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The divergence equation with L∞ source

Eduard Curcă ∗

Abstract

A well-known fact is that there exists g ∈ L∞(T2) with zero integral, such that the
equation

divf = g (∗)

has no solution f = (f1, f2) ∈W 1,∞(T2). This was proved by Preiss ([4]), using an involved
geometric argument, and, independently, by McMullen ([2]), via Ornstein’s non-inequality.
We improve this result: roughly speaking, we prove that, there exists g ∈ L∞ for which (∗)
has no solution such that ∂2f2 ∈ L∞ and f is ”slightly better” than L1. Our proof relies on
Riesz products in the spirit of the approach of Wojciechowski ([6]) for the study of (∗) with
source g ∈ L1. The proof we give is elementary, self-contained and completely avoids the
use of Ornstein’s non-inequality.

1 Introduction

In this paper, we improve the following result of Preiss ([4]) and McMullen (Theorem 2.1, in [2]):

Theorem 1 There exists g ∈ L∞(T2) with zero integral, such that there are no f1, f2 ∈ W 1,∞(T2)
with

g = ∂1f1 + ∂2f2.

The proof in [4] is ”geometric”, the one in [2] relies essentially on Ornstein’s non-inequality
([3]).

Note that, in the above statement, the conditions on f1, f2 are isotropic, i.e., we require
∂lfj ∈ L∞(T2) for all l, j = 1, 2. In what follows, we will prove that, under some mild regularity
assumptions on f1, f2, the above requirements can be weakened to anisotropic conditions. Namely,
it is enough to impose ∂2f2 ∈ L∞(T2). In order to state this more precisely, we introduce the
following spaces of distributions.

Suppose λ : N → (0,∞) is a decreasing function such that λ (k) → 0 when k → ∞. To such
a function we associate the Banach space of those distributions whose Fourier transform decays
at the rate at least λ. More precisely, consider the space

Sλ
(
T2
)

:=

f ∈ D′(T2)

∣∣∣∣∣∣ sup
n∈Z2

∣∣∣f̂(n)
∣∣∣

λ (|n|)
<∞
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endowed with the norm given by

‖f‖Sλ := sup
n∈Z2

∣∣∣f̂(n)
∣∣∣

λ (|n|)
, f ∈ Sλ

(
T2
)

.

To mention only few examples, we note that, for any m ∈ N∗, Wm,1(T2) ↪→ Sλ (T2), with
λ (|n|) = 1/ (1 + |n|)m and, if s > 0, the fractional Sobolev space Hs(T2) is embedded in Sλ (T2)
for λ (|n|) = 1/ (1 + |n|)s.

With this notation, we can formulate our result.

Theorem 2 Suppose λ : N→ (0,∞) is decreasing to 0. There exists g ∈ L∞(T2) such that there
are no f0, f1, f2 ∈ Sλ (T2) with ∂2f2 ∈ L∞(T2) and

g = f0 + ∂1f1 + ∂2f2.

We can easily observe that Theorem 2 implies Theorem 1. Indeed, if f1, f2 ∈ W 1,∞(T2) then
∂2f2 ∈ L∞(T2) and, as we mentioned above, we have f1, f2 ∈ Sλ (T2) for λ (|n|) = 1/ (1 + |n|).
Also, even the weaker regularity condition f0, f1, f2 ∈ Hε(T2), ∂2f2 ∈ L∞(T2) (ε > 0, a small
fixed number) rules out the existence of a solution. Intuitively, f ∈ Sλ (T2), with λ slowly
decaying, means that f is ”slightly better” than L1. The above result asserts that solutions with
such regularity satisfying ∂2f2 ∈ L∞(T2) need not exist.

Finally, we discuss the most important aspect, which is the proof of Theorem 2. Our proof
completely avoids the use of Ornstein’s non-inequality. It is an adaptation of the Riesz products
based proof, given by Wojciechowski in [6], of the fact that there exist L1 functions which are
not divergences of W 1,1 vector fields. We follow the general structure of his proof making the
needed modifications in order to handle the L∞ case. While the proof in [6] relies on a relatively
difficult lemma (Lemma 1, in [6]), in our case, the role of this lemma will be played by Lemma 3
below, which is elementary and easy. Another aspect of our proof is the presence of the function
λ. This allows us to quantify the regularity that we impose to the solution and to improve the
result described by Theorem 1. The approach based on Ornstein’s non-inequality does not seem
to be suited for obtaining this improvement.

We also mention that the proof given below of Theorem 2 is self-contained and elementary.
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vestissements d’Avenir” (ANR-11-IDEX-0007) operated by the French National Research Agency
(ANR).

2 Proof of Theorem 2

Before starting the proof, we recall first the following well-known elementary fact (see [5], Lemma
6.3, p. 118):
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Lemma 3 Suppose z1,..., zN are some complex numbers. Then, there exist σ1,..., σN ∈ {0, 1}
such that ∣∣∣∣∣

N∑
k=1

σkzk

∣∣∣∣∣ ≥ 1

π

N∑
k=1

|zk| .

Proof. We follow [5]. View z1,..., zN as vectors in R2. For a given θ ∈ [0, 2π], let rθ :=
(cos θ, sin θ). If Hθ is the half-plane given by

Hθ :=
{
z ∈ R2| 〈z, rθ〉 ≥ 0

}
,

we have

1

2π

∫ 2π

0

∣∣∣∣∣
N∑

k=1,zk∈Hθ

zk

∣∣∣∣∣ dθ ≥ 1

2π

∫ 2π

0

N∑
j=1

〈zj, rθ〉+ dθ =
N∑
j=1

1

2π

∫ 2π

0

〈zj, rθ〉+ dθ,

and we easily see that, for all j,

1

2π

∫ 2π

0

〈zj, rθ〉+ dθ = |zj|
1

2π

∫ 2π

0

(cos θ)+ dθ =
1

π
|zj| .

Using the above inequality, we complete the proof of Lemma 3 via a mean value argument. �

We will also need few facts concerning the trigonometric polynomials.
Fix a finite sequence (ak)k=1,N in Z2. For each finite sequence (α1, ..., αN) of complex numbers

we have the following expansion rule:

N∏
k=1

(1 + αk cos 〈t, ak〉) = 1 +
N∑
k=1

∑
ε1,...,εk∈{−1,0,1}

εk 6=0

∏
εj 6=0

αj
2

 ei〈t,ε1a1+...+εkak〉.

Suppose, moreover, that (ak)k=1,N is component-wise lacunary, i.e., there exists a constant
M > 3 such that |ak+1 (1)| / |ak (1)| > M and |ak+1 (2)| / |ak (2)| > M for all 1 ≤ k ≤ N − 1.
Then, all the expressions ε1a1 + ...+ εkak in the above formula are distinct and nonzero. Hence,
if α1, ..., αN and β1, ..., βN are complex numbers, by using the above formula and the relation
between convolution and the Fourier transform, we obtain

N∏
k=1

(1 + αk cos 〈·, ak〉) ∗
N∏
k=1

(1 + βk cos 〈·, ak〉) =
N∏
k=1

(
1 +

αkβk
2

cos 〈·, ak〉
)

. (1)

We will also use the following standard algebraic identity:

N∏
k=1

(1 + ck) = 1 +
N∑
k=1

ck

k−1∏
j=1

(1 + cj) (2)

for any complex numbers c1,..., cN .

Proof of Theorem 2. Suppose that the assertion of Theorem 2 is false and fix a function λ as
in the statement. Then, by the open mapping principle, there exists a constant C > 0 such that
for any g ∈ L∞(T2) there exist distributions f0, f1, f2 ∈ Sλ(T2), satisfying g = f0 + ∂1f1 + ∂2f2,
with the properties that ∂2f2 ∈ L∞(T2) and

‖f0‖Sλ + ‖f1‖Sλ + ‖f2‖Sλ + ‖∂2f2‖L∞ ≤ C ‖g‖L∞ . (3)
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Let N be a large positive integer such that lnN > 25πC and consider the functions on T2

gN(t) :=
N∏
k=1

(
1 +

i

k
cos 〈t, ak〉

)
and GN (t) :=

N∏
k=1

(1 + cos 〈t, ak〉) ,

where the finite sequence (ak)k=1,N in (N∗)2 is defined below.
Using Lemma 3, applied to the sequence of complex numbers

zk :=
1

k

k−1∏
j=1

(
1 +

i

2j

)
for k = 1, ..., N ,

(here and after the product over an empty set is by convention equal to 1), we can find a sequence
σ1,..., σN ∈ {0, 1} such that∣∣∣∣∣

N∑
k=1

σk
k

k−1∏
j=1

(
1 +

i

2j

) ∣∣∣∣∣ ≥ 1

π

N∑
k=1

1

k

k−1∏
j=1

(
1 +

1

4j2

)1/2

≥ 1

π

N∑
k=1

1

k
≥ 1

π
lnN . (4)

Now we impose the sequence (ak)k=1,N to satisfy the following properties:

(i) (ak)k=1,N is component-wise lacunary;
(ii) If σk = 1, then∣∣∣∣∣ak(1) +

∑
1≤j≤k−1

εjaj(1)

∣∣∣∣∣λ
(∣∣∣∣∣ak(2) +

∑
1≤j≤k−1

εjaj(2)

∣∣∣∣∣
)
<

1

4N
for all ε1, ..., εk−1 ∈ {−1, 0, 1} ;

(iii) If σk = 0, then∣∣∣∣∣ak(2) +
∑

1≤j≤k−1

εjaj(2)

∣∣∣∣∣λ
(∣∣∣∣∣ak(1) +

∑
1≤j≤k−1

εjaj(1)

∣∣∣∣∣
)
<

1

4N
for all ε1, ..., εk−1 ∈ {−1, 0, 1} .

(By convention the sum over an empty set is equal to 0.)

Such a sequence can be easily constructed by induction on k: if a1,..., ak−1 are chosen, then
we choose ak(2) much larger than ak(1), or ak(1) much larger than ak(2), depending on whether
σk = 1 or σk = 0 respectively. Since λ is decreasing to 0, we can satisfy in this way the conditions
(ii), respectively (iii). Also, the condition (i) can be easily satisfied.

We now return to the proof of Theorem 2. Note that

‖gN‖L∞ =
N∏
k=1

(
1 +

1

k2

)1/2

≤ eπ
2/12 < 3, and also GN ≥ 0 and ‖GN‖L1 = 1. (5)

Using (1) and (2), we get

GN ∗ gN(t) =
N∏
k=1

(
1 +

i

2k
cos 〈t, ak〉

)
= 1 +

N∑
k=1

i

2k
cos 〈t, ak〉

k−1∏
j=1

(
1 +

i

2j
cos 〈t, aj〉

)
. (6)

Consider the sets

A : =
N⋃
k=1
σk=1

{ε1a1 + ...+ εkak| ε1, ..., εk ∈ {−1, 0, 1} , εk 6= 0} ,

B : =
N⋃
k=1
σk=0

{ε1a1 + ...+ εkak| ε1, ..., εk ∈ {−1, 0, 1} , εk 6= 0} .
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Since the sequence (ak)k=1,N is component-wise lacunary, we have ({0} × Z)∩ (A ∪B) = ∅,

(Z×{0})∩ (A ∪B) = ∅ and A ∩ B = ∅, while clearly |A ∪B| ≤ 3N . In particular, |A| ≤ 3N ,
|B| ≤ 3N .

Using now (6) and (4), we obtain

|PAGN ∗ gN(0)| =

∣∣∣∣∣
N∑
k=1

iσk
2k

k−1∏
j=1

(
1 +

i

2j

)∣∣∣∣∣ ≥ 1

2π
lnN , (7)

where PA is the linear operator on trigonometric polynomials, satisfying PAe
i〈t,n〉 = ei〈t,n〉 if n ∈ A

and PAe
i〈t,n〉 = 0 otherwise.

On the other hand, according to our assumption and (5), we can find f0, f1, f2 ∈ Sλ(T
2),

satisfying gN = f0 + ∂1f1 + ∂2f2, with the properties that ∂2f2 ∈ L∞(T2) and

‖f0‖Sλ + ‖f1‖Sλ + ‖f2‖Sλ + ‖∂2f2‖L∞ ≤ 3C.

Let us note that

PAGN ∗ gN = PAGN ∗ f0 + PAGN ∗ ∂1f1 + PAGN ∗ ∂2f2. (8)

We next estimate each term on the right hand side of (8).
For the second term, we have:

‖PAGN ∗ ∂1f1‖L∞ = ‖GN ∗ PA∂1f1‖L∞ ≤ ‖GN‖L1 ‖PA∂1f1‖L∞ = ‖PA∂1f1‖L∞
≤ |A|max

n∈A

∣∣∣∂̂1f1(n)
∣∣∣ = |A|max

n∈A
|n(1)|

∣∣∣f̂1(n)
∣∣∣

≤ |A|max
n∈A
|n(1)|λ (|n|) ‖f1‖Sλ ≤ |A|max

n∈A
|n(1)|λ (|n (2)|) ‖f1‖Sλ

≤ 3N4−N3C < 3C,

where we have used (ii).
For the third term, we have:

‖PAGN ∗ ∂2f2‖L∞ = ‖GN ∗ ∂2f2 − PBGN ∗ ∂2f2‖L∞ ≤ ‖GN ∗ ∂2f2‖L∞ + ‖PBGN ∗ ∂2f2‖L∞
≤ ‖GN‖L1 ‖∂2f2‖L∞ + ‖GN‖L1 ‖PB∂2f2‖L∞ = ‖∂2f2‖L∞ + ‖PB∂2f2‖L∞
≤ 3C + |B|max

n∈B

∣∣∣∂̂2f2(n)
∣∣∣ = 3C + |B|max

n∈B
|n(2)|

∣∣∣f̂2(n)
∣∣∣

≤ 3C + 3N max
n∈B
|n(2)|λ (|n|) ‖f2‖Sλ ≤ 3C + 3N max

n∈B
|n(2)|λ (|n (1)|) ‖f2‖Sλ

≤ 3C + 3N4−N3C < 6C,

where we have used the identity GN = PAGN + PBGN and (iii).
Finally, the first term is easier to handle. We have:

‖PAGN ∗ f0‖L∞ = ‖GN ∗ PAf0‖L∞ ≤ ‖PAf0‖L∞ ≤ |A|max
n∈A

∣∣∣f̂0(n)
∣∣∣

≤ |A|max
n∈A

λ (|n|) ‖f0‖Sλ ≤ |A|max
n∈A
|n(1)|λ (|n(2)|) ‖f0‖Sλ

≤ 3N4−N3C < 3C.

These estimates together with (8) give us

‖PAGN ∗ gN‖L∞ ≤ 3C + 6C + 3C = 12C,

which contradicts (7), since lnN > 25πC. �

Remark. (1) Similarly, a closer look to the proof in [6] gives the following analogue of Theorem
2 in the case of L1.
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Theorem 4 Suppose λ : N→ (0,∞) is decreasing to 0. There exists g ∈ L1(T2) such that there
are no f0, f1, f2 ∈ Sλ (T2) with ∂2f2 ∈ L1(T2) and

g = f0 + ∂1f1 + ∂2f2.

(2) The d-dimensional case, with d ≥ 3, can be easily obtained from Theorem 2. More
precisely, we have

Theorem 5 Let d ≥ 2. Suppose λ : N → (0,∞) is decreasing to 0. There exists g ∈ L∞(Td)
such that there are no f0, f1, f2,..., fd ∈ D′

(
Td
)

with f0, f1, f2 ∈ Sλ
(
Td
)
, ∂2f2 ∈ L∞(Td) and

g = f0 + ∂1f1 + ∂2f2 + ...+ ∂dfd.

Indeed, consider a g′ ∈ C∞(T2) and ψ ∈ C∞(Td−2) such that 0 ≤ ψ ≤ 1 and
∫
Td−2 ψ = 1. If

the above result were not true, we could find f0, f1, f2,..., fd ∈ D′
(
Td
)

such that

g′ ⊗ ψ = f0 + ∂1f1 + ∂2f2 + ...+ ∂dfd

and
‖f0‖Sλ(Td) + ‖f1‖Sλ(Td) + ‖f2‖Sλ(Td) + ‖∂2f2‖L∞(Td) ≤ C ‖g′‖L∞(T2) .

Without loss of generality, we can suppose that f0, f1, f2,..., fd are smooth. Integrating
this equation in the last d − 2 coordinates, we reduce the problem to the 2-dimensional case:
g′ = f ′0 + ∂1f

′
1 + ∂2f

′
2 where

f ′j (t) :=

∫
Td−2

fj (t, τ) dτ , for j = 0, 1, 2,

satisfy
‖f ′0‖Sλ(T2) + ‖f ′1‖Sλ(T2) + ‖f ′2‖Sλ(T2) + ‖∂2f ′2‖L∞(T2) ≤ C ‖g′‖L∞(T2) .

Here, we have used the fact that, for all n′ ∈ Z2,∣∣∣f̂ ′j (n′)
∣∣∣ =

∣∣∣f̂j (n′, 0)
∣∣∣ ≤ λ (|(n′, 0)|) ‖fj‖Sλ(Td) = λ (|n′|) ‖fj‖Sλ(Td) .

(3) Using Lemma 3, and adapting the technique in [1], we can obtain similar anisotropic
Ornstein type inequalities adapted to the L∞ case. We give below an example. For any ε > 0,
there exists a trigonometric polynomial f on T2, depending on ε, such that

ε
∥∥∂31∂22f∥∥L∞ ≥ ∥∥∂41f∥∥L∞ +

∥∥∂21∂42f∥∥L∞ +
∥∥∂1∂62f∥∥L∞ +

∥∥∂82f∥∥L∞ .
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