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Summary  

In this study, we report on response properties of the supra-sylvian opercular and 

insular cortices to a painful stimulation delivered by a CO2 laser recorded by depth 

intracerebral electrodes in epileptic patients. We defined two cortical areas of activation in the 

operculo-insular cortex in response to a painful laser stimulation: a supra-sylvian opercular 

area where we recorded responses peaking at 140-170 ms after a painful stimulation (N140-

P170) and a deeper insular area where responses with a similar pattern were peaking 180-230 

ms after the stimulus (N180-P230). The average delay of 50 ms measured between the 

opercular and insular responses can reflect either a sequential activation of the supra-sylvian 

cortex then of the insula via cortico-cortical connections or a direct activation of the insula by 

inputs conveyed via thalamo-cortical projections through distinct fibers with different 

conduction times. We also recorded similar insular and opercular responses in the hemisphere 

ipsilateral to the stimulation peaking 15 ms later than contralateral responses ; this delay is 

compatible with a trans-callosal input transmission between these cortices. The mean 

stereotactic coordinates of the supra-sylvian opercular N140-P170 and insular N180-P230 

responses were found very similar to those of the maximal blood-flow responses to pain 

reported by PET and fMRI studies in these cortical areas. We were able to distinguish the 

supra-sylvian opercular and insular cortices in terms of response latencies evoked by a painful 

stimulus and in terms of stereotactic coordinates of the sources of these responses. The 

sequential timing of activation of supra-sylvian and insular cortices shown in this study thus 

complements in the time domain the spatial information provided by neuro-imaging studies of 

pain cortical processing. It strongly suggests that these cortical areas are those responding 

with the shortest latency to peripheral pain inputs in the human brain. 

 

 



3 

1. Introduction 

 

Based on numerous anatomical and microelectrode studies in monkeys (Burton 1986, Burton 

et al. 1995, Krubitzer et al. 1995), it is now well accepted that the second somatosensory area 

(SII) and the insular cortex play a major role in the processing of painful and non-painful 

inputs (Robinson et Burton 1980a,b,c, Mesulam and Mufson 1982, Friedman and Murray 

1986, Cusik et al. 1989, Burton and Sinclair 1990, 1991, Schneider et al. 1993, Zhang et al. 

1999). Several clinical observations confirmed these data. Some observations of ictal pain 

sensation have been indeed reported in patients with epileptic seizures originating in SII 

(Young et al. 1986). The team of Greenspan (Greenspan and Winfield 1992, Greenspan et al. 

1999) has observed reversible loss or decrease of pain and tactile sensation in patients with 

focal lesions involving the posterior and parietal operculum, confirming the role of these 

cortices in normal pain and tactile perception. Moreover, recent studies from our department 

reported painful somatic sensations during direct electrical stimulations of the posterior 

insular cortex in epileptic patients with intra-cerebral electrodes. Pain evoked by insular 

stimulation was lateralized to the opposite half of the body performed in epileptic patients 

with intracerebral electrodes (Ostrowsky et al. 2000, 2002). In most cases these painful 

sensations were elicited by stimulating the non-dominant hemisphere for language. During the 

past 20 years, many functional imaging studies were in accordance with all these anatomical 

and clinical data and converged to the conclusion that the operculo-insular cortex is involved 

in the processing of pain in humans. Positron emission tomography (PET) and functional 

magnetic resonance imaging (fMRI) studies showed a bilateral pain-related activation in a 

broad region comprising the depth of the sylvian fissure and the parieto-frontal opercular 

cortex (for a review see Peyron et al., 2000). These studies highlighted two distinct sites of 

activations in this region : i) an antero-inferior activation, in the vicinity of the anterior insular 
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cortex and ii) a posterior activation, at the boundary between the second somatosensory (SII) 

cortex and the posterior insula (Casey et al. 1994, Xu et al. 1997, Svensson et al. 1997, 

Paulson et al. 1998, Davis et al. 1998, Becerra et al. 1999, Baron et al. 1999, Sawamoto et al. 

2000). Moreover, some electrophysiological studies in humans have localized in the 

SII/insular cortex the sources of activities peaking on the scalp between 160 and 200 ms after 

a painful CO2 laser skin stimulus (Tarkka and Treede 1993, Bromm and Chen 1995, Kakigi et 

al.1995, 1996, Valeriani et al. 1996, Valeriani et al. 2000). These studies combined the scalp 

recordings of electrical or magnetic fields evoked by a painful stimulation and the estimation, 

by dipole source modeling, of the localization of the dipolar intracerebral sources of these 

activities. Lenz et al. (1998) have recorded by means of a sub-dural grid of electrodes CO2 

laser evoked potentials (LEPs) peaking between 162 and 340 ms. The spatial distribution of 

this response over the cortical surface of the peri-sylvian cortex  was considered as 

compatible with generators located in the parietal operculum and/or in the insular cortices. 

Using depth intra-cerebral recordings in humans we have been able to demonstrate the 

existence of sources of pain evoked potentials in the SII cortex (Frot et al. 1997, 1999, 2001). 

It remains, however, that the anatomical boundary between SII and insular cortex is not easy 

to draw in functional neuro-imaging studies, especially along the depth axis from lateral to 

medial cortical structures (x axis in the Talairach’s system of stereotactic coordinates). 

Moreover, functional neuro-imaging lacks the temporal resolution required to separate in time 

the activities of the suprasylvian opercular (SII) and insular cortex, respectively. Such a 

separation could allow to differentiate these two cortices by their  response characteristics and 

to know how these areas, which are intimately interconnected (Friedman et al 1986), act in the 

processing of nociceptive inputs. 

In this study, we report on response properties of the electrical potentials evoked in the 

supra-sylvian opercular and insular cortices by a painful skin stimulation delivered by a CO2 
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laser. These potentials were recorded by depth intracerebral multi-contact electrodes with a 

separation of 1.5 mm between two adjacent contacts (2 mm each) along the lateral medial axis 

(depth axis), and a millisecond resolution in time. By this way, we were able to separate in 

time and space the supra-sylvian opercular and insular responses to pain. 

 

2. Patients and methods 

 

2.1 Patients 

We recorded CO2 laser evoked potentials (LEPs) in 13 patients (24-47 years, mean age 

35 years, 9 females, 4 males). All patients included in this study presented with refractory 

temporal lobe epilepsy and were investigated using stereotactically implanted intracerebral 

electrodes before functional surgery. Among other sites (see Table 1) these patients had 

electrodes chronically implanted in the operculo-insular cortex for the recording of their 

seizures and cortical functional mapping using electric stimulation and evoked potentials 

recordings (see Ostrowsky et al. 2002 for a description of the stimulation procedure). The 

decision to explore this area resulted from the observation during scalp video-EEG recordings 

of ictal manifestations suggesting the possibility of a supra-sylvian and/or insular spreading of 

seizures such as: lip and face paresthesiae or tonic-clonic movements, laryngeal contraction, 

gustatory illusions, hypersalivation, (see Isnard et al. 2000 for a complete description of the 

rationale of electrode implantation). This procedure, as well as the recording of 

somatosensory evoked potentials, is part of the functional mapping of eloquent cortical areas 

performed routinely before epilepsy surgery in patients implanted with depth electrodes. 

According to the French regulations concerning invasive investigations with a direct 

individual benefit, patients were fully informed of the electrode implantation, stereotactic 

EEG and EPs recordings (SEEG), and cortical stimulation procedures used to localize the 
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epileptogenic and eloquent brain areas and gave their consent. The CO2 laser stimulation 

paradigm has been approved by local ethics committee.  

At the time of LEP recordings, patients were under monotherapy with one of the 

following major anti-epileptic drugs (carbamazepine, phenytoin, valproate, lamotrigine or 

topiramate). LEPs recordings were performed at the end of the SEEG monitoring, once 

pertinent seizures had been recorded, so that anti-epileptic drugs daily dosages were at, or 

slightly under, the minimum of their therapeutic range. Handedness was determined using the 

Edinburgh Handedness Inventory (Oldfield 1971), ten patients were right-handed, three were 

left-handed. The hemisphere dominant for speech was determined using intra-carotid 

amobarbital test in eleven patients and by cortical stimulation in two. In the ten right-handed 

patients the left hemisphere was dominant for language, two left-handed patients had a 

bilateral hemispheric representation of language, in the third left-handed patient language was 

found to be represented in the right hemisphere. 

A complete description of cortical structures explored by depth electrodes, and of the 

cortical areas found to be involved in seizures propagation is given in Table 1. In all patients 

but one (case 12) several spontaneous seizures could be recorded, all of which originated in 

the mesial structures of the temporal lobe. In these 12 patients ictal discharges were 

propagating outside the mesio-temporal cortex. The areas most frequently involved in seizure 

propagation were the temporal pole, the temporal neo-cortex, the cingulate gyrus, and the 

orbito-frontal cortex. In patient 12 (Table 1) no spontaneous seizure occurred during the 

SEEG monitoring; however seizures could be triggered by stimulating the left hippocampus 

which spread to the orbito-frontal cortex and spared the suprasylvian operculo-insular cortex. 

 

(Table 1 near here) 
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In seven patients the supra-sylvian operculum showed a rhythmic spike-wave activity 

during the spread of the discharges; in four of these patients this type of activity was also 

observed in the insular cortex. The possibility remains that, in these seven patients, the supra-

sylvian opercular and insular cortices could show some degree of interictal hyper-excitability 

which might modify their responsiveness to somatosensory or pain inputs. However this 

possibility seems unlikely for the following reasons; i) none of the patients included in this 

study showed ictal discharges onset in the operculo-insular cortex and no low voltage fast 

activity was recorded in this cortex during spontaneous seizures; ii) no sustained after 

discharge was elicited by electrical stimulation of the operculo-insular cortex in any of our 

patients; iii) in terms of latency and amplitude somatosensory and pain EPs recorded in the 

operculo-insular cortex of the patients showing ictal spike-wave activity were not different 

from those recorded in patients whose seizures were not propagating to these cortical areas.  

 

2.2. Electrode implantation 

Intracerebral electrodes were orthogonally implanted using Talairach’s stereotactic 

frame (Talairach and Tournoux 1988). The cortical targets were identified on the patient’s 

magnetic resonance (MR) image, previously enlarged at scale one, before the surgery. The 

implanted procedure has been described elsewhere in details (Frot and Mauguière 1999, Frot 

et al. 1999, 2001). Each electrode had a diameter of 0.8 mm and 10-15 contacts, each 2 mm 

long, separated by 1.5 mm; they could be left in place chronically up to 15 days. Each of the 

contacts could be localized in the Talairach space using its stereotactic coordinates: x for the 

lateral medial axis, with x=0 being the coordinate of the sagittal inter-hemispheric plane; y for 

the rostro-caudal axis, y=0 being the coordinate of VAC (Vertical Anterior Commissure) 

plane and z for the inferior-superior axis, z=0 being the coordinate of the horizontal AC-PC 

(Anterior Commissure-Posterior Commissure) plane. 
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In the opercular region, electrodes were implanted caudal and rostral to the VAC plane 

(y=0). The deepest contacts of the electrodes implanted in the supra-sylvian opercular cortex 

explored the insula proper. As shown in Table 1 five patients were implanted by a single 

opercular electrode exploring either the pre- (1 case) or the post-rolandic (4 cases) supra-

sylvian cortex. In the eight other patients both the frontal operculum and the parietal 

operculum were each implanted by one electrode exploring the insular cortex. Thus our data 

were collected using a total number of 21 electrodes. Forty-two contacts explored the insular 

cortex, distributed along the rostro-caudal axis, 14 mm rostral and 25 mm caudal to the VAC 

plane (y coordinates). 

Apart from the operculo-insular cortex, intra-cerebral LEPs from other regions were 

recorded in these patients, like the hippocampus, the amygdala, the anterior cingulate gyrus, 

the temporal pole, the orbito-frontal cortex and in a few cases, the supplementary motor area 

(see Frot et al. 1999). 

  

2.3 CO2 laser stimulations 

The LEPs recordings were performed about 10 days after electrodes implantation. 

During the recordings, the patients lay relaxed on a bed in a semidarkened room. Cutaneous 

heat stimuli were delivered by a CO2 laser (10.6 µm wavelength, 10 W output power). The 

power output being fixed, the amount of thermal energy delivered depended on the duration 

of the pulse. Thresholds for innocuous and painful sensations were first determined in each 

patient. The intensity of pain perception (pinprick) was rated by the patients between 4 and 7 

on a 0-10 Visual Analog Scale (VAS). The energy density of the Laser beam varied between 

6.3 and 10.9 mJ/mm
2 

delivered on a skin surface of 16 mm
2
. The stimuli were applied to the 

dorsum of the hand, in the radial nerve territory. A red helium-neon (He-Ne) laser was 

combined with the CO2 laser to visualize the stimulated skin area. Two runs of 30 stimuli 
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were performed. For each run of stimuli, the continuous EEG was cut in 30 epochs (each 

epoch of EEG began 12 ms before the stimulus and ended 500 ms after). All these epochs 

were averaged to remove the noise and to bring out the evoked potentials. Then, the two runs 

were averaged after having checked that the averaged waveforms were reproducible. The 

interstimulus interval varied randomly between 4500 and 5500 ms. The laser beam was 

slightly moved between two successive stimuli to avoid habituation and especially to avoid 

peripheral nociceptor fatigue (Schwarz et al. 2000). The analysis time was 512 ms; the signal 

was bandpass filtered between 1 and 250 Hz and sampled at 500 Hz. The reference electrode 

was at the earlobe ipsilateral to the stimulated hand and the ground was a circular wrapped 

electrode at forearm ipsilateral to stimulation.  

 

Responses were labeled according to the polarity-latency nomenclature in which the 

letters N and P, referring to the polarity of the potential in the contacts close to scalp surface, 

is followed by the mean latency in milliseconds. In all figures, negative potentials at the intra-

cortical recording site are represented upward. In text and tables mean voltages, latencies and 

time intervals are given ± 1 standard deviation (SD). 

 

3. Results 

 

3.1. Polarity, latency and voltage of operculo-insular responses. 

 

3.1.a. Responses from the supra-sylvian opercular cortex. 

The CO2 laser stimulus consistently evoked in the supra-sylvian cortex a N140 

negative response followed by a P170 positivity (Figure 1). Latencies and voltages of these 

potentials are given in table 2. These responses, which have been described elsewhere in 

details (Frot et al. 1999, 2001), were picked up by all of the 21 electrodes implanted in the 
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supra-sylvian opercular cortex and were not recorded in the other explored areas including 

amygdala, hippocampus, anterior cingulate gyrus, temporal pole, orbito-frontal cortex and 

supplementary motor area (see Frot et al. 1999). Similar responses were equally recorded on 

the electrodes implanted in the homologous cortex, ipsilateral to the painful stimulus peaking 

17 ± 7.5 ms (p= 0.003) and 16 ± 12.9 ms (p= 0.03) later than contralateral N140 and P170 

respectively (Table 2). This latency difference between ipsi- and contralateral responses was 

not different for N140 and P170 potentials (p=0,75). 

 

(Figure 1 near here) 

 

 

3.1.b. Responses from the insular cortex. 

Two potentials contralateral to stimulation were recorded in the insular cortex, 

consisting in a N180 negative response followed by a P230 positivity (Figure 1). The N180 

and P230 responses, of which latencies and voltages are given in table 2, were recorded 49.5 

± 16.3 and 55.5 ± 13.5 ms later than the opercular N140 and P170 potentials respectively. The 

figure 2 illustrates these opercular and insular responses on several recordings of different 

patients. 

 

(Figure 2 near here) 

 

Negative-positive LEPs were also recorded ipsilateral to stimulus by all of the contacts 

located in the insular cortex, they had a similar waveform as those recorded contralateral to 

stimulation but peaked 15 ± 6.6 ms and 17 ± 9.5 ms later than contralateral N180 and P230 

respectively. This difference between contra- and ipsilateral responses was statistically 
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significant for each of the two components (p = 0,02 for N180 and p = 0,03 for P230, 

Student’s t test) but there was no difference in this inter-hemispheric transit times between 

N180 and P230 potentials (p = 0,78). 

 

 (Table 2 near here) 

 

 

3.2. Stereotactic localization of the operculo-insular responses. 

 

The maximal amplitude of the N/P deflection was taken to determine the contact likely to be 

the closer to the source. 

 

3.2.a. Responses from the supra-sylvian opercular cortex. 

The N140-P170 responses were recorded along the trajectory of all electrodes 

penetrating the suprasylvian opercular cortex between vertical planes at 14 mm rostral and 20 

mm caudal (y coordinates) to the anterior commissure vertical plane (VAC), and between 

horizontal planes at 3 mm and 21 mm above (z coordinates) the horizontal anterior 

commissure - posterior commissure plane (AC-PC). These responses were picked up by the 

majority of these electrodes contacts, between 38 and 63.5 mm from the mid-sagittal vertical 

plane (x coordinates) (Table 3). 

The cortical volume where opercular LEPs were distributed was assessed using the 

mean and SD values of x, y and z coordinates of the N140-P170. This volume was of 0.25 

cm
3
 using a confidence interval of ± 1 SD and of 1.98 cm

3
 with a confidence interval of ± 2 

SD (Figure 3). 
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(Table 3 near here) 

 

 

3.2.b. Responses from the insular cortex. 

The N180-P230 responses were picked up by the depth contacts of the electrodes 

penetrating the opercular cortex between vertical planes at 14 mm rostral and 25 mm caudal 

(y coordinates) to the anterior commissure vertical plane (VAC), and between horizontal 

planes at 1 mm below and 21 mm above (z coordinates) the horizontal anterior commissure - 

posterior commissure plane (AC-PC). The contacts recording these responses were distributed 

between 29 and 45 mm from the median line (x coordinates). The average coordinates of 

these contacts are given in table 3. The cortical volume where insular LEPs were distributed 

was of 0.35 cm
3
 using a confidence interval of ± 1 SD and of 2.8 cm

3
 with a confidence 

interval of ± 2 SD (Figure 3). 

 

(Figure 3 near here) 

 

In the seven patients where the insular cortex was explored by several electrodes (two 

or three) along the rostro-caudal axis (y) we did not observe any intra-individual differences 

of the N180-P230 responses between contacts in terms of latency and amplitude. No 

significant correlation was observed between the localization of the implanted electrodes 

along the rostro-caudal axis (y) and the latencies of the N180 (r = 0.17, p = 0.5) and P230 (r = 

0.003 , p = 0.99) responses (Figure 4). Moreover there was no significant correlation between 

the localization of the electrodes along the rostro-caudal axis (y) and the amplitudes of the 

N180 (r = 0.22, p = 0.39) and P230 (r = 0.22, p = 0.39) responses (Figure 4). Thus, we could 
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not define distinct populations of nociceptive neurons along this axis only on the basis of the 

responses recorded in this cortex. 

 

(Figure 4 near here) 

 

As illustrated in figures 1 and 2 the first insular negativity peaked clearly later than the 

SII P170 potential (p=0,03, Student's t test). However in two cases (patients C and D in figure 

2) this first insular negativity was preceded by a positive potential, the latency of which was 

the same as that of the SII N140 potential. In these two patients the polarity reversal was 

observed at the contact located at the border between the insular contact and the deepest SII 

contact so that it was difficult to decide on which side of the circular sulcus the N140 source 

was located. This difficulty had already been encountered in our previous studies (Frot et 

Mauguière 1999, Frot et al. 1999, 2001). Moreover, in one patient (patient E in figure 2) the 

insular N180 was preceded by a positivity peaking later than the SII N140 and a few 

milliseconds earlier than the SII P170 (7 ms for the frontal operculum and 14 ms for the 

parietal operculum). Due to the low spatial electrode sampling in the insular cortex we cannot 

formulate any firm hypothesis concerning this individual variation of insular responses. 

However neither the N180 nor the P230 insular potentials showed any polarity reversal at 

more superficial contacts located in the SII area. Moreover, when the N180 was spreading to 

the SII contacts, such as in patient E (figure 2), its amplitude was regularly decreasing from 

the deepest insular contact to the more superficial SII sites. Therefore we considered that 

these two potentials were the only consistent components that could be considered as 

originating in the insula proper. 

 

4. Discussion 
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In this study, we were able to separate two cortical areas in the operculo-insular cortex 

responsive to a painful laser stimulation (Figure 3): a supra-sylvian opercular area where we 

recorded a response peaking at 140-170 ms after a painful stimulation and a deeper insular 

area where we recorded a response with a similar pattern but peaking 180-230 ms after the 

stimulus. The latency range of the operculo-insular responses recorded directly in the cortex is 

coherent with that of the earliest CO2 laser potentials recorded on the scalp. Several studies of 

scalp or subdural LEPs converged on the conclusion that the earliest cortical response consists 

of a negativity peaking between 150 and 170 ms and maximal in the scalp centro-temporal 

region contralateral to stimulation, compatible with a generator located in SII/insular areas 

(Treede et al. 1988; Tarkka and Treede 1993; Miyazaki et al. 1994; Xu et al. 1995; Valeriani 

et al. 1996, Lenz et al. 1998). This negativity was found to be associated with a mid-frontal 

positivity peaking around 200 ms in mapping studies (Treede et al. 1988; Tarkka and Treede 

1993; Valeriani et al. 1996), suggesting a dipolar source close to the sylvian fissure and 

tangent to the scalp surface. According to these studies, this dipolar source remains active at 

the latency of a later response recorded on the scalp at 250 ms after the painful stimulus, 

which is in the range of our insular positivity latency.   

 

4.1 Is the N180-P230 actually generated in the insular cortex? 

The question whether the insular responses might reflect the diffusion of the supra-

sylvian LEPs with a polarity reversal across the sylvian fissure deserved our attention.  

Several arguments support the interpretation that the N140-P170 and the N180-P230 

are independent responses. In most cases (8 patients) the suprasylvian P170 potential was 

clearly peaking before the first insular N180 negativity and its latency was significantly 

shorter by 27 ms (p= 0.0002) (26.8 ± 11.1 ms in average for these  patients). In one patient we 
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even recorded a polarity reversal of the supra-sylvian opercular P170 peaking at 162 ms into a 

negativity peaking with the same latency at the deepest insular contact, where the first insular 

negativity was peaking at 214 ms (Figure 2: Patient D). Moreover, the insular N180 negativity 

often spread to the supra-sylvian contacts (Figure 2: Patients B and E), and was then 

superimposed to the P170 potential (see Results section). 

  Since only a few contacts per electrode track were exploring the insula proper we were 

not in a position to show a polarity reversal of the N180-P230 between the surface and the 

depth of the insular cortex. However, when at least 2 contacts explored the insular cortex, we 

always recorded on these contacts the N180-P230 responses with a gradient of amplitude 

along the x axis (Figures 1 and 2). Thus, in spite of inter-individual variations in waveforms, 

the suprasylvian and insular responses are unlikely to be generated by a single source in the 

upper bank of the suprasylvian fissure. 

 

4.2 Location of LEPs activities in the operculo-insular cortex. 

Our results are coherent with data of numerous imaging studies showing a double 

representation of pain in the operculo-insular cortex (Coghill et al. 1994, Casey et al. 1996, 

Craig et al. 1996, Andersson et al. 1997, Rainville et al. 1997, Svensson et al. 1997, Xu et al. 

1997, Svensson et al. 1998, Gelnar et al. 1999). As shown in table 4 the mean coordinates of 

the N140-P170 responses contralateral to stimulation are very similar those of the maximal 

blood-flow responses observed during different painful stimulations, even if our localization 

is often more anterior. 

 

(Table 4 near here) 
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The restricted spatial sampling along the rostro-caudal (y) and vertical (z) axis, as determined 

by the number of SEEG electrodes in each patient, could explain this discrepancy. 

Nevertheless, the N140-P170 responses were distributed along the y axis between 14 mm 

rostral and 20 mm caudal to the anterior commissure vertical plane (VAC), thus including the 

majority of the sites with maximal blood-flow responses (see table 4). In the same way, the 

mean coordinates of the N180-P230 responses recorded in the insular cortex were very similar 

to those of  the maximal blood-flow responses observed in PET and fMRI studies (see table 

4). Moreover, the depth (x) coordinates of operculum and insula reported in PET studies are 

often on the wrong side of the circular sulcus (Table 4), whereas in this study great care was 

taken to have precise knowledge of which contacts were in the insula and which ones were in 

the operculum.  

 

We could not define distinct functional regions in the insula along the y axis on the 

basis of latencies and amplitudes of pain EPs recorded in this cortex (see results). This 

observation is in line with data from two PET studies, using a CO2 laser stimulation, showing 

a maximal blood-flow response either in the anterior (Svensson et al. 1997) or in the posterior 

insula (Xu et al. 1997) (See table 4). This suggests that a stimulus like CO2 laser, which does 

not evoke any emotional or affective reaction, is able to activate a largely distributed 

functional region of the insular cortex.  

 

4.3 Transcallosal inputs transmission 

This study showed that a painful stimulation elicits responses in the contra and 

ipsilateral supra-sylvian and insular cortices separated by a delay of 11-18 ms. This delay is 

compatible with callosal transmission times estimated by numerous studies (e.g. 15 ms 

between primary visual areas (Swanson et al. 1978)); it is in the same range as that measured 
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between ipsi- and contralateral SII magnetic fields evoked by electrical stimulation of the 

median nerve (20 ms in Hari et al. 1993, 10 ms in Mauguière et al. 1997), the shortest callosal 

transmission time between the two SI areas being estimated at 6-7 ms (Noachtar et al. 1997).  

However, a callosal transfer from contralateral to ipsilateral supra-sylvian and insular 

cortices cannot be concluded only on the basis of this time difference. The possibility remains 

that responses ipsilateral to the stimulus could be triggered via ipsilateral thalamic fibers with 

slower conduction velocity. Only intracortical recordings of supra-sylvian or insular cortices 

evoked potentials to ipsilateral stimuli in patients with a lesion of the homologous areas in the 

opposite hemisphere could address directly this question. 

 

4.4 Activation timing of the LEPs supra-sylvian and insular sources  

If we consider that the N140-P170 and the N180-P230 are independent responses 

generated by different cortices, it remains to explain the delay of ~ 50 ms observed between 

supra-sylvian and insular responses. This delay could reflect the transmission time from the 

SII area to the insula, a hypothesis which is supported by the observation in monkeys that 

most of inputs reaching the insular cortex come from the SII area (Friedman and Murray 

1986). However, this delay of 50 ms seems quite long for a monosynaptic transmission time 

between two close cortical areas known to be interconnected by direct projections (Friedman 

et al. 1986). Alternatively, knowing that both SII and the insula receive direct projections 

from the thalamus (Friedman et al., 1980, Friedman and Murray 1986, see also for a review 

Augustine 1985, 1996), the explanation for the delay between supra-sylvian and insular 

responses could be that the latter are triggered via thalamo-cortical fibers with a slower 

conduction than that of thalamic projections to the SII area. To our knowledge, however, no 

electrophysiological demonstration of this hypothesis is hitherto available. A third hypothesis 

could be that the supra-sylvian cortex and the insula are activated by inputs conveyed by 
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peripheral fibers with different conduction velocities. The CO2 laser beam used in this study is 

known to stimulate the endings of small diameters fibers and mostly those of A fibers 

(Bromm and Treede, 1981, 1984, 1991). Some studies have estimated the A conduction 

velocity in a large range of 7 to 20 m/s (Adriaensen et al. 1983, Naka and Kakigi 1998) 

suggesting the existence of different A fibers sub-populations, with different conduction 

velocities. One can hypothesize that these different sub-populations of A fibers have 

selective connections with the spino-thalamic neurons in layers I, II and V of the spinal cord 

dorsal horn (for a review see Wolf 1994). If such an organization was maintained along the 

spinothalamic and thalamo-cortical tracts, one could assume that these different sub-

populations of peripheral fibers could project in distinct cortical regions. However, to our 

knowledge, no electrophysiological study has been devoted to the identification of separate 

sub-populations of fibers with different conduction velocities in the spinothalamic tract or 

thalamocortical projections. It remains that, in spite of conjectures about their parallel or 

sequential activation by pain inputs, the SII and insular areas are those showing the earliest 

responses to pain and are both receiving projections from the posterior thalamus.  
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Figures: 

 

Figure 1: Contralateral LEPs recorded in the post-rolandic operculo-insular cortex of one 

patient (earlobe reference recording). The operculo-insular electrode (E) is represented on  the 

patient’s MRI slice, at –5 mm caudal to the VAC plane (y coordinate) and 8 mm above the 

AC-PC plane (z coordinate). The black and gray contacts are those represented above at 31, 

34.5, 38, 41.5, 45 and 48.5 mm from the midline. The contacts in black are those located in 

the insular cortex and those in gray are located in the supra-sylvian cortex. 

ML: Median Line, AC-PC: Horizontal Anterior Commissure-Posterior Commissure plane. 
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Figure 2: Contralateral LEPs recorded in the operculo-insular cortex of five patients (earlobe 

reference recording). The peaks of the supra-sylvian and insular responses are enlightened by 

dotted lines and characterized by their latencies.  

Ins: contacts located in the insula proper; Ins-SII: contacts located at the boundary between 

insula and supra-sylvian cortex (SII are); SII: contacts located in the supra-sylvian cortex (SII 

area). 
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Figure 3: Mean distribution of the contralateral N140-P170 and N180-P230 responses, 

recorded in the supra-sylvian operculum (plain white circles) and in the insular cortex (plain 

black circles) respectively. The circles in dotted lines represent the distribution range (+/- 1 

SD) for the x coordinates of the supra sylvian (in white) and the insular (in black) responses. 

The MRI slices have been chosen in the pool of the patients, according to the corresponding 

Talairach slices. The second row show a zoom for each slice, focused on the operculo-insular 

region.  
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Figure 4: Correlation between the localization of the implanted electrodes along the rostro-

caudal axis (y coordinates) and the latencies (a) or amplitudes (b) of the contralateral insular 

responses. The data have been normalized according to the maximal latency or amplitude of 

each component recorded in each patient. For example, the patient A had three electrodes 

implanted in the insular cortex (each of them with a different y coordinate, i.e. –6 mm, 2 mm 

and 6 mm), on which different latencies of the N180 response were recorded; i.e. 177 ms, 183 

ms and 180 ms respectively. For this patient, we normalized the data according to the 

maximal amplitude of the response, which is 183 ms. Thus we had a latency of ‘0.96’ for y= -

6mm, a latency of  ‘1’ for y=2mm and a latency of ‘0.98’ for y=6mm. 

 

 
 


