells near the edges tend
to degrade faster [64]. Besides, if we consider degradation on
the component level, the degradation between component and
auxiliaries cannot be covered and the parameters are hard to ob-
tain. Therefore, fuel cell degradation is generally modelled on
the stack level. Various modelling methods have existed in the
literature based on its ageing mechanisms.

Similar to the modelling of battery’s degradation, various
data-driven methods and physical model-based methods are
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Table 2: Summary of various battery degradation modelling methods
Model output Modelling method Advantages Disadvantages
SEI film thickness model [19,
36, 40]

Electrochemical model Accurate with theoretical interpreta-
tions;

Complicated; difficult to determine
the parameters and their ranges;

Internal resistance model [28,
41]

Electrochemical model/ Equiv-
alent circuit model

Calculated by the instantaneous be-
haviour of the battery;

Less accurate than the electrochem-
ical models;

Capacity degradation model
[27, 47, 48, 49, 50, 51, 52, 53,
54, 55, 56, 57, 58, 61]

Empirical/ Semi-empirical
model

Easy to implement; on-line and
close-loop;

Need of large experimental dataset;
parameters need to be tuned each
time with the changing of operat-
ing conditions; heavy computational
burden;

Residual life model [34, 35, 59,
60]

Semi-empirical model Easy to implement; moderate com-
plexity;

Sensitive to operating conditions;
least accurate;

2 bipolar plates to supply the gas and evacuate the effluents

2 gas diffusion layer to supply reactants to electrodes

2 electrodes

1 electrolyte (polymer membrane)

Cell 

Stack 

Figure 4: Components in a PEM fuel cell stack

used when estimating the degradation of PEM fuel cell. Data-
driven methods depend on the features extracted from the data
but once the operating condition changes, the parameters need
to be adjusted from time to time [65, 66]. Physical models con-
sider the internal reactions of fuel cell’s performance degrada-
tion, such as the decline of carbon support, the surface area loss
of Pt, etc. However, the degradation process in vehicle appli-
cations is much more complex and hard to be expressed by a
theoretical model and the identification of the inner parameters
is difficult to realize [67, 68]. The rest part of this section has
reviewed several modelling methods that have been applied in
vehicle applications. The purpose is to find the most effective
and implementable methods that could be used to develop an
EMS to improve the health management of the fuel cell.

3.1. Stack voltage degradation model
The stack voltage drop of the fuel cell is the most principle

change so that the output voltage is widely used to demonstrate
the degradation phenomenon [16]. Pei et al. have proposed to
use the cycle information to calculate the stack voltage degra-
dation, expressed as [69]:

Vstack = Vrate · D f c (17)

D f c = kp(P1n1 + P2n2 + P3t1 + P4t2) (18)

where D f c is the degradation rate, kp is the accelerating co-
efficient, P1-P4 are the degradation rates resulting from load
change, start/stop, idling and high power demand, respectively,

and n1, n2, t1, t2 denotes the times of load change, the times
of start/stop switches, the time for idling and the time of high
power demand, respectively. This model tries to contain the
driving conditions in the modelling of fuel cell degradation pro-
cess. For example, on the electrodes, low current may cause
degradation in the catalyst layer while frequent transition of
start-up and shut-down and fuel starvation may cause carbon
corrosion on the carbon support layer. Chen et al. and Xu et
al. have used this model with the real running data of a PEM
fuel cell vehicle to analyse the fuel cell’s degradation under dif-
ferent driving conditions [70, 71]. However, once tuning of the
parameters of this model only works for a specific driving cycle
so that it is hardly applicable to general cases.

Fletcher et al. have specified the influence of demanded
power on degradation causes and calculated the degradation
rate which penalized stack voltage according to the change of
power demand [72]. For example, following equations have
represented the proportion of fuel cell’s performance drop:

D1 =

{ 1
nmax

,if PFC,t+1 > 0
∧

PFC,t < 0
0 ,otherwise

(19)

D2 =

{ 1
tmax
×

PFC−0.8Pmax
0.2Pmax

,if PFC > 80%Pmax

0 ,otherwise
(20)

where nmax denotes the maximum start/stop switches estimated
by the manufacturer, Pmax denotes the rated power and tmax is
the maximum lifetime of the fuel cell under Pmax. D1 have
penalized stack voltage whenever the demanded power drops
below 0W, which represents the degradation causing by non-
uniform fuel distribution due to fuel cell’s start-up/shut-down
cycling. Another penalty D2 happens when the demanded
power is over 80% of the rated value and is assumed to be lin-
ear. This degradation rate represents the reactant starvation and
thermal degradation of membrane causing by successive high
power demand [73].

Besides, Ettihir et al. have proposed to use a semi-empirical
model to present the degradation of the stack voltage by mea-
suring both the current and the voltage of the fuel cell [15, 74].
The model is represented as:

Vstack = V0 − b log (i f c) − ri f c + αiσf c log (1 − βi f c) (21)
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Table 3: Major failure modes of different components in PEM fuel cells (Source [37, 63])
Component Functions Failure mode Causes

Membrane
Allow the protons transport from
the anode to the cathode; separating
the fuel from the air;

Mechanical degradation Mechanical stress due to non-uniform
press pressure; inadequate humidifica-
tion or penetration of the catalyst and
seal material traces;

Thermal degradation Thermal stress; thermal cycles;
Chemical/ electrochemical degradation Contamination; radical attack;

Electrodes

An electrical conductor used to
make contact with the nonmetallic
part where electrons leave and
enter; the carbon support allows the
nanoparticles to have a high
dispersion and provides a porous
structure electronically conductive;

Loss of activation Sintering or dealloying of electrocata-
lyst;

Conductivity loss Corrosion of electrocatalyst support;
Decrease in mass transport rate of reac-
tants

Mechanical stress;

Loss of reformate tolerance Contamination;
Decrease in water management ability Change in hydrophobicity of materials

due to Nafion or PTFE dissolution;

GDL Allow the reactant to diffuse from
the flow fields to the active sites;

Decrease in GDL structure Degradation of backing material; carbon
corrosion;

Decrease in water management ability Mechanical stress; change in the hy-
drophobicity of materials;

Conductivity loss Corrosion;

Bipolar plate Isolate cells and conduct current
between cells;

Conductivity loss Corrosion; appearance of a resistive sur-
face layer;

Fracture/ deformation Mechanical stress; thermal cycles;
Sealing gasket Separate the hydrogen from the air;

avoid leaking out of the gas;
Mechanical failure Corrosion; mechanical stress;

where V0 denotes the open circuit voltage, b denotes the Tafel
slope, r denotes the ohmic resistance and β denotes the inverse
of the limiting current. α is a parameter related to diffusion
mechanism while σ is related to the water flooding phenomena.
Since the identified model is a semi-empirical one, a trade-off

is made between its physical meaning and calculation cost.

3.2. Impedance estimation based on EIS
Electrochemical impedance spectrometry (EIS) is a power-

ful tool to characterize the phenomenon inside the fuel cell and
evaluate the fuel cell degradation [75]. EIS is carried out by
adding a small sinusoidal perturbation on the nominal current
and the impedance is calculated as a ratio between the response
and the perturbation. Compared to polarization, the total energy
and experimental duration of EIS measurement are significantly
reduced, which makes it a promising tool for estimating the per-
formance of the fuel cell without invasion [76]. Different oper-
ation conditions or different degrees of system ageing will lead
to the change of spectrum shape. To demonstrate that change,
Nyquist plots are widely used to indicate the degradation by the
derivation of the arcs. Using EIS together with Nyquist plots
has made it possible to characterize PEM fuel cell and to study
its static and dynamic behaviors regarding performance losses.
Figure 5 gives an example of a group of impedance plots, which
are recorded during the ageing tests on a fuel cell stack. Using
the extracted feature from the EIS plots, one can estimate the
operation time of the fuel cell stack, which could be regarded
as indicator of its health state [67].

Cadet et al. [76] have proposed the guidelines of using EIS
as a diagnostic tool regarding flooding and drying faults of fuel
cells and to analyse experimental data with Bayesian networks.
Moreover, using EIS with Nyquist evolution plots, Hissel et
al. have selected two values (the difference between polariza-
tion resistance and internal resistance of the considered fuel cell

Figure 5: Evolution of the impedance spectra [67]

stack and the maximal absolute phase value of the Nyquist plot)
from the Nyquist plots to indicate the fuel cell degradation [77].

3.3. Remaining useful life estimation

Various efforts have been made to estimate the remaining
useful lifetime of the fuel cell through state estimation and
prognostics approaches. For example, Xian et al. have pro-
posed to use an unscented Kalman filter to estimate the degra-
dation rate of the electro-chemical surface area and the RUL of
the stack [78]. Besides, when considering characterization dis-
turbances and voltage recovery, Jouin et al. have used a particle
filter framework to estimate the fuel cell’s power degradation
and the RUL based on a logarithmic expression [79]. Bressel
et al. have proposed to use a degradation factor to represent the
degradation phenomenon in the fuel cell voltage. Thanks to this
degradation factor, fuel cell degradation could be estimated and
tracked whatever the operation conditions are [80]. Further-
more, echo-state networks [81] and adaptive neuro fuzzy infer-

8



ence system (ANFIS) [82] are another two data-driven prognos-
tics methods that have been used to estimate the health state of
the fuel cell. However, these data-driven methods have not yet
been combined to the energy management of hybrid vehicles
due to the large calculation cost and low generality for different
road conditions.

Another RUL estimation method proposed in [83] have used
a surrogate model to present the Pt catalyst diffusion degrada-
tion rate. Response surface methodology (RSM) has been used
to develop such a surrogate life model in a statistical frame-
work. With the analysis through Pareto plots and scatter plot
matrix, the upper potential limit of the fuel cell is found to be
the most controllable variable to the Pt catalyst diffusion, fol-
lowing by cycle numbers. This work has indicated that the dura-
bility of the fuel cell system can be improved by operating at a
relatively low potential with limits number of start/stop cycles.

3.4. Synthesis
The degradation of the PEM fuel cell in HEVs is inevitable

which has a significant influence on the durability of the sys-
tem. The above mentioned methods of degradation modelling,
together with their advantages and disadvantages, are compared
in Table 4. However, in the literature, when it comes to de-
sign a health-conscious EMS, the degradation of the fuel cell is
usually considered using a rough model which is not accurate
and cannot be generalized to all driving conditions [65, 71, 84].
This is mainly due to the complex structures and reactions of the
fuel cell and the difficulties in the modelling. Although some
prognostics works have been done to evaluate the health state of
the fuel cell but post-prognostics decisions, or in other words,
the part of control configuration is lacking. Therefore, it gives
us the possibility to design a health-conscious EMS based on
state estimation and prognostics, which could not only solve
the modelling problems but also realize the automatically cor-
rective control.

4. Health-conscious EMSs

4.1. Multi-objective problem
Developing a health-conscious EMS is generally regarded as

a multi-objective problem since the objectives of such an EMS
consist of not only minimizing the economic cost of the system
but also prolonging its lifetime. Some others may also have the
objectives of maximizing the efficiency and minimizing the en-
ergy source degradation. Multi-objective optimization problem
is also known as Pareto optimization problem, which has more
than one objective function to be maximized/minimized simul-
taneously. Since the objectives are often conflicting with each
other, optimal decisions need to be taken with trade-offs be-
tween the conflicting objectives. A solution is said to be Pareto
optimal or non-dominated if none of the objectives can be im-
proved without degrading some of the other objectives. For
example, a multi-objective problem can be stated as follows:

{
Objective function: F(x) = [ f1(x) f2(x) f3(x)... fm(x)]
Constraints: g j(x) <= 0, for j = 1, 2, ..., k

(22)

where x = [x1x2x3...xn] ∈ S is an n-dimensional vector of so-
lutions which could be dominated or non-dominated. The set
of all non-dominated solutions is called the Pareto front, which
is supposed to be the final result of a multi-objective problem
[85].

Therefore, how to find a solution that makes at least one ob-
jective better off without making others worse off remains dis-
cussing in energy management field. The following part of this
section have reviewed the existing health-conscious EMSs for
fuel cell HEVs in the literature. They are classified into two cat-
egories: rule-based health-conscious EMSs and optimization-
based health-conscious EMSs.

4.2. Rule-based health-conscious EMSs
Rule-based health-conscious EMS is usually a set of rules

that are designed based on human expertise and the aim is to
find efficient operation points that mitigate the energy source
degradation. This kind of EMS is less sensitive to the real-time
driving conditions and easy to implement. However, the rules
and the thresholds used to formulate the strategy are hard to
define and one cannot declare whether they are the optimal or
not. Based on the techniques to formulate the rules, rule-based
EMSs are then classified into two categories: the deterministic
rule-based strategies and the fuzzy ones, as shown in Figure 6.
Some representative works using rule-based EMSs to solve the
health management problem are reviewed in the following part
of this section.

4.2.1. Deterministic rule-based strategies
Deterministic rule-based strategies are mainly developed

through look-up tables and among which, thermostat strategy,
frequency split strategy and state machine strategy are mostly
used [24]. Thanks to the simple and straightforward way of de-
signing rules, deterministic rule-based strategies are regarded
as the most practical way to achieve multiple objectives. For
example, in order to reduce system’s degradation and fuel con-
sumption at the same time, Marx et al. [86] designed the sizing
strategy based on expertise knowledge: reducing degradation
by starting as few fuel cells as possible, operating the fuel cell
under its open-circuited voltage, limiting the DOD of the bat-
tery, and reducing consumption by operating at maximum effi-
ciency as much as possible. State machine method is therefore
used to decide how many fuel cells should be turned on and a
set of rules are made to decide the power level of the fuel cells.
However, the rules are defined based on human expertise and
the optimality hasn’t been discussed.

To optimize the rules in an intelligent way, researchers have
started to combine some optimization techniques with deter-
ministic rules. For example, in [87], the boundaries of SOC
and desired torque of the rule-based controller are dynamically
calculated by the minimizing the real-time consumption. Also
in [88], the optimal parameters for the rule-based EMS are cal-
culated off-line, which allow the vehicle to achieve lower fuel
consumption and higher autonomy.

Furthermore, a frequency split EMS has been proposed in
[89] which decomposed the power demand into different fre-
quency bands by wavelet transform, and to be health-conscious,

9



Table 4: Summary of various fuel cell degradation modelling methods
Model output Modelling method Advantages Disadvantages
Stack voltage degradation
model [69, 70, 71, 72, 73]

Data-driven method Easy to implement; disclosure of
the influences of related factors the
health state

Less accurate; strongly dependent
on experiment data (low generality);

EIS impedance estimation [67,
75, 76]

Model-based method Non-invasive; easy to implement;
good performance in diagnostics
field;

Incapable of directly solving SOH
estimation issues;

RUL estimation [78, 79, 80, 81,
82, 83]

Data-driven/ Hybrid method Robust to uncertainties and opera-
tion conditions;

Large experimental datasets;

the frequencies of the decomposed signals are in the range
of acceptable frequencies of the battery and the fuel cell.
Therefore, both energy sources are operating in their health
modes. However, the Auto-Regressive Integrated Moving Av-
erage (ARIMA) model used for the prediction of the time se-
ries in this work is highly dependent on the available data and
researchers’ expertise, which causes generality problem.

4.2.2. Fuzzy rule-based strategies
Fuzzy rule-based strategies use fuzzy inference systems to

transfer the deterministic inputs and outputs into linguistic
ones. The fuzzy outputs are then defuzzyfied into precise con-
trol signals for the system. The fuzzy inference system solves
the multi-objective problem by adding multiple inputs and de-
signing proper rules. For example, a multi-input fuzzy logic
controller has been proposed in [60], in which a set of rules are
designed to determine the power split for battery/ultracapacitor
storage system. At the same time, some other rules are devel-
oped to reduce the battery degradation by sacrificing the opera-
tion time of the ultracapacitor. Besides, to manage the fuel cell
degradation, Ravey et al. have used the degradation index of the
fuel cell as an input of fuzzy logic controller and the reference
current of the fuel cell as the output [14]. When degradation
or failure happens, the fuel cell can be operated over its effi-
ciency point in order to maintain the battery’s SOC. In [53],
the C-rate of the battery has been used as an auxiliary input of
the fuzzy logic controller in addition to the voltage and the de-
manded power. C-rate is only functioned in part of the rules
which are used to suppress the battery power when the value of
C-rate is high. This consideration is responsible for protecting
the battery. However, similar to deterministic rule-based strate-
gies, fuzzy rule-based strategies are easy to implement but can
hardly reach the optimal if they are applied alone.

A general way to improve the optimality of fuzzy rule-based
strategies is to tune the membership functions of the fuzzy logic
controller using intelligent methods. For example, Wang et al.
have proposed to use the genetic algorithm for fine-tuning the
parameters of membership functions [90] and Chrendo et al.
have referred that neural network algorithm can also be used
to improve the conventional fuzzy logic, which is the so-called
adaptive neuro fuzzy inference system [91]. However, these al-
gorithms are developed highly dependent on the driving profiles
and the parameters derived for certain driving conditions may
not applicable to other conditions. Martinez et al. have pro-
posed to design a survey-based fuzzy logic controller to com-
bine different expertise and use type-2 fuzzy system to handle

the uncertainty in the rules [92, 93]. In the application of a fuel
cell HEV, the reference fuel cell current has been controlled to
satisfy the power demand and maintain the SOC of the battery
to avoid further degradation.

4.2.3. Synthesis
According to the literature, rule-based strategies are easy to

design and implement in real time for HEV applications when
designing health-conscious EMSs. However, the optimality of
rule-based strategies is hard to achieve. Although some off-line
optimization techniques can be combined to the rules to reach
better management results, the real-time capability is weak-
ened. On the other hand, above mentioned rule-based strategies
in the literature have performed the health management by de-
signing rules on SOC values, degradation models, C-rate, etc.
It should be noticed that the rules could only be correctly de-
signed once the degradation models are well defined. However,
as we discussed in Section 2 and Section 3, the existing degra-
dation models are rarely satisfied for vehicle applications.

4.3. Optimization-based health-conscious EMSs

Optimization-based strategies are often classified into two
categories: global optimization strategies and real-time opti-
mization strategies, as shown in Figure 6. The idea of devel-
oping a health-conscious global optimization strategy is to get
the global optimal solution by solving a health-conscious cost
function. However, global optimization strategies are carried
out based on the overall driving cycle information, which can-
not be applied in real-time applications unless the driving cy-
cle could be predicted. On the contrary, real-time optimiza-
tion strategies solve the optimization problem by defining an
instantaneous cost function, which is updated along with the
time. Therefore, real-time strategies are preferred to be as sim-
ple as possible due to the heavy computation cost. Various
optimization-based EMSs used to solve the health management
problem for HEVs are reviewed in the following part of this
section.

4.3.1. Global optimization strategies
Dynamic programming. Dynamic programming can divide the
optimization problem into a series of sub-problems by dis-
cretization and the cost function is calculated for each discrete
time step. Consequently, a path with the minimum cost at each
step is obtained [26]. For example, a cost function for minimiz-
ing the overall battery degradation has been formulated in [94]
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and the power splitting to the battery was determined accord-
ing to the minimization results. Another optimization problem
has been proposed in [8], where the cost function considered
the battery degradation, hydrogen consumption, as well as grid
recharge expenses. The cost function has been used to evaluate
each decision made by the dynamic programming algorithm.
Other dynamic programming algorithm applications consider-
ing both battery and fuel cell degradation could be found in
[7, 95, 96]. However, dynamic programming algorithm is sen-
sitive to driving cycles and the computation load is heavy. To
overcome these constraints, stochastic dynamic programming
(SDP) method has been proposed that applies a Markov process
to represent the power demand and allows real-time application.
For example, Fletcher et al. have defined the driving cycle using
a Markov decision process, which was subsequently solved by
SDP algorithm aiming at minimizing the total cost of hydrogen
consumption and fuel cell degradation [73]. Besides, SDP has
been proposed in [97] to optimize the energy consumption by
integrating the battery lifetime wear model into the cost func-
tion and obtaining a single-objective problem. Ref. [19] has
formulated a multi-objective problem aiming at finding a trade-
off between energy consumption and battery’s health. Two bat-
tery degradation models, SEI film layer model and Ah pro-
cessed model, have been evaluated and the problem was solved
by a shortest-path SDP.

Moreover, dynamic programming can be used as evaluation,
comparison and analysis tools [26]. For example, it can derive
the optimal performance condition for a given driving profile
and help to formulate rules for real-time management. Carla et
al. have used the dynamic programming to produce a dataset
which is large enough to train an artificial neural network [98].
The cost function of dynamic programming consisted of both
fuel consumption and battery degradation. With the results of
dynamic programming, artificial neural network has been im-
plemented with the SOC of the battery and the forecast power
demand as two inputs and the fuel cell power as the output and
has achieved near-optimal results in real time.

Stochastic search method. Stochastic search methods are com-
monly used in HEV applications, which are the most effective
methods to solve the multi-objective problems. According to
[26], frequently used stochastic search methods consist of ge-
netic algorithm, particle swarm optimization (PSO), extreme al-
gorithm, etc. They are able to solve the optimization problem
by iterative approach. For example, a multi-objective fitness
function including battery cost, capacity cost and total energy
cost is formulated in [35]. In each generation of genetic al-
gorithm, the population generates a set of Pareto-optimal so-
lutions and at the end, the most feasible solution with respect
to all objective functions is selected. Besides, authors in [22]
and [39] have proposed to use a non-dominated sort genetic al-
gorithm (NSGA-II) to solve the optimization problem of two
conflicting objectives. With the formation of a Pareto front, the
opposite effects of energy minimization and battery health on
the cost function are traded off optimally. In [99], three objec-
tive functions have been proposed including operation cost, effi-
ciency and system lifetime, which were integrated into a single

function through weight aggregation approach. The optimiza-
tion problem was subsequently solved by PSO algorithm. Fur-
thermore, Chen et al. have proposed a novel EMS which used
quadratic equations to find a relationship between fuel rate and
battery power and applied simulated annealing method to de-
termine the battery power input when taking into account the
SOH of the battery [100]. However, similar to dynamic pro-
gramming algorithm, stochastic search methods are sensitive to
driving cycles and are usually implemented based on specific
pre-defined driving conditions. Therefore, unless combining
with driving cycle identification, stochastic search methods still
lack the generality in HEV applications.

4.3.2. Real-time optimization strategies
ECMS and EDMS. Equivalent cost minimization strategy
(ECMS) and equivalent degradation minimization strategy
(EDMS) are widely used for real-time optimization in HEV ap-
plications. Generally, an equivalent cost function is established
to transfer the global optimization problem into local optimiza-
tion problem by minimizing the cost function in real time [26].
For example, an instantaneous optimization process based on
ECMS has been proposed in [36] for a multi-mode power-split
HEV. In this work, the battery degradation has been modelled
by SEI film growth and integrated into the cost function. In-
stead of minimizing the total cost, Hissel et al. [101] have
proposed to minimize the battery degradation in hybrid energy
storage system. The cost function was formed by an equiva-
lent factor which represented the marginal degradation caused
by the power demanded from the capacitor. Besides, Pontrya-
gin’s minimum principle (PMP) is one of the most commonly
used optimal approaches in ECMS and EDMS, which works
effectively with constrained optimization problems. For exam-
ple, in order to prolong battery’s lifetime, Liu et al. have min-
imized the fuel consumption with the constraints of battery’s
SOC and current, solving by PMP optimal control [102]. To
better demonstrate the degradation of battery, a severity fac-
tor map has been built based on the battery ageing model and
combined into the cost function in [27]. The problem was then
solved by PMP to reach a trade-off between battery ageing min-
imization and fuel consumption minimization. However, Ettihir
et al. claimed that some cost function minimization method can
only be used to minimize the fuel consumption over a global
level and the real performance of fuel cell has been ignored. In
order to track the best performance of the fuel cell, they have
applied an adaptive recursive least square algorithm to seek the
optimal performance of the fuel cell when considering ageing
effects and integrated it with PMP to form an adaptive manage-
ment strategy, A-PMP [15].

Model predictive control (MPC). MPC is another real-time
optimization-based approach which assumes that the current
state is the initial condition and solves the optimization prob-
lem at each sampling instant. It is implemented in three steps:
(1) calculate optimal control sequence in a prediction horizon
that minimizes the cost function subject to constraints; (2) im-
plement the first part of derived optimal control sequence to
physical plant; and (3) move entire prediction horizon one step
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forward and repeat step (1) [26]. Therefore, it is interesting to
use MPC in a multi-objective health conscious EMS since it
can involve several constraints into the control actions. For ex-
ample, Arce et al. have used MPC to track the power demand
of a HEV and set constraints to battery’s SOC to avoid degra-
dation [103]. On the other hand, the fuel cell degradation is
limited by setting the threshold of fuel cell power and the time
limit between its start-ups and shut-downs. Due to MPC’s re-
ceding horizon nature, it is possible to reduce the computation
cost when comparing to PMP and dynamic programming re-
sults after multiple trials to different driving cycles. However,
by dividing the problem into several time steps, the solutions of
MPC are usually suboptimal.

Machine learning methods. Machine learning methods are
known as intelligent control strategies, which are suitable to
solve complex non-linear problems. Therefore, they are widely
used in developing EMSs. Various machine learning strategies
exist in the literature including neural network, support vector
regression (SVR), etc. To be health-conscious, Caihao et al.
have used SVR to monitor the SOH of battery in HEV appli-
cations, which realized the real-time analysis of battery ageing
based on partially charging data [104]. Besides, neural network
has been used in [105] to perform power split between two stor-
age system - battery and ultracapacitor. The instantaneous bat-
tery current has been considered to have an impact on its degra-
dation and the power delivered by the ultracapacitor could help
to handle the peak current demand in the battery, and there-
fore to reduce the degradation of the battery during operation.
These methods have showed some improvements in robustness
but the solution is other than an optimal one. To improve the op-
timality, Chen et al. have proposed to train two neural network
modules for known and unknown trips separately based on the
optimization results of off-line dynamic programming method
and improved the optimality to some extent [106]. However,
machine learning methods is not that practical since the com-
putation load of training datasets is considerably heavy.

4.3.3. Synthesis
Optimization-based strategies are widely used in develop-

ing health-conscious EMSs and various health-conscious ob-
jectives can be achieved through formulating health-conscious
cost functions with proper constraints. Global optimization-
based strategy is able to find an optimal solution to the cost
function and it could also work as an evaluation and analysis
tool. However, it cannot be applied directly to a real-time appli-
cation unless the driving cycle can be identified or predicted by
other identification or prediction approaches. When it comes to
instantaneous applications, real-time optimization-based strate-
gies are used but they are not supposed to be designed in a
complicated way due to the computational burden and mem-
ory limits. Therefore, one has to reduce the complexity of the
problem in order to make it implementable. Another weak point
of real-time EMSs is low optimality since they lack the global
understanding of the problem.

4.4. Open issues and remaining challenges

In light of quantitative and qualitative literature survey on
developing a health-conscious energy management strategy for
HEVs, there are still some challenging problems to be solved.
The two main aspects are discussed as follows and challenges
are pointed out to find possible solutions.

4.4.1. Open issue 1: degradation modelling
As discussed in Section 2 and Section 3, considerable ef-

forts have been made to model the degradation of lithium-ion
batteries and PEM fuel cells. However, most of the existing
health-conscious EMSs just set boundaries to battery’s SOC or
limit the upper or lower voltage to protect the fuel cell, which
can hardly quantify the degradation or the lifetime of the en-
ergy sources. Other studies quantify the ageing phenomenon
by degradation rate, which are highly dependent on the driving
conditions (acceleration, idling, etc.). With different driving cy-
cles and different vehicle configurations, the accuracy cannot
be guaranteed. Although some prognostics and health manage-
ment works have been done to predict the RULs of the bat-
tery and the fuel cell, they have neither been well combined to
the EMSs, nor applied in the vehicle application yet. Besides,
whether the degradation of different energy sources in hybrid
systems will have an influence on each other hasn’t been inves-
tigated yet. It is hard to say the degradation of the fuel cell will
not accelerate the degradation of the battery in the same system
or vice versa. More studies are expected to be launched in this
field.

4.4.2. Open issue 2: optimality
Optimality of multi-objective health-conscious EMSs is al-

ways regarded as a tough issue and generates many discussions.
As discussed above, the optimality of rule-based strategy can
hardly be assured if the rules are designed based on human ex-
pertise. One possibility is to use other optimization techniques
to tune the rules or the membership functions of the fuzzy logic
controller off-line. However, the control effects of all existing
off-line optimizations are affected by different driving cycles
and in vehicle applications, the operation conditions of the ve-
hicle is changing all the time so that the off-line tuning is rarely
convinced. Although real-time optimization strategies can ad-
just the control strategies according to the current state of the
vehicle, the computation burden is too high and the calculation
speed is limited. The existing approaches usually choose to
reduce computation load at the expense of optimization perfor-
mance. Moreover, without a global understanding of the driv-
ing condition, their optimality can be also weakened.

4.4.3. Facing the challenges
To face the afore-mentioned issues, finding a good mod-

elling method of degradation and improving the optimality of
the EMSs are demanding. Works have been done to exhaus-
tively search for the accurate degradation models but due to
the variable operation conditions, the existing degradation mod-
els are far from satisfaction. In this case, state estimation and
prognostics technique could be one of the possible solutions to
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Figure 6: Category of health-conscious EMSs used for battery/fuel cell HEV applications

take automatic corrective actions along with the vehicle’s oper-
ation. Prognostics-enabled Decision Making (PDM) is a newly
emerging research area that aims to integrate prognostic health
information and knowledge about the future operating condi-
tions into the process of selecting subsequent actions for the
system. It is of great interest in health assessment and life pre-
diction of the energy sources, with which one can incorporate
the current state of health into the health management. Since
the prognostics of battery and fuel cell has remained on com-
ponent level and has not yet been combined in the control part
of the system, a proposition of health-conscious EMS based on
prognostics aiming at preserving the system and improving its
durability should be highlighted in the near future.

Furthermore, the optimality of this kind of health-conscious
EMS remains discussing. The difficulty comes from not only
its multiple objectives but also the various operation conditions
in real time. Solutions depend on which kind of strategy is
going to be used. The optimality of rule-based EMSs can be
achieved by designing the rules delicately and combining intel-
ligent algorithm, while for optimization-based EMSs, possible
perspectives could be placed on the prediction of driving cycles
to improve global strategies or reducing computation burden of
real-time strategies and improving its optimality.

5. Conclusion

This paper has thoroughly analyzed the development sta-
tus of health-conscious energy management strategies for fuel
cell HEVs. The degradation mechanisms of lithium-ion batter-
ies and PEM fuel cells are described at first, which give evi-
dence to a wide choice of degradation modelling and estima-
tion methods. Pros and cons are analyzed in details. Based on
quantitative analysis, qualitative analysis of the existing health-
conscious EMSs for HEVs is given. The authors have pointed
out that the degradation modelling and optimality are two main
concerns in developing health-conscious EMSs for hybrid sys-

tems. Proposing practical degradation modelling and estima-
tion methods, formulating a multi-objective problem to con-
sider degradation and realizing a good balance to solve the
conflict between complexity and optimality are the three future
trends derived from the analysis. The objectivity of this work
is not only a literature survey but also to facilitate the devel-
opment of an effective and practical health-conscious EMS and
help to solve the durability problem of HEVs.
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[9] F. Martel, Y. Dubé, L. Boulon, K. Agbossou, Hybrid electric vehicle
power management strategy including battery lifecycle and degradation
model, 2011, pp. 1–8. doi:10.1109/VPPC.2011.6043149.

[10] K. Maalej, S. Kelouwani, K. Agbossou, Y. Dubé, Enhanced fuel
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[35] V. Herrera Pérez, H. Gaztañaga, A. Milo, A. Saez-de Ibarra,
I. Etxeberria-Otadui, T. Nieva, Optimal energy management and sizing
of a battery supercapacitor based light rail vehicle with multi-objective
approach, IEEE Transactions on Industry Applications 52 (2016) 3367–
3377.

[36] X. Ma, Y. Zhang, C. Yin, S. Yuan, Multi-objective optimization consid-
ering battery degradation for a multi-mode power-split electric vehicle,
Energies 10 (2017) 975. doi:10.3390/en10070975.

[37] J. Wu, X.-Z. Yuan, J. Martin, H. Wang, J. Zhang, J. Shen, S. Wu,
W. Mérida, A review of pem fuel cell durability: Degradation mecha-
nisms and mitigation strategies, Journal of Power Sources 184 (2008)
104–119. doi:10.1016/j.jpowsour.2008.06.006.
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John, M. Amiet, Experimental validation of a type-2 fuzzy logic con-
troller for energy management in hybrid electrical vehicles, Engineer-
ing Applications of Artificial Intelligence 26 (7) (2013) 1772 – 1779.
doi:https://doi.org/10.1016/j.engappai.2012.12.008.

[94] A. Santucci, A. Sorniotti, C. Lekakou, Power split strategies for hy-
brid energy storage systems for vehicular applications, Journal of Power
Sources 258 (2014) 395–407. doi:10.1016/j.jpowsour.2014.01.118.

[95] F. Herb, P. Rao Akula, K. Trivedi, L. Jandhyala, A. Narayana, M. Wohr,
Theoretical analysis of energy management strategies for fuel cell elec-
tric vehicle with respect to fuel cell and battery aging, in: 2013 World
Electric Vehicle Symposium and Exhibition, EVS 2014, 2013, pp. 1–9.
doi:10.1109/EVS.2013.6915049.

[96] F. Martel, Y. Dub, S. Kelouwani, J. Jaguemont, K. Agbossou,
Long-term assessment of economic plug-in hybrid electric vehicle
battery lifetime degradation management through near optimal fuel
cell load sharing, Journal of Power Sources 318 (2016) 270–282.
doi:10.1016/j.jpowsour.2016.04.029.

[97] F. Xu, X. Jiao, M. Sasaki, Y. Wang, Energy management optimization
in consideration of battery deterioration for commuter plug-in hybrid
electric vehicle, in: 2016 55th Annual Conference of the Society of In-
strument and Control Engineers of Japan (SICE), 2016, pp. 218–222.
doi:10.1109/SICE.2016.7749262.

[98] C. Majed, S. H. Karaki, R. Jabr, Neural network technique for hybrid
electric vehicle optimization, in: Journal of Civil Engineering, Vol. 1,
2017, pp. 11–23. doi:10.22496/jce2016082345.

[99] P. Garcia-Triviño, L. Fernández-Ramı́rez, A. Gil-Mena, F. Llorens,
C. Garcia, F. Jurado, Optimized operation combining costs, effi-
ciency and lifetime of a hybrid renewable energy system with en-
ergy storage by battery and hydrogen in grid-connected applications,
International Journal of Hydrogen Energy 41 (2016) 23132–23144.
doi:10.1016/j.ijhydene.2016.09.140.

[100] Z. Chen, B. Xia, C. You, C. C. Mi, A novel energy management method
for series plug-in hybrid electric vehicles, Applied Energy 145 (2015)
172 – 179. doi:https://doi.org/10.1016/j.apenergy.2015.02.004.

[101] D. F. Opila, Equivalent degradation minimization strategy for balancing
battery and capacitor usage in hybrid energy storage systems for electric
vehicles, in: 2017 American Control Conference (ACC), 2017, pp. 315–
321. doi:10.23919/ACC.2017.7962972.

[102] C. Liu, L. Liu, Optimal power source sizing of fuel cell
hybrid vehicles based on pontryagin’s minimum principle, In-
ternational Journal of Hydrogen Energy 40 (2015) 8454–8464.
doi:10.1016/j.ijhydene.2015.04.112.

[103] A. Arce, A. J. del Real, C. Bordons, Mpc for battery/fuel cell hy-
brid vehicles including fuel cell dynamics and battery performance
improvement, Journal of Process Control 19 (2009) 1289–1304.
doi:10.1016/j.jprocont.2009.03.004.

[104] C. Weng, Y. Cui, J. Sun, H. Peng, On-board state of health monitoring
of lithium-ion batteries using incremental capacity analysis with sup-
port vector regression, Journal of Power Sources 235 (2013) 36–44.
doi:10.1016/j.jpowsour.2013.02.012.

[105] J. Shen, A. Khaligh, Design and real-time controller imple-
mentation for a battery-ultracapacitor hybrid energy storage sys-
tem, IEEE Transactions on Industrial Informatics 12 (2016) 1–1.
doi:10.1109/TII.2016.2575798.

[106] Z. Chen, C. Mi, J. Xu, X. Gong, C. You, Energy management for a
power-split plug-in hybrid electric vehicle based on dynamic program-
ming and neural networks, Vehicular Technology, IEEE Transactions on
63 (2014) 1567–1580. doi:10.1109/TVT.2013.2287102.

16




