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Abstract—To perform long-term and long-range missions,
underwater vehicles need reliable navigation algorithms. This
paper considers multi-beam Terrain Aided Navigation which can
provide a drift-free navigation tool. This leads to an estima-
tion problem with implicit observation equation and unknown
likelihood. Indeed, the measurement sensor is considered to be
a numerical black box model that introduces some unknown
stochastic noise. We introduce a measurement updating proce-
dure based on an adaptive kernel derived from Approximate
Bayesian Computational filters. The proposed method is based
on two well-known particle filters: Regularized Particle Filter
and Rao-Blackwellized Particle Filter. Numerical results are
presented and the robustness is demonstrated with respect to the
original filters, yielding to twice as less non-convergence cases.
The proposed method increases the robustness of particle-like
filters while remaining computationally efficient.

I. INTRODUCTION

The ability of an underwater vehicle (UV) to accomplish a

mission depends on the performance of on-board navigation

algorithms. This paper considers Terrain Aided Navigation

(TAN) which can provide a drift-free navigation tool for

UV, yielding a powerful alternative to current navigation

methods which include resurfacing for GPS [8]. TAN

generates vehicle position estimates by correlating terrain

measurements obtained by a multi-beam sensor together with

stored terrain maps, which is related to a filtering problem.

The aim of filtering is to estimate the state of an evolving

system, customarily modeled by a stochastic process and

called the state process. The state process cannot be measured

directly but only via a related process named the observation

process. The filtering problem consists in computing the

posterior density of the state at the current time given the

observation data accumulated up to that time. This state-space

problem can be solved analytically when the propagation of

the state process and the observation process are both linear

and when the noises are independent white Gaussian. In this

case, the Kalman Filter (KF) is known to be optimal. The

KF was extended to non-linear models, but may become

highly unstable in case of non-Gaussian processes or severe

non-linearities such as multimodalities, i.e. multiple maxima,

also called modes, in the posterior density.

This paper considers higly non-linear and non-Gaussian

observation processes. Indeed, the terrain profile generates

severely non-linear and ambiguous measurements, which

yields multimodalities. The Kalman-like filters cannot be

used for this class of problems. To tackle non-linearities such

as multimodalities, particle filtering methods were introduced

[3]. Particle filters approximate the posterior density by a

mixture of weighted Dirac functions called particles.

The present work addresses the case where the noise of

the observation process (also called measurement noise) is

unknown. The observation model is the result of a numerical

black box model, therefore the likelihood is unknown.

Indeed, in the case of underwater TAN using a multi-beam

bathymetric sensor, the observation equation is implicit and

requires a numerical approximation in practice. The stochastic

characteristics of the error between the actual measurements

and the numerical approximation of the observation cannot

be inferred.

To address cases where the measurement noise distribution

is unknown (therefore the likelihood is unknown),

Approximate Bayesian Computational (ABC) methods

were introduced ([2], [12], [6]). ABC is a class of estimation

methods used to overcome the lack of knowledge about

the measurement distribution. This method bypasses the

evaluation of the likelihood function. An acceptance/rejection

test on a uniform law is applied to the samples state. When

a candidate sample state is rejected, it is drawn again until

it is accepted. This algorithm is computationally demanding

since it leads to a rise of the number of samples. To reduce

the computational load of ABC methods, a filtering approach

was derived - called ABC filter. ABC filter replaces the

measurement likelihood by an analytical density function -

called kernel - whose bandwidth is adaptive [6]. This scale

parameter aims to account for every state density’s mode

while the measurement ambiguity is not removed. However,

it is difficult to tune, which may yield filter unstability.

We propose a new way of choosing this setting, based

on the efficiency degeneracy criterion [4]. This criterion is

commonly used in particle filters to trigger the resampling

step. The proposed method is called Adaptive Approximate

Bayesian Computation (A2BC) and can be integrated in any

particle-like filter. Two filters have been selected in this work:

Regularized Particle Filter (RPF [9]) and Rao-Blackwellized



Particle Filter (RBPF [13]).

The general formulation of the estimation problem, Particle

Filter and ABC filter approaches are recalled in Section II. In

Section III, we describe the principle of the A2BC method

and its implementation within conventional particle filters.

In Section IV, we present the problem of submarine TAN

navigation. After describing the performance criteria, we nu-

merically compare the performance of two A2BC filters with

these of conventional particle filters. Finally, we will conclude

in Section V.

II. PROBLEM STATEMENT

A. Filtering problem and particle filter

Consider the following discrete-time state-space model with

hidden states {Xk}k∈N and observations {Yk}k∈N given by

Xk = fk(Xk−1, ηk) (1)

Yk = hk(Xk, Yk, νk) (2)

where fk and hk are possibly non-linear functions and ηk and

νk are independent white noises. The underwater application

motivates the choice of an implicit observation model [8].

We shift from this implicit formulation (2) of the observa-

tion process to an explicit model through numerical approx-

imations: the observation model is the result of a numerical

black box code. The function hk is injective: when Xk is fixed,

only one Yk satisfies equation (2). The implicit problem can

therefore be solved by using the fixed point method or sample

approximation methods. Thus, we change the observation

model (2) by

Yk = h′
k(Xk, ν

′
k) (3)

where h′
k is still a possibly non-linear function and where ν′k

is a new measurement noise. Noise ν′k is different from νk.

Indeed, the stochastic characteristics of the error between the

actual measurements (2) and the numerical approximation (3)

of the observation cannot be inferred. ν′k is divided into two

parts: one part is derived from the numerical approximation

and the other is due to an additional measurement noise.

The measurement sensor is the output of a numerical code

which is not available, thus the likelihood cannot be computed.

We want to estimate the posterior density

pk(x) , p(Xk = x|Y1:k) (4)

where Y1:k = [Y1, Y2, ..., Yk] is the vector of all the

observation data accumulated up to the time k.

The state estimation consists of two steps: prediction and

correction.

• The prediction step determines a predictive distribution

p(Xk|Yk−1) with respect to the dynamical model uncer-

tainty p(Xk|Xk−1) and the previous posterior distribution

p(Xk−1|Yk−1) via the Chapman-Kolmogorov equation:

p(Xk|Yk−1) =

∫
p(Xk|Xk−1)p(Xk−1|Yk−1)dXk−1

(5)

• The correction step determines the posterior distribution

of the state with respect to the predictive distribution

(5) and the likelihood p(Yk|Xk). From Bayes’ law, one

obtains:

p(Xk|Yk) =
p(Xk|Yk−1)p(Yk|Xk)∫

p(Xk|Yk−1)p(Yk|Xk)dXk

(6)

The particle filter estimates the posterior density by means

of a Dirac mixture of N weighted particles (Xi
k, w

i
k):

p̂k(x) ,
N∑

i=1

wi
kδx=Xi

k
(7)

There are a multitude particle-based algorithms in the

literature. We focuse on two of them, which are known for

their robustness to non-linearities: the Regularized Particle

Filter (RPF) ([9], [10]) and the Rao-Blackwellized Particle

Filter (RBPF) [13]. The particularity of RPF is the use of

kernel density estimation sampling, in order to smooth the

state density estimate. RPF is particularly useful when the

process density is narrow. RBPF takes advantage of the

structures of the state process by setting aside a linear part

that will be solved by a Kalman filter (which is optimal if the

processes are Gaussian). Using partially optimal filter allows

the filter’s variance to be smaller and reducing the particle state

vector size limits the computational load. When the likelihood

p(Yk|Xk) is unknown, the particle filter correction step cannot

be explicitly achieved. To tackle this issue, ABC methods were

introduced [2].

B. ABC methods

ABC filters are useful when the likelihood is unknown.

These methods match observations with simulated pseudo-

observations and therefore avoids to assess the likelihood ([2],

[12], [6]). The objective is to evaluate the particle weights as

a function of the distance between the actual observation and

the simulated pseudo-observations.

The posterior density pk(x) is derived by marginalizing

the joint density p(X0:k|Y1:k). We can get Xi
k samples ob-

tained from (1). From these samples, we generate N pseudo-

observations, U i
k = M(Xi

k) where M is the numerical model.

The model M is the h′ function (3) without the additional

measurement noise included in ν′k. The closeness between the

pseudo-observations Uk and the true observed Yk is deter-

mined by a kernel probability density function Kǫ(Yk, U
i
k).

The posterior density is estimated by:

p(X0:k|Y1:k) = p(X0)

∫
p(X1:k, U1:k|Y1:k)dU1:k (8)



p(X0:k|Y1:k) ∝

p(X0)
∏

k≥1

[∫
Kǫ(Yk, Uk)p(Uk|Yk, Xk)dUk

]
p(Xk|Xk−1)

(9)

The ABC importance weights update is as follows:

wi
k = wi

k−1Kǫ(Yk, U
i
k) (10)

The choice of the kernel scale parameter ǫ has a strong

impact on estimation convergence. It needs to be chosen in an

adaptive manner, otherwise the filter may abruptly fail if the

true observation at one time Yk falls in distribution tails. In

the following sub-section, we propose an approach to choose

this parameter.

III. ADAPTATIVE APPROXIMATE BAYESIAN

COMPUTATIONAL PARTICLE FILTER (A2BC-PF)

A. A2BC

The scale parameter aims to account for every state

density’s modes while the measurement ambiguity is not

removed. The loss of these modes leads to the degeneration of

the filter weights. The parameter ǫ will be chosen adaptively

in order to robustify ABC methods.

We introduce a method to determine ǫ based on the effi-

ciency degeneracy criterion [4]:

Neff =
1

∑N

i=1
wi

k

2
(11)

where wi
k are the particle weights and N the number of

particles. This criterion is commonly used in particle filters to

trigger the resampling step. Resampling is initiated whenever

Neff < Nth where Nth = θN and 0 < θ ≤ 1 is a given

threshold.

Since the likelihood is unknown, the ABC filter method is

used to compute particle weights. From (10), the efficiency

criterion can be written as:

Neff (ǫk) =
1

∑N

i=1
(wi

k−1
Kǫk(Yk, U i

k))
2

(12)

The idea is to choose ǫ ∈ I such that the efficiency criterion

(12) is greater than the resampling threshold. At each time-

step, an optimal ǫ̂k is determined by solving the following

problem:

ǫ̂k = argmin
ǫ∈I

|Neff (ǫ)−Nth| (13)

We want to avoid the case where the distribution of weights

tends towards a Dirac distribution (i.e. when a single weight

tends to unity and all the others tend to zero, see Figure 1).

In order to keep the information, the case where epsilon is

large is also avoided otherwise neither particle is favored. The

scale parameter ǫ must be such that the efficiency criterion

is equal or just above the resampling threshold. Since ǫ ∈ I ,

the solution ǫ̂ to (13) is not guaranteed to yield Neff greater

than Nth . In case of Neff < Nth , a conventional resample

step is triggered to prevent from the filter degenerency. The

kernel bandwidth has a strong impact on the degeneracy of

the weights distribution, which may cause some estimation

divergence. In practice, finding ǫ̂ (13) can be solved by

making numerical approximations (e.g. gradient descent or

grid search).
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Fig. 1: Relation between the scale parameter of the kernel and

the weights distribution.

B. A2BC-RPF and A2BC-RBPF

In this section, two improved Particle Filter are derived

from the conventional RPF and RBPF, so that their correction

steps satisfy (13).

◮ RPF ([10], [9]) is based on the kernel estimation theory

[14]. After the resampling step is triggered, the posterior

density defined by a mixture of Dirac functions (7) can be

rewritten as a mixture of weighted kernels:

p̂k(x) =
N∑

i=1

wi
kKh(Xk −Xi

k) (14)

When all the particles have the same weight, an optimal

kernel K and an optimal bandwidth hopt can be determined

by minimizing the Mean Intergrater Square Error criterion

[14], [9]. This additional step is called regularization, see

Algorithm 1.

◮ RBPF is used when the state vector Xk can be decom-

posed into two sub-vectors (Xn
k , X

l
k) such that the model is

linear with respect to X l
k conditionally to Xn

k and Y0:k:

Xn
k+1 = fn

k (X
n
k ) + Fn

k (X
n
k )X

l
k +Gn

k (x
n
k )η

n
k (15)

X l
k+1 = f l

k(X
n
k ) + F l

k(X
n
k )X

l
k +Gl

k(x
n
k )η

l
k (16)

Yk = hk(X
n
k ) +Hk(X

n
k )X

l
k + νk (17)

where ηk = [ηnk , η
l
k]

T is a Gaussian noise with covariance ma-

trix Qk =

(
Qn

k Qln
k

(Qln
k )T Ql

k

)
, vk is Gaussian with covariance



Algorithm 1 A2BC-RPF Algorithm

Initialization: For i = 1, ..., N , initialize the particles

Xi
0 ∼ p(X0) from a prior distribution and set wi

−1 = 1/N .

For k ≥ 0 do

1) ABC correction:

• For i = 1, ..., N , the pseudo-observations are

U i
k = M(Xi

k).
• Determine ǫ̂k such that

ǫ̂k = argminǫk∈I |Neff (ǫk)−Nth|
• Update the weights w̃i

k = wi
k−1

Kǫ̂k(Yk, U
i
k)

• Normalization wi
k =

w̃i
k∑

i
w̃i

k

2) Compute the estimate X̂k =
∑

i w
i
kX

i
k

3) Compute the empirical covariance matrix

P̂k =
∑

i w
i
k(X

i
k − X̂k)(X

i
k − X̂k)

T

4) If Neff < Nth do

• Apply one of the resampling procedure (see [5] for

a review on resampling methods). Discard/multiply

particles Xi
k according to high/low weights wi

k and

denote by Xi
k the selected states. Set wi

k = 1/N .

• Regularization step:

– Compute Dk such that DkD
T
k = P̂k

– Draw ζi from a kernel

– Xi
k = Xi

k + hoptDkζ
i

end

5) Prediction step: For i = 1, ..., N , sample

Xi
k+1

∼ p(Xk+1|X
i
k) see (1).

end

matrix Rk, the nonlinear part follows the known law p(Xn
0 )

and the linear part has a Gaussian density N (X l
0, P0), see

Algorithm 2. The posterior density can be written as follows:

p(X l
k, X

n
0:k|Y0:k) = p(X l

k|X
n
0:k, Y0:k)p(X

n
0:k|Y0:k) (18)

Under the hypothesis that p(X l
k|X

n
0:k, Y0:k) is Gaussian, this

density is estimated by a Kalman filter. The non-linear and

multimodes density p(Xn
0:k|Y0:k) is estimated by a particle

filter. The linear part follows a Gaussian law, so it is sufficient

to calculate at each time step its average and its covariance

by using the Kalman filter (see [13]). The particle prediction

will be given by:

p(Xn
0:k|Y0:k−1) =

p(Xn
k |X

n
0:k−1, Y0:k−1)p(X

n
0:k−1|Y0:k−1) (19)

This density is Gaussian with mean and covariance matrix

given by equation (25) in [13]. The resulting approximation

is given by:

p̂k(x) =

N∑

i=1

wi
kN (xl;X l,i

k , P i
k)δxn=X

n,i

k

(20)

where P i
k is the covariance matrix of the linear part X l,i

k .

Algorithm 2 A2BC-RBPF Algorithm

Initialization: For i = 1, ..., N , sample Xn,i
0 ∼ p(Xn

0 ) and set

{X l,i

0|−1
, P i

0|−1
}i=1:N = {X l

0, P
l
0} and wi

−1 = 1/N .

For k ≥ 0 do

1) ABC correction:

• For i = 1, ..., N , the pseudo-observations are

U i
k = M(Xn,i

k , X l,i

k|k−1
)

• Determine ǫ̂k such that

ǫ̂k = argminǫk∈I |Neff (ǫk)−Nth|
• Update the weights w̃i

k = wi
k−1

Kǫ̂k(Yk, U
i
k)

• Normalization wi
k =

w̃i
k∑

i
w̃i

k

2) Compute the estimate X̂n
k =

∑
i w

i
kX

n,i
k

3) Compute the empirical covariance matrix

P̂n
k =

∑
i w

i
k(X

n,i
k − X̂n

k )(X
n,i
k − X̂n

k )
T

4) If Neff (ǫ̂k) < Nth do

• Discard/multiply particles Xi
k = [Xn,i

k , X l,i

k|k−1
] ac-

cording to high/low weights wi
k and denote by Xi

k

the selected states. Set wi
k = 1/N .

• Regularization step:

– Compute Dk such that DkD
T
k = P̂k where

P̂k = diag([P̂n
k , Pk|k−1]).

– Draw ζi from a kernel

– Xi
k = Xi

k + hoptDkζ
i

end

5) Kalman correction: compute X l,i
k and P i

k according to

equation (22) in [13].

6) Particle prediction: sample Xn,i
k+1

using (19) (see equa-

tion (25) in [13]).

7) Kalman prediction: compute X l,i

k+1|k and P i
k+1|k accord-

ing to equation (23) in [13].

end

A regularization step is added in order to increase the

robustness of the A2BC-RBPF filter. For a same number

of particles, RBPF is more computationally intensive since,

it requires one Kalman filter per particle. However, it is

possible to obtain a compromise between calculation cost and

performance in favour of the RBPF for many applications.

For example, in TAN, the Kalman filter covariance matrix

is independent of the non-linear part, which reduces the

complexity of the RBPF since there is only one covariance

matrix to update.

IV. SIMULATION EXAMPLE

To illustrate the behavior of the resulting A2BC filters, an

application to underwater Terrain Aided Navigation (TAN) is

presented. The observation equation is described and numeri-

cal results are presented.

A. Underwater terrain aided navigation

TAN can provide a drift-free navigation tool for underwater

vehicles (UV), yielding a powerful alternative to current

navigation methods which include resurfacing for GPS. TAN



generates vehicle position estimates by correlating terrain

measurements obtained by a multi-beam sensor (see Figure 2)

together with stored terrain maps.

Fig. 2: Multi-beam sensor.

Define X = [P, V ]T the state vector composed of

P = [px, py, pz]
T the position vector expressed in meters and

V = [vx, vy, vz]
T the vector of velocities expressed in meter

per second. A simple case of state dynamics is chosen, known

as NCV model [1]. The dynamical model is written in the

following discrete way:
{

Pk = Pk−1 +∆tVk−1 + ηXk
Vk = Vk−1 + ηVk

(21)

where ∆t is the discretization time-step and ηk = [ηXk , ηVk ]T

is the state noise.

The measurement is made of m beams: Y = [r1, ..., rm]T .

Each measurement ri returns the distance between the UV and

the seabed (see Meduna [7] for details):

ri =
√
(px − pix)

2 + (py − piy)
2 + (pz − h(pix, p

i
y))

2 + νi
(22)

where h is the terrain depth. The terrain function is the

Digital Elevation Model (DEM). In our case, DEM is defined

by a regular grid of elevation values, see Figure 3. The

spatial resolution of the chosen map is about 100 meters. The

intersection point of beam ri direction vector with the terrain

is denoted (pix, p
i
y, p

i
z = h(pix, p

i
y)). Since the coordinates of

the intersection point depend on the beam vector ri, the

measurement model is implicit. The measurement equation

(22) has to be rewritten as (3). There are several ways to get

an explicit formula, e.g. ray tracing, grid search. In this paper,

the explicit formula is the output of a numerical model named

M, that introduces some unknown sampling noise.

The law of this noise cannot be easily inferred which

motivate the use of the method developed in Section III.
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Fig. 3: Map of the contours lines of the California coast

(31 ˚ 88’ N, 121 ˚ 27’ W). The colorbar represents the depth

levels in meters.

B. Performance criteria

In order to compare the algorithms, we use the following

criteria, evaluated for Nmc ∈ N Monte-Carlo simulations:

• The Root Mean Square Error (RMSE):

RMSEk =

√∑Nmc

i=1
(X̂i

k −Xk)T (X̂i
k −Xk)

Nmc

(23)

where X̂k is the kth estimated of the state. We will

compare these RMSEs with the Posterior Cramér

Rao Bound (PCRB) which is calculated according

to the Tichavský recursive formula [15]. The PCRB

is approximated over 100 state samples at each time-step.

• The number of non-convergence:

The filter is said to not converge if, at the end of the tra-

jectory, during the last 5 consecutive measurement times,

the state estimate X̂k leaves the confidence ellipsoid Γk

given by the PCRB, such that

Γk = {Xk|(Xk − X̂k)
TPCRB−1

k (Xk − X̂k) ≤ α2}
(24)

where the threshold α is equal to the probability

P(X 2(d) ≤ α2) = 0.99 with d the dimension of the

state vector.

C. Simulation and results

The kernel in (10) is chosen as a Cauchy function

whose scale parameter ǫ is fixed for conventional filters and

determine adaptively with A2BC filters. The linear part of

the state in RBPF is the velocity.



For 100 Monte Carlo trials, the number of non-convergence

is shown in Table I. The initial number of non-convergence

for RBPF was too high (∼ 70%). Thereafter, RBPF will

designate an improved version where a regularization step

was added. The number of non-convergence is smaller for

A2BC filters that are more robust than the benchmark filters.

Filters % of non-convergence

RPF 8

A2BC-RPF 3

RBPF 10

A2BC-RBPF 6

TABLE I: Table of percentage rate of non-convergence for 100

Monte Carlo trials.

Scenario parameters

• Sampling period: ∆T = 10 seconds

• Number of bathymetric measurements: 200
• Time at the end of the trajectory: T = 33 minutes

• Number of beams: 3

• Number of particles: N = 5000
• Resampling threshold: Nth = 0.75N
• ǫ domain (13): I = [0.1, 20] meters

• Standard deviation of each beam range: σR = 10 meters

The initial uncertainty for the position P is σP =
diag([1000, 1000, 100]) meters and the initial uncertainty for

the velocity V is σV = diag([0.5, 0.5, 0.5]) meters per second.

The initial state is X0 = [120000, 180000,−100, 5, 5, 0.05]T .

The horizontal velocity vector is 7 meters per second. For the

regularization step, we chose an Epanechnikov kernel. The

filter results are compared for the same number of particles

N .
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Fig. 4: Comparison between the true trajectory and the tajecto-

ries estimated by A2BC-RPF and A2BC-RBPF on the map of

the California coast. The colorbar represents the depth levels

in meters.

The reference trajectory is located in an ambiguous area

of the map. Figure 4 illustrates the trajectories estimated

by the two proposed algorithms in the same conditions (the

same initial errors and measurements realizations). The filters

converge quickly towards the reference trajectory.
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Fig. 5: Values taken by Neff over time and resampling threshold

Nth.

The criterion Neff of the A2BC filters is plotted in Figure 5

with the resampling threshold Nth. The criterion varies over

time to avoid the resampling step and therefore maintains the

modes of the posterior density as long as possible (i.e. Neff is

forced to remain near Nth). It’s the reason why in Figure 6, the

A2BC-RPF has a higher error than the other filters between

time 7 minutes and 17 minutes.
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(a) RMSE of the position on the axis X.
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Fig. 6: PCRB and RMSE of the horizontal position in meters.



Figures 6 and 7 show the RMSE results of the four filters

tested with similar simulation conditions. Only convergence

cases are used to plot the curves on these two figures.

Convergence generally occurs around 20 minutes. The curves

follow the tendency of the approximate PCRB. The final

accuracy of the filters is less than 100 meters in position, which

corresponds to the spatial resolution of the map. The velocity

accuracy is also satisfactory.
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(a) RMSE of the velocity on the axis X.

0 5 10 15 20 25 30 35
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

time (min)

PCRB

RPF

A2BC−RPF

RBPF

A2BC−RBPF

(b) RMSE of the velocity on the axis Y.

Fig. 7: PCRB and RMSE of the horizontal velocity in meters

per second.

The error at the end of the trajectory of the filters in hor-

izontal position RMSEHP
T and horizontal velocity RMSEHV

T

are reported in Table II. RMSEHP
T is calculated as follows:

RMSEHP
T =

√
RMSE

px

T

2
+ RMSE

py

T

2
(25)

as well for RMSEHV
T by replacing RMSE

px

T by RMSEvx
T and

RMSE
py

T by RMSE
vy
T . The results show that A2BC methods

increase the accuracy in position and horizontal velocity.

Filters RMSEHP
T RMSE

pz
T RMSEHV

T

RPF 106.53 1.47 0.195

A2BC-RPF 104.67 0.83 0.188

RBPF 105.23 1.46 0.197

A2BC-RBPF 99.90 0.78 0.177

TABLE II: Table of RMSE at the end of the trajectory (in

meters for position and in meters per second for velocity).

V. CONCLUSIONS

In some cases, the observation model is a numerical black

box, which leads us to consider an unknown likelihood. We in-

troduce a measurement updating procedure based on an adap-

tive kernel derived from Approximate Bayesian Computational

filters. The proposed method is implemented in two well-

known particles filter: Regularized Particle Filter and Rao-

Blackwellized Particle Filter. Simulation results demonstrate

that the proposed method significantly increases the robust-

ness and the accuracy of particle-like filters while remaining

computationally efficient.
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