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Abstract

The paper tackles the problem of joint deconvolution and segmentation of textured images. The images are
composed of regions containing a patch of texture that belongs to a set of K possible classes. Each class is described
by a Gaussian random field with parametric power spectral density whose parameters are unknown. The class labels
are modelled by a Potts field driven by a granularity coefficient that is also unknown. The method relies on a
hierarchical model and a Bayesian strategy to jointly estimate the labels, the K textured images in addition to
hyperparameters: the signal and the noise levels as well as the texture parameters and the granularity coefficient. The
capability to estimate the latter is an important feature of the paper. The estimates are designed in an optimal manner
as a risk minimizer that yields the marginal posterior maximizer for the labels and the posterior mean for the rest of the
unknowns. They are computed based on a convergent procedure from samples of the posterior obtained through an
advanced MCMC algorithm: Perturbation-Optimization step and Fisher Metropolis-Hastings step within a Gibbs loop.
Various numerical evaluations provide encouraging results despite the strong difficulty of the problem.
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1 Introduction: motivation and state of the art
This paper addresses the complex problem of textured
image segmentation that is a subject of importance in
various applications [1, 2] (see also [3, 4]). In practice,
observations are often affected by blur (due to finite reso-
lution of observation systems) and by noise (due to various
sources of error). However, existing approaches do not
account for these issues and focus only on segmenta-
tion. On the contrary, this paper addresses the problem
of textured image segmentation from indirect (blurred
and noisy) observations. It tackles the problem of joint
deconvolution-segmentation of textured images, and to
the best of our knowledge, no other paper has done any
work in this area.
Image segmentation is a computer vision/image pro-

cessing problem [5] consisting in partitioning an image
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into groups of adjacent pixels that have a certain homo-
geneity property (grey level, colour or texture) or that
compose an object of interest. Since the problem has been
of great interest for decades, the literature is extensive.
The most straightforward segmentation method is

thresholding; however, it is seldom applicable, since it is
only adapted for piecewise constant images, not affected
by blur or noise. In the class of region growing meth-
ods, Zhang et al. [6] present a seeded image segmentation
based on a heat diffusion process, Ugarriza et al. [7]
describe an unsupervised region growing and multires-
olution merging algorithm and Alpert et al. [8] present
a bottom-up aggregation approach. Partial differential
equation-based techniques have also been employed. For
instance, Chan and Mulet [9] introduce an active contour
without edges method for object segmentation, based on
level sets, curve evolution, and the Mumford-Shah model.
As for the watershed approach, Malik et al. [10] present
a normalized cut approach relying on a local measure
of similarity of the textural features in a neighbourhood
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of the pixel, while Grady [11] uses a small number of
predefined labels and computes a probability for each
unlabelled pixel. The final label is the one maximizing this
probability. Sinop and Grady [12] unify the graph cuts
and the random walker methods in a common frame-
work, based on Lq norms minimization for seeded image
segmentation.
One of the first approaches for textured image seg-

mentation [13] is based on using as texture features the
moments of the image, computed on small windows. The
more recentmethod in [14] consists in computing features
based on the Discrete Wavelet Transform of blocks of the
image, evaluating the difference between these features
on adjacent blocks and processing to obtain a one-pixel
thick contours. This method does not provide a label field;
thus, it gives no information about which texture belongs
to which region. Another method providing texture edges
[15] uses active contours and the patch-based approach
for texture analysis. Textured image segmentation is also
achieved in [16], based on features extracted from the
Fourier transform of the learning textures. A significant
method for image segmentation based on both grey level
(intervening contour framework) and texture (textons)
is presented in [10]. The segmented image is obtained
using a normalized cut approach. Mobahi et al. [17]
model a homogeneous textured region of an image by a
Gaussian density and the region boundaries by adap-
tive chain codes. The segmentation is obtained using a
clustering process. Another approach devoted to strongly
resembling textures is given in [18]. The goal is to accu-
rately characterize the textures, and this is achieved by
combining a collection of statistics and filter responses.
This local information is then used in an aggregation
process to determine the segmentation. A three-stage seg-
mentation method is presented in [19] and relies on char-
acterizing both textured and non-textured regions using
local spectral histograms. Texel-based image segmenta-
tion is achieved in [20] by identifying the modes in the
probability density function of region properties.
A very significant class of segmentation methods relies

on a probabilistic model-based formulation. Geman et al.
[21] present an approach for image partitioning into
homogeneous regions and for locating edges based on dis-
paritymeasures. In [22], an image segmentationmethod is
developed based onMonte CarloMarkov Chain (MCMC)
and the K adventurers algorithm by integrating cluster-
ing and edge detection in the proposal probabilities. Deng
and Clausi [23] introduced a weighted Markov random
field model that estimates the model parameters and thus
performs unsupervised image segmentation. Among the
probabilistic methods, the graph partitioning approach is
very popular. Felzenszwalb and Huttenlocher [24] uses
a graph-based image model and measures the evidence
for a boundary between two regions, while Boykov and

Funka-Lea [25] describe the basic framework for efficient
object extraction from multi-dimensional image data
using graph cuts. One of the most commonly used models
for the labels in the probabilistic approaches is the Potts
model to favour homogeneous regions. The pixels that
belong to different regions are considered independent of
each other (given the labels). Within a region, the pix-
els are either independent or in a Markovian dependency,
most often Gaussian or conditionally Gaussian. This type
of image model is mostly used for piecewise constant
or piecewise smooth images. It is explored by [26] (see
also [27]) for image segmentation by introducing a site-
dependent external field. Barbu and Zhu [28] present a
method based on a generalized Swendsen-Wang form. It
is based on an adjacency graph and computes probabilities
for each edge and performs graph clustering and graph
flipping (instead of single pixel flipping as in the case of the
Gibbs sampler). Pereyra et al. [29] propose a method for
jointly estimating the Potts parameter using a likelihood
free Metropolis-Hastings algorithm.
However, none of the aforementioned segmentation

approaches is formulated in the context of indirect observa-
tions. Interesting works [29–37] are the Bayesian methods
for image segmentation from indirect data (inversion-
segmentation) also based on Potts model for the labels.
These developments have been an important source of
inspiration but they are devoted to piecewise constant or
piecewise smooth images and not adapted for textures.
On the contrary, the present work tackles the question of
textured image segmentation, from indirect (blurred and
noisy) data. It proposes a solution for joint deconvolution-
segmentation of textured images, and to the best of our
knowledge, it is a first attempt to solve the problem. In
addition, the approach also includes the estimation of
the hyperparameters: the signal and the noise levels as
well as the texture parameters and the Potts coefficient.
The capability to estimate the latter is an important fea-
ture of the paper. The solution is designed by means of
a Bayesian strategy, in an optimal scheme. It yields the
decision/estimation as the posterior maximizer or mean
depending on the type of variable. They are computed
based on a convergent procedure from samples of the pos-
terior obtained through an MCMC algorithm. These two
properties, optimality and convergence, are also crucial
features of the proposed method.

2 Method: probabilistic modelling
In this work, y represents the blurred and noisy observa-
tion of the original image z and � represents the hidden
label field. y, z and � are column vectors of size P (the total
number of pixels). The unobserved image z is composed
of a small number of regions, each of these regions con-
sisting in a patch of texture. The texture patches belong to
one of K given texture classes.
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Remark 1 There is no constraint specifying that all the
texture classes must be represented in the image. Conse-
quently, K only represents an upper bound of the number
of classes that will be present in the estimation.

2.1 Label model
The label set � = [

�p, p = 1, . . .P
]
naturally takes its val-

ues in {1, . . .K}P and is considered to follow a Potts model
[38, 39] in order to favour compact regions. It is driven by
the granularity coefficient β ∈ R+ that tunes the mean
size of these regions. For a configuration �, the probability
reads:

Pr[ �|β]= Z(β)−1 exp
[

β
∑

r∼s
δ(�r , �s)

]

, (1)

where Z is the normalization constant (partition func-
tion), ∼ stands for the neighbour relationship in a 4-
connectivity system and δ is the Kronecker function,
δ
(
k, k′) is 1 if k = k′ and 0 otherwise.

Remark 2 Let us note σ(�) = ∑
p∼q δ(�p; �q). It is the

number of pairs of neighbour pixels with identical label.
The total number of pairs of neighbour pixels minus σ(�) is
hence the number of “active contours” and then the length
of the contours of the label image. It is also the zero-norm
of a “gradient” of the label image.

An important feature of the proposed method is the
capability to estimate the parameter β . To this end, the
partition function Z is a crucial function since it is
involved in the likelihood of β attached to any configura-
tion. Its analytical expression is unknown1 and it is a huge
summation over the KP possible configurations. However,
based on stochastic simulations, we have precomputed it
for several numbers of pixel P and numbers of class K (see
Appendix A and our previous papers [40, 41]). The reader
is invited to consult papers such as [29, 42] for alternatives.
See also [43–46] for complementary results.

2.2 Texture model
The textured images xk ∈ CP , for k = 1, . . .K are mod-
elled as zero-mean stationary Gaussian random fields with
covariance Rk :

f (xk|Rk) = (2π)−P det(Rk)
−1 exp

(
−‖xk‖2R−1

k

)
.

Remark 3 We address the case of textured images hav-
ing grey level with the same mean and similar variance
since it is particularly challenging. However, the method is
also suited for textured images having different mean and
variance grey levels.

For notational convenience, Rk is defined through a
scale parameter γk and a structure matrix �k , that is
to say R−1

k = γk�k . Since xk is a stationary field, Rk
is a Toeplitz-block-Toeplitz (TbT) matrix and by Whit-
tle approximation, it becomes Circulant-block-Circulant
(CbC), meaning that the previous expression becomes
separable in the Fourier domain:

f (xk|Rk) =
P∏

p=1
(2π)−1γkλk,p exp

[
−γkλk,p|◦xk,p|2

]
(2)

where the ◦xk,p for p = 1, . . .P are the Fourier coeffi-
cients of the image xk and the λk,p for p = 1, . . .P are the
eigenvalues of �k . Thus, as a physical interpretation, λ−1

k
describes the Power Spectral Density (PSD) of xk in dis-
crete form.More specifically, γkλk,p is the inverse variance
of ◦xk,p.
We have chosen a parametric model for the PSD, of

Lorentzian form:

λ−1(νx, νy, θ) = π2 ux uy
[
1 + S2x

] [
1 + S2y

]
(3)

with

Sx = (
νx − ν0x

)
/ux and Sy =

(
νy − ν0y

)
/uy

where νx / νy are the horizontal/vertical frequency and
θ =

[
ν0x , ν0y ,ux,uy

]
is the shape parameter. The param-

eters ν0x , ν0y are the central frequencies and ux,uy are the
PSD widths. Nevertheless, any other parametric form can
be used for the PSD, e.g., Gaussian and Laplacian.

Remark 4 The variables νx, νy ∈ [−0.5, 0.5]2 are the
continuous reduced frequencies, while (νm, νn) are the dis-
cretized reduced frequencies. We associate the frequency
pair (νm, νn) to index p. Then, λp(θ) = λ(νm, νn, θ).

2.3 Imagemodel
The process of obtaining the image z containing the
textured patches, starting from the full textured images
xk , k = 1, . . .K and the labels �, can be visualized by
the schematic in Fig. 1. This image forming process is
mathematically formalized as:

z =
K∑

k=1
Sk(�) xk (4)

where Sk(�) are P × P diagonal binary matrices obtained
based on the labels �. These matrices extract from the tex-
tured image xk the pixels with label k and replace the other
pixels with 0. They are zero-forcing matrices defined by:

Sk(�) = diag
{
δ(�p, k), p = 1, . . .P

}

with entries 1 at pixel p when �p = k and 0 elsewhere.
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Fig. 1 Image forming process (see Eq. (4)) in a case with K = 3 texture classes. Left: true label �
 . Central panel: three images x

1, x


2 and x

3 (top) and

extracted parts S1(�
)x

1, S2(�


)x

2 and S3(�
)x


3 (bottom). Right: true image z


Remark 5 Let us consider Ik = {
p | �p = k

}
the set of

sites having label k. Then, these sets for k = 1, . . .K encode
a repartition of the set of pixel indices, thus having the
properties:

• Are disjoint, i.e., Ik ∩ Il = ∅, for l �= k
• Cover the entire lattice, i.e., ∪kIk = {1, . . .P}
• May be empty

In terms of the extraction matrices, these properties are
summarized by

∑K
k=1 Sk = IP, the identity matrix of

size P.

2.4 Observation systemmodel
Now we turn to the observation system that is modelled
as a linear and invariant transform. It is accounted for
through a P × P convolution matrix with a TbT structure
denoted by H. It becomes CbC by circulant approxi-
mation, and its eigenvalues are defined by the Fourier
transfer function

◦
hp. Any function could be introduced

(Gaussian, Lorentzian, Airy,. . . ), and the considered one is
a Laplacian:

◦
hnm = exp

[−w−1 (|νn| + |νm|) /2
]

centred in the (0, 0) frequency with width w. This is only
one of the countless models that can be used.

2.5 Noise model
The noise is considered to be additive, zero-mean, white,
and Gaussian of inverse variance γn. Based on this model,
the density of the data given the image z and the noise
parameter γn, reads:

f (y|z, γn) = (2π)−P γ P
n exp

[−γn‖y − Hz‖2] (5)

that is to say the likelihood.

2.6 Hierarchical model
Based on the variables above, the hierarchy for the model
in preparation for the segmentation problem from blurred
and noisy data can be established and it is graphically
represented in Fig. 2. Based on the variable dependen-
cies encoded in this figure, the joint distribution can be
expressed:

f (y, �, x1...K ,γn, γ1...K , θ1...K ) = f (y|γn, �, x1...K )

Pr [ �|β]
K∏

k=1
f (xk|θk , γk)

f (β) f (γn)
K∏

k=1
f (θk)

K∏

k=1
f (γk) .

(6)

Fig. 2 Hierarchical model: the round/square nodes show the
estimated/given variable. The xk are the textured images (Gaussian
density) and the θ k , γk are the texture parameters. � is the label set
(Potts field) and β is the label parameter (granularity coefficient). The
observed image is y. See also the notation table (end of the paper)
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In order to complete the probabilistic description, the next
section introduces the hyperparameter densities.

2.7 Hyperparameter models
Regarding the precision parameters γk , k = 1, . . .K
and γn, it can be noticed that in the model for the
textured images xk (Eq. (2)) and for the observation
y (Eq. (5)), they intervene as precision parameters in
Gaussian conditional densities; hence, the Gamma den-
sities G

(
γ ;α0,β0) are conjugate forms. Furthermore,

little prior information is available on these parame-
ters, so uninformative Jeffreys prior are used, by setting(
α0,β0) → (0, 0).
Otherwise, the dependency of the likelihood w.r.t. the

parameter θk is very complicated, meaning that there is
no conjugate form. Moreover, the lack of prior informa-
tion suggests the use of the uniform density between a
minimum and a maximum value: f (θk) = U[θmk ,θMk

](θk).
When it comes to β , a conjugate prior is not available,

given the expression of the partition function Z(β). A
uniform prior on an interval [ 0,B] is considered as a rea-
sonable choice: f (β) = U[0,B](β) where B is defined as the
maximum possible value of β .

3 Method: Bayesian formulation
3.1 Estimation
The Bayesian strategy designs an estimator based on a loss
function that quantifies the discrepancy between the true
value of a parameter and an estimated one. It then relies on
a risk that is the mean value of the loss function, the mean
being considered under the joint distribution (6) that is to
say the distribution of the unknown parameters and the
data. The optimal estimator is defined as the function of
the data that minimizes the risk. It is naturally different
for the various types of parameters and choices of loss
function.

• Regarding the labels � (discrete parameters), we
resort to a binary loss function and the estimates are
the marginal posterior maximizers.

• Regarding the continuous parameters β , γn, the γk ,
the θk and the xk , we resort to the quadratic loss
function and the estimates are the posterior means.

Remark 6 A specificity of the chosen loss functions is
separability, resulting in marginal estimates. It allows
for relatively fast computations but with possible limi-
tations regarding image quality. Alternatives could rely
on non-separable loss function and non-marginal esti-
mates, for instance (joint) posterior maximizer. Numerical
implementation could then rely on non-guaranteed opti-
mization algorithm (e.g. block iterative conditional mode)
or on computationally intensive algorithm (e.g. simulated
annealing).

An estimate ẑ of the image z can be obtained based
on the estimated labels �̂ and textured images x̂k based
on Eq. (4) as follows:

ẑ =
∑

k
Sk (̂�) x̂k (7)

each extractionmatrix being based on the label estimate �̂.

3.2 Posterior
The posterior is proportional to the joint distribution (6)
and is fully specified based on the formation model (4)
for the image z, the model (2) for the textured images xk ,
the Potts model (1) for the labels �, the model (5) for the
observation y and the priors above for β , for γn, for the γk
and θk .

f (�,x1...K , γn, γ1...K , θ1...K ,β|y) ∝

exp
[

−γn‖y − H
∑

k
Sk(�)xk‖2

]

Z(β)−1 exp
[

β
∑

r∼s
δ(�r , �s)

]

∏

k

[
det(�k(θk))

−1 exp
(
−γk‖xk‖2�k(θk)

)]

∏

k

[
γ

αk+P−1
k exp (−γkβk)

]

γ αn+P−1
n exp (−γnβn) U[θmk ,θMk

] (θk) U[0,B](β) .

(8)

This distribution summarizes all the information about
the unknowns contained by the data and the prior models.

3.3 Computing—posterior conditionals
Due to the sophisticated form of the posterior, the esti-
mates (marginal posterior maximizers or means) can-
not be calculated; consequently, they will be numerically
extracted. Stochastic samplers seem adequate and the lit-
erature on the subject is abundant and varied [47–50].
More specifically, a (block) Gibbs loop is particularly
appealing since it enables to split the global sophisticated
problem in several far simpler sub-problems. It requires
to sequentially sample each variable, under its conditional
posterior. These distributions are described in the next
section.

4 Algorithm: sampling aspects
This section describes the conditional posterior for each
unknown parameter in order to implement a Gibbs
sampler. In particular, it details the cumbersome task of
sampling the full textured images (Section 4.4) and the
labels (Section 4.5). These two sampling processes repre-
sent the major algorithmic challenges of our approach.
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Each conditional posterior can be deduced from the
joint posterior (8) by picking the factors that are function
of the considered parameter.

4.1 Precision parameters
Regarding the noise parameter γn and the texture scale
parameters γk , from (8), we have:

γn ∼ γ
α0
n +P−1

n exp−γn
[
β0
n + ‖y − Hz‖2] ,

γk ∼ γ
α0
k +P−1

k exp−γk
[
β0
k + ‖xk‖2�k(θk)

]
.

They must be sampled under Gamma densities G(γ ;α,β)

with respective parameters:

α = α0
n + P and β = β0

n + ‖y − Hz‖2

for the noise parameter γn and

α = α0
k + P and β = β0

k + ‖xk‖2�k(θk)

for the texture parameters γk . As Gamma variables, they
can be straightforwardly sampled. In addition, given the
hierarchical structure (see Fig. 2), they are mutually (a
posteriori) independent.

4.2 Shape texture parameters
Regarding the shape parameters θk of the textured image
PSD, the problem is made far more complicated by the
intricate relation between the density, the PSD and the
parameter θk ; see Eqs. (2) and (3). As a consequence, the
conditional posterior has a non-standard form:

θk ∼ U[θmk ,θMk ](θk)
∏

p
λp(θk) exp−γkλp(θk)|◦xk,p|2

nevertheless, it can be sampled using a Metropolis-
Hastings (MH) step2. Basically, it consists in drawing a
proposal based on a proposition law, evaluating an accep-
tance probability, and then, at random according to this
probability, setting the new value as the proposal (accep-
tation) or as the current value (duplication). There are
numerous options in order to formulate a proposition law,
and both the convergence rate and the mixing proper-
ties are influenced by its adequacy to the (conditional)
posterior. Thus, designing a proposition law that embeds
information about the posterior will significantly enhance
the performances. In this context, the directional Random
Walk MH (RWMH) algorithm taking advantage of first-
or second-order derivatives of the posterior seems rele-
vant. A standard case is theMetropolis-adjusted Langevin
algorithm (MALA) [51], which takes advantage of the pos-
terior derivative. The preconditioned MALA [52] and the
quasi-Newton proposals [53] exploit the posterior curva-
ture. More advanced versions rely on the Fisher matrix
(instead of the Hessian) and leads to an efficient sampler

called the Fisher-RWMH: [54] proposes a general state-
ment and our previous paper [55] (see also [56]) focuses
on texture parameters.
Explicitly, from the current value θc, the algorithm for-

mulates the proposal θp:

θp = θc + 1
2
ε2 I−1(θ c)L′(θ c) + ε I(θ c)

−1/2 u

where I(θ) is the Fisher matrix, L(θ) is the log of the
conditional posterior and L′(θ) its gradient, ε is a tuning
parameter and u ∼ N (0, I) a standard Gaussian sample.

4.3 Potts parameter
The granularity coefficient β conditionally follows an
intricate density also deduced from (8):

β ∼ Z(β)−1 exp
[
β
∑

p∼q
δ(�p; �q)

]
U[0,B](β) .

The sampling is a very difficult task first of all because
the density does not have a standard form. Moreover, the
major problem is that Z(β) is intractable, so the density
cannot even be evaluated for a given value of β .
To overcome the obstacle, the partition function Z(β)

has been precomputed on a fine grid of values for β , rang-
ing from β = 0 to β = B = 3, with a step of 0.01, for
several numbers of pixel P and numbers of class K. Details
are given in Annex 6. It is therefore easy to compute the
cumulative density function F(β) by standard numerical
integration / interpolation. Then, it suffices to sample a
uniform variable u on [0, 1] and to compute β = F−1(u) to
obtain a desired sample. So, this step is inexpensive (since
the table of values of Z(β) is precomputed).

Remark 7 Although it allows for very efficient com-
putations, this approach has a limitation: Z must be
precomputed for the considered number of pixel P and
class K.

The procedure is identical to the one presented in our
previous papers [40, 41, 57]. The reader is invited to
consult [29, 42–46] for alternatives and complementary
results.

4.4 Textured image
Remark 8 To improve the readability, in the following,

we will use the simplified notation �k = �k(θk).

The textured image xk has a Gaussian density, deduced
from (8):

xk ∼ exp−
[

γn‖y − H
∑

l
Slxl‖2+ γk‖xk‖2�k

]

(9)

and it is easy to show that the mean μk and the covariance
�k write:
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�−1
k = γnS†kH

†HSk + γk�k

μk = γn�kS†kH
†ȳk

where ȳk = y − H
∑

l �=k Slxl. This quantity is founded on
the extraction of the contribution of the image xk from the
data. More specifically, ȳk relies on the subtraction from
the observations y of the convolution of all the parts of the
image z that are not labelled k.
However, the practical sampling of this Gaussian den-

sity is a thorny issue due to the high dimension of the
variable. Usually, sampling a Gaussian density requires
handling the covariance or the precision, for instance fac-
torization (e.g., Cholesky), diagonalisation, or inversion,
which are impossible here. This could be possible for
special structures, e.g., sparse or circulant. Here, �k , H
and by extension H†H are CbC; however, the presence
of the Sk breaks the circularity: �k is not diagonalizable
by FFT and, consequently, the sampling of xk cannot be
performed efficiently in the Fourier domain.
Nevertheless, the literature accounts for alternatives

based on the strong links between matrix factorization,
diagonalization, inversion, linear system and optimiza-
tion of quadratic criteria [58–62]. We resort here to our
previous work [61] (see also [63]) based on a perturbation-
optimization (PO) principle: adequate stochastic pertur-
bation of a quadratic criterion and optimization of the
perturbed criterion. It is shown that the criterion opti-
mizer is a sample of the target density. It is applicable if the
precision matrix and the mean can be written as a sum of
the form:

�−1
k =

N∑

n=1
Mt

nC−1
n Mn and μk = �k

N∑

n=1
Mt

nC−1
n mn

By identification, with N = 2:
⎧
⎪⎨

⎪⎩

M1 = HSk
C1 = γ −1

n IP
m1 = ȳk

⎧
⎪⎨

⎪⎩

M2 = IP
C2 = γ −1

k �−1
k

m2 = OP

4.4.1 Perturbation
The perturbation phase of this algorithm consists in draw-
ing the following Gaussian samples:

ξ1 ∼ N (m1,C1) and ξ2 ∼ N (m2,C2)

The cost of these sampling is not prohibitive: ξ1 is a real-
ization of a white noise and ξ2 is a realization of the prior
model for xk and it is computed by FFT.

4.4.2 Optimization
In order to obtain a sample of the image xk , the following
criterion must be optimized w.r.t. x:

Jk(x) = γn
∥
∥ξ1 − HSkx

∥
∥2 + γk

∥
∥ξ2 − x

∥
∥2

�k
.

For notational convenience, let us rewrite:

Jk(x) = x†Qkx − 2x†qk + Jk(0)

where the matrix Qk = γnS†kH
†HSk + γk�k is half the

Hessian (and the precision matrix) and the vector qk =
γnS†kH

†ξ1 +γk�
−1
k ξ2 is the opposite of the gradient at the

origin. The gradient at x itself is: gk = 2(Qkx − qk).
Theoretically, there is no constraint on the optimization

technique to be used and the literature on the subject is
abundant [64–66]. We have only considered algorithms
that are guaranteed to converge (to the unique minimizer)
and among them the basic directions:

• Gradient descent,
• Conjugate gradient descent.

We have first used the conjugate gradient direction,
since it is more efficient especially for a high-dimension
problem and a quadratic criterion. However, we have
experienced convergence difficulties, making the overall
algorithm very slow. In practice, the step length at each
iteration was extremely small, probably due to condi-
tioning issues. Consequently, the differences between the
iterates were almost insignificant. The solution relies on a
preconditioner. It has been defined as a CbC approxima-
tion of the inverse Hessian of Jk :

�k =
(
γnH†H + γk�k

)−1
/2 (10)

obtained by eliminating the Sk matrix from Qk and cho-
sen for computational efficiency. It is used for both of the
aforementioned directions:

• Preconditioned gradient descent,
• Preconditioned conjugate gradient descent.

In this context, the two methods have yielded similar
results, and finally, we have focused on the preconditioned
gradient.
The second ingredient that is necessary is the step

length s in the considered direction, at each iteration. Here
again, a variety of strategies is available. We have used an
optimal step that is explicitly given:

s = gk†�
†
kgk

gk†�
†
kQk�kgk

and efficiently computable.

4.4.3 Practical implementation
The algorithm requires at each iteration the computation
of the preconditioned gradient and the step length. Finally,
the required computations for performing the optimiza-
tion are the vector qk and the products of a vector by the
matrices �k andQk .
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• The vector qk writes:

qk = γn S†k H
†ξ1︸ ︷︷ ︸
FFT︸ ︷︷ ︸
ZF

+γk �−1
k ξ2︸ ︷︷ ︸
FFT

(11)

and thus efficiently computed through a FFT and
zero-forcing (ZF).

• The productQkx writes:

Qkx = γn S†k H
†H︸︷︷︸

FFT

Skx︸︷︷︸
ZF︸ ︷︷ ︸

FFT︸ ︷︷ ︸
ZF

+γk �kx︸︷︷︸
FFT

and thus also efficiently computed through a series of
FFT and ZF.

• Regarding �kgk , since the matrix �k is CbC, the
product can also be efficiently computed by FFT.

The zero-forcing process is achieved in the spatial domain
(it amounts to setting to zero some pixels of images),
while the costly products by matrices are performed in the
Fourier domain (all of them by FFT).

4.5 Labels
The label set has a multidimensional categorical distribu-
tion:

� ∼ exp
[

β
∑

r∼s
δ(�r , �s) − γn‖y − H

∑

k
Sk(�)xk‖2

]

and it is a non-separable and non-standard form, so its
sampling is not an easy task. A solution is to sample the �p
one by one conditionally on the others and on the rest of
the variables, in a Gibbs scheme.
To this end, let us introduce the notation zpk for the

image with all its pixels identical to z except for pixel
p. The pixel p in zpk is the pixel p from xk . Let us note
Ep,k = ∥

∥y − Hzpk
∥
∥2. This error quantifies the discrepancy

between the data and the class k regarding pixel p.
Sampling a label �p0 requires its conditional probability.

A precise analysis of the conditional distribution for �p0
yields:

Pr(�p0 = k|
) ∝ exp

⎡

⎣β
∑

r;r∼p0
δ(�r , k) − γnEp0,k

⎤

⎦

for k = 1, . . .K . This computation is performed up to a
multiplicative constant, which can be determined know-
ing that the probabilities sum to 1.
To compute these probabilities, we must evaluate the

two terms of the argument of the exponential function,
at pixel p0. The first term is the contribution of the prior
and it can be easily computed for each k by counting the
neighbours of pixel p0 having the label k. Let us now focus

on the second term, Ep,k . To write this term in a more
convenient form, we introduce:

• A vector 1p ∈ R
P : its p-th entry is 1 and the other is 0.

• A quantity p,k ∈ R that records the difference
between the p-th pixel of the image z and the one of
image xk : p,k = 1

†
p(z − xk).

We then have zpk = z − p,k1p, so Ep,k writes:

Ep,k = ∥
∥y − H

(
z − p,k1p

)∥∥2

= ∥
∥(y − Hz) − p,kH1p

∥
∥2

= ȳ†ȳ + 2
p,k1

†
pH†H1p − 2p,k1

†
pH†ȳ

(12)

where ȳ = y − Hz. Then, to complete the description, let
us analyse each term.

1. The first term ȳ†ȳ does not depend on p or k.
Consequently, its value is not required in the
sampling process and it can be included in a
multiplicative factor.

2. The term 1
†
pH†H1p = ‖H1p‖2 does not depend on

p due to the CbC form of theHmatrix. Moreover,
this norm only needs to be computed once for all,
since theHmatrix does not change throughout the
iterations. In fact, this norm amounts to the sum
∑

q|
◦
hq|2.

3. Finally, in the third term 1
†
pH†ȳ, the productH†ȳ is a

convolution efficiently computable by FFT and the
product with 1

†
p selects the pixel p. Under this form,

the computation would not be efficient sinceH†ȳ
should be recomputed at each iteration. A far better
alternative is to updateH†ȳ after updating each label.

5 Results and discussion
The problem of texture segmentation has a considerable
degree of difficulty, especially in the present case, where
(i) the data are affected by blur and noise, (ii) the texture
parameters are unknown and (iii) the granularity coeffi-
cient, the signal and the noise levels are also unknown.
The previous sections provide a detailed description of
our method, and this section presents numerical results,
as follows.

1. First, implementation and practical considerations
are described.

2. A study is then given for different image topologies in
various combinations of blur and noise to assess the
method versatility and identify the limitations.

3. Moreover, a posterior statistics analysis is given in
order to evaluate the associated uncertainty.
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5.1 Implementation and practical considerations
The method has been implemented3 as shown in
Algorithm 1. Under different scenarios, the algorithm
has been run several times from identical and different

Algorithm 1: Deconvolution-Segmentation of Textures

Input : Data y, texture number K,impulse response
Output: Samples for labels �(t), textures x(t)

k ,
granularity β(t), noise parameter γ

(t)
n , texture

parameters
(
θ

(t)
k , γ (t)

k

)

Initializations: t = 0, z(0) = y, �(0) = ceil(K ∗ rand(P));
while not convergence do

t = t + 1

γ
(t)
n ∼ f

(
γn|y, x(t−1)

1...K , �(t−1)
)
[Sect. 4.1]

�(t) ∼ Pr
(
�|y, γ (t)

n , x(t−1)
1...K ,β(t−1)

)
[Sect. 4.5]

β(t) ∼ f
(
β|�(t)) [Sect. 4.3]

for k = 1 to K do
γ

(t)
k ∼ f

(
γk|x(t−1)

k , θ (t−1)
k

)
[Sect. 4.1]

θ
(t)
k ∼ F-RWMHtargetf

(
θk|x(t−1)

k , γ (t)
k

)

[Sect. 4.2]

x(t)
k ∼ f

(
xk|y, �(t), γ (t)

n , γ (t)
k , θ (t)

k , x(·)
l �=k

)

[Sect. 4.4]
end

% Count label occurrences and update
segmentation
LabelOcc(p, �p) = LabelOcc(p, �p)+1, p = 1, . . .P;
�̂ = MaxOccurrenceLabel(LabelOcc);

% Update parameters;
γ̂n = UpdateAverage

(
γ

(τ)
n , τ = T , . . . , t

)
;

β̂ = UpdateAverage
(
β(τ), τ = T , . . . , t

)
;

for k = 1 to K do
x̂k = UpdateAverage

(
x(τ )

k , τ = T , . . . , t
)
;

γ̂k = UpdateAverage
(
γ

(τ)

k , τ = T , . . . , t
)

θ̂k = UpdateAverage
(
θ

(τ )

k , τ = T , . . . , t
)
;

end

% Reconstructed image;
ẑ = BuildImage

(̂
�, x̂1...K

)
; [Eq. (7)]

end

Table 1 The horizontal and vertical frequencies ν0x and ν0y are
respectively given in the top and the bottom part of the table.
For each parameter, it gives the true value, the prior interval and
the estimated values. They are clearly very closed to the true ones

Texture 1 Texture 2 Texture 3

True 0 0.2 0.2

Prior [− 0.2; + 0.2] [+ 0.1; + 0.5] [+ 0.1; + 0.5]

Estimate 0.00011 0.20412 0.19687

True 0 − 0.2 0.2

Prior [− 0.2; + 0.2] [− 0.5; − 0.1] [+ 0.1; + 0.5]

Estimate 0.00034 − 0.20134 0.20223

initializations, and it has shown consistent qualitative
and quantitative behaviours. It has lead us to a series of
practical considerations.

• The label set is initialized by a realization of a white
noise with uniform probability in {1, . . .K}. Our tests
have shown a faster convergence as compared to
other initialization (e.g. constant label field).

• An important practical point is the initialization of
the texture parameters θk . Each frequency is set to
the maximizer of the periodogram of the observed
image y over its prior interval.

• The preconditioned gradient and the preconditioned
conjugate gradient directions have similar
performances. Contrary, the non preconditioned
versions are very slow.

• Stopping rule: the algorithm stops when the
difference between successive updates of the image z
(see Eq. (7) and last line of Algorithm 1) becomes
smaller than a given threshold s. Practically, we set
s = 10−3, the algorithm iterates usually about two
hundred times and it takes about 4 min for a
256 × 256 image.

Fig. 3 Arbitrarily 100 samples of the simulated chains: granularity
coefficient β (top) and noise parameter γn (bottom)
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5.2 Evaluation of the method
The first example is given in Fig. 4. It consists in a sim-
ple image topology containing K = 3 classes of texture.
The true values of the frequency parameters of the tex-
tured images are given in Table 1. The value of the spectral
width is ux = uy = 0.005 for all the textures (and
it is assumed to be known). These values produce two
oriented textures and a low-frequency noise shown in
Fig. 4 (and already given in Fig. 1). The observation sce-
nario is with w = 1/2 (full width at half maximum
is about 0.5) and γn = 10 (signal to noise ratio is
about 5 dB).

For an illustrative plot, the algorithm has been iter-
ated arbitrarily 100 times and Fig. 3 shows the simulated
chains for the granularity coefficient β and for the noise
parameter γn. It shows that the distributions are stable
after about T = 50 iterations (burn-in period). The first T
samples are then discarded. From the remaining samples,
the decisions for the labels are computed as the empiri-
cal marginal posterior maximizers and the estimations for
the other parameters are computed as empirical posterior
averages.
The algorithm produces a label configuration (Fig. 4d)

very similar to the true one (Fig. 4a), with only 0.90%

Fig. 4 Segmentation and reconstructed images (Example 1). a True labels �∗ . b True image z∗ . c Data y. d Estimated labels �̂. e Estimated image ẑ
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of mislabelled pixels, despite the degradation of the
image.

Remark 9 The method is region-based, meaning that it
provides closed contours, unlike a part of the existing works
in texture segmentation.

Moreover, the texture parameters estimation error is
small, less than 10−2, as mentioned in Table 1. The full
textured images xk are also accurately estimated, having
the same characteristics as the original textured images.
The blur and the noise are reduced in the resulting image
(Fig. 4e) with respect to the data (Fig. 4c), and it strongly
resembles the original image (Fig. 4b).

5.2.1 Label analysis: error and probability of error
One of the main advantages of probabilistic approaches is
that they not only provide estimates for the unknowns, but
also coherent uncertainties associated to these estimates.
Figure 5 illustrates our analysis on the label estimates and
their probability.
Figure 5a gives the empirical marginal probabilities for

the three values of the label �p = 1, �p = 2 and �p = 3
for each pixels p = 1, . . .P. Figure 5b gives the proba-
bilities of the selected labels (the one with the maximum
probability). This maximum probability can have various
values: a small value indicates a less reliable decision for
the label. These probabilities are small (black or grey) at

certain locations in the image Fig. 5b, and it is safe to
assume that at these locations, there is a smaller chance of
selecting a correct label.
This analysis can naturally be done even without the

knowledge of the true labels. In order to verify if indeed
we aremore prone to error in the area with small posterior
probability, we have compared the selected label configu-
ration �̂ to the true one �
. We can immediately notice in
Fig. 5c that all of the mislabelled pixels are in fact posi-
tioned in the areas of weaker probability, shown in Fig. 5b.
This reinforces our statement concerning the utility of
the probabilistic approach, due to its ability to anticipate
errors.

5.2.2 Other image topologies, blur and noise
In the case of the second image topology, given in Fig. 6,
although the number of textures is reduced (K = 2), the
task is more difficult due to the shape of the regions: the
presence of a relatively thin, continuous structure makes
the label decision hard. In addition, only a small patch of
the texture associated with the “white” class is present and
that complicates the texture parameter estimation. How-
ever, the results shown in Fig. 6 are remarkably correct, for
both label and image. We only have 0.64% of mislabelled
pixels.
Our third example is given in Fig. 7. Here again, the

shape of some of the regions are relatively thin making
the label decision hard and only a small patches of the

Fig. 5 Link between the probability of the selected label and the labelling error. a From left to right: probability for each pixel of having label 1, 2 or
3, respectively (black is zero and white is one). b Probabilities. cMislabelled
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Fig. 6 Segmentation and reconstructed images (Example 2). a True labels �∗ . b True image z∗ . c Data y. d Estimated labels �̂. e Estimated image ẑ

second texture class is observedmaking texture parameter
estimation difficult. Figure 7 illustrates the method per-
formances in a weaker convolution case w = 2 and higher
noise level γn = 5. The method performs very well in this
case, the estimated label field being very close to the true
labels (only 0.70% of miss-labelled pixels).

6 Conclusion and perspectives
The paper presents our method for joint deconvolution
and segmentation, dedicated to textured images, with
an emphasis on oriented structures. This is a very dif-
ficult task due to the large amount of unknowns and
their complicated dependencies. The formulation of the

problem itself has demanded a careful consideration in
order to design the best manner to accurately account
for the hierarchical dependencies. In this context, the
most adapted choice was to model K full images xk cor-
responding to each class, rather than directly model the
compound image z itself. This has allowed us to obtain
an expression for the joint probability distribution in a
relatively convenient form.
The proposed solution follows a Bayesian strategy

that yields optimal functions in the sense of mini-
mum risk for the decisions (labels) and for the esti-
mations (continuous parameters). Both are founded on
the posterior (marginal maximizer and mean). The
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Fig. 7 Segmentation and reconstructed images (Example 3). a True labels �∗ . b True image z∗ . c Data y. d Estimated labels �̂. e Estimated image ẑ

intricate nature of the posterior distribution does not
allow for an analytical expression for either the deci-
sions or the estimates. A numerical approach is then
used to explore the posterior, and the samples are
subsequently used in computing them. The numerical
scheme is guaranteed to converge: samples are asymptot-
ically drawn under the posterior and empirical approx-
imation converges towards the optimal decisions and
estimates.
Nevertheless, the sampling process for the full set of

variables has also proved to be challenging and has
required advanced sampling approaches to overcome the
impasses. We resort to a Gibbs sampler in order to split

the original problem for the full set of variables in several
smaller problems for subsets of variables.

(i) One of the steps requires the sampling of a Gaussian
density in large dimension and we resort to recent
developments on Perturbation-Optimization.

(ii) The method includes the sampling of the granularity
coefficient: it is itself a thorny question, hardly ever
tackled. The proposed approach relies on the inverse
cumulative density function and takes advantage of
our precomputations of the partition function.

(iii) Regarding the texture parameters, the algorithm
resorts to a recent efficient directional
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Metropolis-Hastings step within the Gibbs
loop.

The proposed methodological aspects are original and
have contributed to developing an approach that is
both theoretically sound and practically efficient for the
problem.
The previous section has presented the results of a series

of numerical assessments performed on various convolu-
tion and noise conditions, for different image topologies.
These results have shown that the method is able to
accurately segment the image, provide a good estimation
for the texture parameters as well as the hyperparameters
and thus accurately restore the original image.
From a theoretical and modelling standpoint, the study

leads us to several future developments.
• A future contribution is the use of a non-Gaussian

model for the constituent textures, possibly based on
latent variables and conditional Gaussian models
[67]. This would add an extra layer of complexity to
the model and to the sampling stage.

• The second future development aims at performing a
myopic deconvolution [56, 68], i.e., considering
that w, the width of the convolution filter, is
unknown and estimating it along with the rest of the
parameters.

• Thirdly, the problem of missing data (inpainting) will
also be addressed. An extension of the present work
to solve this problem would require to include a
truncation matrix, say T , and substitute H by TH
in (5).

• The fourth future contribution will deal with the
problem of model selection, especially to choose the
number of classes [69] (see also our previous works
[70–72]). The difficulty would regard the
computation of the evidences of the models.

The study also opens up new perspectives from a
numerical standpoint, notably in order to reduce compu-
tation time.

• A future contribution will resort to the
Swendsen-Wang algorithm in order to improve the
sampling step of the label field [73] (see also [74]).

• The second future development in order to reduce
computation time could rely on variational Bayes
approaches [30, 32, 75] (see also [76, 77]).

• Thirdly, the problem of fast sampling will also be
addressed through the abundant literature as already
mentioned [47–54] and more recently [78].

As it can be seen from this brief listing of the per-
spectives, the work on this topic is far from being
over. Nevertheless, even in its current form, the method

presented in this paper addresses a problem that had
not been tackled so far (deconvolution-segmentation of
textured images including hyperparameter and texture
parameter estimation), while achieving very satisfactory
results.

Endnotes
1 Except for the Ising field (K = 2), see [79], also [80, 81].
2A unique step is used, in order to design a valid algorithm.
3The algorithm is implemented within the computing

environment Matlab on a standard PC with a 3 GHz CPU
and 64 GB of RAM.

Appendix A: Potts partition
For the sake of self-containedness, we describe here the
pre-computation of the partition function already given in
our previous paper [40]. It is based on known properties
[38, 39] for the partition function of the exponential family
distributions.
Let us note σ(�) = ∑

p∼q δ(�p; �q) the number of pair
of adjacent pixels with identical label. The partition Z(β)

normalizes the probability distribution (1), so it writes:

Z(β) =
∑

�
exp [βσ(�)]

where the summation runs over all the configurations
of the field � ∈ {1, ...K}P . Numerically, it is a colossal
summation over the KP possible configurations and the
exhaustive exploration of these configurations is impossi-
ble (except for minuscule images). The derivation w.r.t. β
straightforwardly yields:

Z ′(β) =
∑

�
σ(�) exp [βσ(�)]

then dividing by Z(β) we have
Z ′(β)

Z(β)
=
∑

�
σ(�)Z(β)−1 exp [βσ(�)] .

The left-hand side reads as the derivative of the log-
partition Z̄(β) = logZ(β) and the right-hand side reads
as an expectation:

Z̄ ′(β) =
∑

�
σ(�)Pr [�|β] = E [σ(L)] .

Consequently, the derivative of the log-partition is an
expectation. It can be approximated by an empirical
average:

Z̄ ′(β)  1
N
∑

n
σ(�n)

where the �n, for n = 1, . . . ,N , are N realizations of the
field (given β). It remains a huge task but it is attainable:
it required several weeks of intensive computation (on a
standard PC), but it is done once for all. Results are given
in Fig. 8 and this is the keystone for the estimation of β in
this paper.
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Fig. 8 From to to bottom: Log-partition Z̄(β), its first and second derivatives as a function of β (from β = 0 to β = 3) for various sizes of image
(P = 64, 128, 256, 512) and number of class (K = 2, 3, 4, 5)
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{0, 1, . . . ,N − 1}; θ k : Texture parameters; P: Number of pixels; Rk , �k : Texture
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