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The divergence equation with L ∞ source

Introduction

In this paper, we improve the following result of Preiss ([4]) and McMullen (Theorem 2.1, in [START_REF] Mcmullen | Lipschitz maps and nets in Euclidean space[END_REF]):

Theorem 1 There exists g ∈ L ∞ (T 2 ) with zero integral, such that there are no f 1 ,

f 2 ∈ W 1,∞ (T 2 ) with g = ∂ 1 f 1 + ∂ 2 f 2 .
The proof in [START_REF] Preiss | Additional regularity for Lipschitz solutions of PDE[END_REF] is "geometric", the one in [START_REF] Mcmullen | Lipschitz maps and nets in Euclidean space[END_REF] relies essentially on Ornstein's non-inequality ( [START_REF] Ornstein | A non-inequality for differential operators in the L1 norm[END_REF]).

Note that, in the above statement, the conditions on f 1 , f 2 are isotropic, i.e., we require ∂ l f j ∈ L ∞ (T 2 ) for all l, j = 1, 2. In what follows, we will prove that, under some mild regularity assumptions on f 1 , f 2 , the above requirements can be weakened to anisotropic conditions. Namely, it is enough to impose ∂ 2 f 2 ∈ L ∞ (T 2 ). In order to state this more precisely, we introduce the following spaces of distributions.

Suppose λ : N → (0, ∞) is a decreasing function such that λ (k) → 0 when k → ∞. To such a function we associate the Banach space of those distributions whose Fourier transform decays at the rate at least λ. More precisely, consider the space

S λ T 2 :=    f ∈ D (T 2 ) sup n∈Z 2 f (n) λ (|n|) < ∞    ,
endowed with the norm given by

f S λ := sup n∈Z 2 f (n) λ (|n|) , f ∈ S λ T 2 .
To mention only few examples, we note that, for any

m ∈ N * , W m,1 (T 2 ) → S λ (T 2 ), with λ (|n|) = 1/ (1 + |n|) m and, if s > 0, the fractional Sobolev space H s (T 2 ) is embedded in S λ (T 2 ) for λ (|n|) = 1/ (1 + |n|) s .
With this notation, we can formulate our result.

Theorem 2 Suppose λ : N → (0, ∞) is decreasing to 0. There exists g ∈ L ∞ (T 2 ) such that there are no f 0 , f 1 , f 2 ∈ S λ (T 2 ) with ∂ 2 f 2 ∈ L ∞ (T 2 ) and g = f 0 + ∂ 1 f 1 + ∂ 2 f 2 .
We can easily observe that Theorem 2 implies Theorem 1. Indeed, if

f 1 , f 2 ∈ W 1,∞ (T 2 ) then ∂ 2 f 2 ∈ L ∞ (T 2
) and, as we mentioned above, we have

f 1 , f 2 ∈ S λ (T 2 ) for λ (|n|) = 1/ (1 + |n|). Also, even the weaker regularity condition f 0 , f 1 , f 2 ∈ H ε (T 2 ), ∂ 2 f 2 ∈ L ∞ (T 2 ) (ε > 0,
a small fixed number) rules out the existence of a solution. Intuitively, f ∈ S λ (T 2 ), with λ slowly decaying, means that f is "slightly better" than L 1 . The above result asserts that solutions with such regularity satisfying

∂ 2 f 2 ∈ L ∞ (T 2 ) need not exist.
Finally, we discuss the most important aspect, which is the proof of Theorem 2. Our proof completely avoids the use of Ornstein's non-inequality. It is an adaptation of the Riesz products based proof, given by Wojciechowski in [START_REF] Wojciechowski | On the representation of functions as a sum of derivatives[END_REF], of the fact that there exist L 1 functions which are not divergences of W 1,1 vector fields. We follow the general structure of his proof making the needed modifications in order to handle the L ∞ case. While the proof in [START_REF] Wojciechowski | On the representation of functions as a sum of derivatives[END_REF] relies on a relatively difficult lemma (Lemma 1, in [START_REF] Wojciechowski | On the representation of functions as a sum of derivatives[END_REF]), in our case, the role of this lemma will be played by Lemma 3 below, which is elementary and easy. Another aspect of our proof is the presence of the function λ. This allows us to quantify the regularity that we impose to the solution and to improve the result described by Theorem 1. The approach based on Ornstein's non-inequality does not seem to be suited for obtaining this improvement.

We also mention that the proof given below of Theorem 2 is self-contained and elementary.

Lemma 3 Suppose z 1 ,..., z N are some complex numbers. Then, there exist σ 1 ,...,

σ N ∈ {0, 1} such that N k=1 σ k z k ≥ 1 π N k=1 |z k | .
Proof. We follow [START_REF] Rudin | Real and Complex Analysis[END_REF]. View z 1 ,..., z N as vectors in R 2 . For a given θ ∈ [0, 2π], let r θ := (cos θ, sin θ). If H θ is the half-plane given by

H θ := z ∈ R 2 | z, r θ ≥ 0 ,
we have

1 2π 2π 0 N k=1,z k ∈H θ z k dθ ≥ 1 2π 2π 0 N j=1 z j , r θ + dθ = N j=1 1 2π 2π 0 z j , r θ + dθ,
and we easily see that, for all j,

1 2π 2π 0 z j , r θ + dθ = |z j | 1 2π 2π 0 (cos θ) + dθ = 1 π |z j | .
Using the above inequality, we complete the proof of Lemma 3 via a mean value argument.

We will also need few facts concerning the trigonometric polynomials. Fix a finite sequence (a k ) k=1,N in Z 2 . For each finite sequence (α 1 , ..., α N ) of complex numbers we have the following expansion rule:

N k=1 (1 + α k cos t, a k ) = 1 + N k=1 ε 1 ,...,ε k ∈{-1,0,1} ε k =0   ε j =0 α j 2   e i t,ε 1 a 1 +...+ε k a k .
Suppose, moreover, that (a k ) k=1,N is component-wise lacunary, i.e., there exists a constant

M > 3 such that |a k+1 (1)| / |a k (1)| > M and |a k+1 (2)| / |a k (2)| > M for all 1 ≤ k ≤ N -1.
Then, all the expressions ε 1 a 1 + ... + ε k a k in the above formula are distinct and nonzero. Hence, if α 1 , ..., α N and β 1 , ..., β N are complex numbers, by using the above formula and the relation between convolution and the Fourier transform, we obtain

N k=1 (1 + α k cos •, a k ) * N k=1 (1 + β k cos •, a k ) = N k=1 1 + α k β k 2 cos •, a k . ( 1 
)
We will also use the following standard algebraic identity:

N k=1 (1 + c k ) = 1 + N k=1 c k k-1 j=1 (1 + c j ) (2) 
for any complex numbers c 1 ,..., c N .

Proof of Theorem 2. Suppose that the assertion of Theorem 2 is false and fix a function λ as in the statement. Then, by the open mapping principle, there exists a constant C > 0 such that for any g ∈ L ∞ (T 2 ) there exist distributions

f 0 , f 1 , f 2 ∈ S λ (T 2 ), satisfying g = f 0 + ∂ 1 f 1 + ∂ 2 f 2 , with the properties that ∂ 2 f 2 ∈ L ∞ (T 2
) and

f 0 S λ + f 1 S λ + f 2 S λ + ∂ 2 f 2 L ∞ ≤ C g L ∞ . ( 3 
)
Let N be a large positive integer such that ln N > 25πC and consider the functions on T 2

g N (t) :

= N k=1 1 + i k cos t, a k and G N (t) := N k=1 (1 + cos t, a k ) ,
where the finite sequence (a k ) k=1,N in (N * ) 2 is defined below. Using Lemma 3, applied to the sequence of complex numbers

z k := 1 k k-1 j=1 1 + i 2j for k = 1, ..., N ,
(here and after the product over an empty set is by convention equal to 1), we can find a sequence σ 1 ,..., σ N ∈ {0, 1} such that

N k=1 σ k k k-1 j=1 1 + i 2j ≥ 1 π N k=1 1 k k-1 j=1 1 + 1 4j 2 1/2 ≥ 1 π N k=1 1 k ≥ 1 π ln N . ( 4 
)
Now we impose the sequence (a k ) k=1,N to satisfy the following properties:

(i) (a k ) k=1,N is component-wise lacunary; (ii) If σ k = 1, then a k (1) + 1≤j≤k-1 ε j a j (1) λ a k (2) + 1≤j≤k-1 ε j a j (2) < 1 4 N for all ε 1 , ..., ε k-1 ∈ {-1, 0, 1} ; (iii) If σ k = 0, then a k (2) + 1≤j≤k-1 ε j a j (2) λ a k (1) + 1≤j≤k-1 ε j a j (1) < 1 4 N for all ε 1 , ..., ε k-1 ∈ {-1, 0, 1} .
(By convention the sum over an empty set is equal to 0.) Such a sequence can be easily constructed by induction on k: if a 1 ,..., a k-1 are chosen, then we choose a k (2) much larger than a k (1), or a k (1) much larger than a k (2), depending on whether σ k = 1 or σ k = 0 respectively. Since λ is decreasing to 0, we can satisfy in this way the conditions (ii), respectively (iii). Also, the condition (i) can be easily satisfied.

We now return to the proof of Theorem 2. Note that

g N L ∞ = N k=1 1 + 1 k 2 1/2
≤ e π 2 /12 < 3, and also G N ≥ 0 and

G N L 1 = 1. ( 5 
)
Using ( 1) and ( 2), we get

G N * g N (t) = N k=1 1 + i 2k cos t, a k = 1 + N k=1 i 2k cos t, a k k-1 j=1 1 + i 2j cos t, a j . ( 6 
)
Consider the sets

A : = N k=1 σ k =1 {ε 1 a 1 + ... + ε k a k | ε 1 , ..., ε k ∈ {-1, 0, 1} , ε k = 0} , B : = N k=1 σ k =0 {ε 1 a 1 + ... + ε k a k | ε 1 , ..., ε k ∈ {-1, 0, 1} , ε k = 0} .
Since the sequence (a k ) k=1,N is component-wise lacunary, we have

({0} × Z) ∩ (A ∪ B) = ∅, (Z× {0}) ∩ (A ∪ B) = ∅ and A ∩ B = ∅, while clearly |A ∪ B| ≤ 3 N . In particular, |A| ≤ 3 N , |B| ≤ 3 N .
Using now ( 6) and ( 4), we obtain

|P A G N * g N (0)| = N k=1 iσ k 2k k-1 j=1 1 + i 2j ≥ 1 2π ln N , (7) 
where P A is the linear operator on trigonometric polynomials, satisfying P A e i t,n = e i t,n if n ∈ A and P A e i t,n = 0 otherwise. On the other hand, according to our assumption and (5), we can find

f 0 , f 1 , f 2 ∈ S λ (T 2 ), satisfying g N = f 0 + ∂ 1 f 1 + ∂ 2 f 2 , with the properties that ∂ 2 f 2 ∈ L ∞ (T 2 ) and f 0 S λ + f 1 S λ + f 2 S λ + ∂ 2 f 2 L ∞ ≤ 3C.
Let us note that

P A G N * g N = P A G N * f 0 + P A G N * ∂ 1 f 1 + P A G N * ∂ 2 f 2 . ( 8 
)
We next estimate each term on the right hand side of (8).

For the second term, we have:

P A G N * ∂ 1 f 1 L ∞ = G N * P A ∂ 1 f 1 L ∞ ≤ G N L 1 P A ∂ 1 f 1 L ∞ = P A ∂ 1 f 1 L ∞ ≤ |A| max n∈A ∂ 1 f 1 (n) = |A| max n∈A |n(1)| f 1 (n) ≤ |A| max n∈A |n(1)| λ (|n|) f 1 S λ ≤ |A| max n∈A |n(1)| λ (|n (2)|) f 1 S λ ≤ 3 N 4 -N 3C < 3C,
where we have used (ii).

For the third term, we have:

P A G N * ∂ 2 f 2 L ∞ = G N * ∂ 2 f 2 -P B G N * ∂ 2 f 2 L ∞ ≤ G N * ∂ 2 f 2 L ∞ + P B G N * ∂ 2 f 2 L ∞ ≤ G N L 1 ∂ 2 f 2 L ∞ + G N L 1 P B ∂ 2 f 2 L ∞ = ∂ 2 f 2 L ∞ + P B ∂ 2 f 2 L ∞ ≤ 3C + |B| max n∈B ∂ 2 f 2 (n) = 3C + |B| max n∈B |n(2)| f 2 (n) ≤ 3C + 3 N max n∈B |n(2)| λ (|n|) f 2 S λ ≤ 3C + 3 N max n∈B |n(2)| λ (|n (1)|) f 2 S λ ≤ 3C + 3 N 4 -N 3C < 6C,
where we have used the identity G N = P A G N + P B G N and (iii). Finally, the first term is easier to handle. We have:

P A G N * f 0 L ∞ = G N * P A f 0 L ∞ ≤ P A f 0 L ∞ ≤ |A| max n∈A f 0 (n) ≤ |A| max n∈A λ (|n|) f 0 S λ ≤ |A| max n∈A |n(1)| λ (|n(2)|) f 0 S λ ≤ 3 N 4 -N 3C < 3C.
These estimates together with (8) give us

P A G N * g N L ∞ ≤ 3C + 6C + 3C = 12C,
which contradicts (7), since ln N > 25πC.

Remark. (1) Similarly, a closer look to the proof in [START_REF] Wojciechowski | On the representation of functions as a sum of derivatives[END_REF] gives the following analogue of Theorem 2 in the case of L 1 .

Theorem 4 Suppose λ : N → (0, ∞) is decreasing to 0. There exists g ∈ L 1 (T 2 ) such that there are no f

0 , f 1 , f 2 ∈ S λ (T 2 ) with ∂ 2 f 2 ∈ L 1 (T 2 ) and g = f 0 + ∂ 1 f 1 + ∂ 2 f 2 .
(2) The d-dimensional case, with d ≥ 3, can be easily obtained from Theorem 2. More precisely, we have

Theorem 5 Let d ≥ 2. Suppose λ : N → (0, ∞) is decreasing to 0. There exists g ∈ L ∞ (T d ) such that there are no f 0 , f 1 , f 2 ,..., f d ∈ D T d with f 0 , f 1 , f 2 ∈ S λ T d , ∂ 2 f 2 ∈ L ∞ (T d ) and g = f 0 + ∂ 1 f 1 + ∂ 2 f 2 + ... + ∂ d f d . Indeed, consider a g ∈ C ∞ (T 2 ) and ψ ∈ C ∞ (T d-2
) such that 0 ≤ ψ ≤ 1 and T d-2 ψ = 1. If the above result were not true, we could find f

0 , f 1 , f 2 ,..., f d ∈ D T d such that g ⊗ ψ = f 0 + ∂ 1 f 1 + ∂ 2 f 2 + ... + ∂ d f d and f 0 S λ( T d ) + f 1 S λ( T d ) + f 2 S λ( T d ) + ∂ 2 f 2 L ∞ (T d ) ≤ C g L ∞ (T 2 ) .
Without loss of generality, we can suppose that f 0 , f 1 , f 2 ,..., f d are smooth. Integrating this equation in the last d -2 coordinates, we reduce the problem to the 2-dimensional case: f j (t, τ ) dτ , for j = 0, 1, 2,

g = f 0 + ∂ 1 f 1 + ∂ 2 f
satisfy f 0 S λ (T 2 ) + f 1 S λ (T 2 ) + f 2 S λ (T 2 ) + ∂ 2 f 2 L ∞ (T 2 ) ≤ C g L ∞ (T 2 ) .
Here, we have used the fact that, for all n ∈ Z 2 , f j (n ) = f j (n , 0) ≤ λ (|(n , 0)|) f j S λ( T d ) = λ (|n |) f j S λ( T d ) .

(3) Using Lemma 3, and adapting the technique in [START_REF] Kazaniecki | Ornstein's non-inequalities: Riesz product approach[END_REF], we can obtain similar anisotropic Ornstein type inequalities adapted to the L ∞ case. We give below an example. For any ε > 0, there exists a trigonometric polynomial f on T 2 , depending on ε, such that

ε ∂ 3 1 ∂ 2 2 f L ∞ ≥ ∂ 4 1 f L ∞ + ∂ 2 1 ∂ 4 2 f L ∞ + ∂ 1 ∂ 6 2 f L ∞ + ∂ 8 2 f L ∞ .

2

 2 wheref j (t) := T d-2
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