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Channel estimation: unified view of optimal
performance and pilot sequences

Luc Le Magoarou, Stéphane Paquelet

Abstract—Channel estimation is of paramount importance in
most communication systems in order to optimize the data
rate/energy consumption tradeoff. In modern systems, the possi-
bly large number of transmit/receive antennas and subcarriers
makes this task difficult. Designing pilot sequences of reasonable
size yielding good performance is thus critical. Classically, the
number of pilots is reduced by viewing the channel as a random
vector and assuming knowledge of its distribution. In practice,
this requires estimating the channel covariance matrix, which
can be computationally costly and not adapted to scenarios with
high mobility. In this paper, an alternative view is considered,
in which the channel is a function of unknown deterministic
parameters. In this setting, the problem of designing optimal pilot
sequences of smallest possible size is studied for any parametric
channel model. To do so, the Cramér-Rao bound (CRB) for
this general channel estimation problem is given, highlighting
its key dependency on the introduced variation space. Then, the
minimal size of pilot sequences and minimal value of the CRB
are determined. Moreover, a general strategy to build optimal
minimal length power constrained pilots sequences is given, based
on an estimation of the variation space. The theoretical results
are finally illustrated in a massive MIMO system context. They
conveniently allow to retrieve well known previous results, but
also to exhibit minimal length optimal pilot sequences for a new
strategy based on a nonlinear physical model.

Index Terms—Channel estimation, parametric model, Cramér-
Rao bound.

I. INTRODUCTION

COMMUNICATION systems make use of a physical
channel to convey information between a transmitter and

a receiver [1]. Knowing the channel state at both ends of
the link allows to maximize the data rate, hence the need
to estimate the channel. This can be carried out by sending
pilot signals known by both the transmitter and the receiver
to gather noisy observations used to estimate the channel.

Recently, the ever-growing need for data rate in modern
communication networks led to use channels of very high
dimension, which makes channel estimation difficult. For
example, it has been recently proposed to use massive multiple
input multiple output (massive MIMO) wireless systems [2],
[3], [4] with a large number of transmit and receive antennas
in the millimeter-wave band [5], [6], where a large bandwidth
can be exploited. In that case the channel comprises hundreds
or even thousands of complex numbers, whose estimation is
a very challenging signal processing problem [7].

Designing pilot sequences that lead to low estimation error
and are of reduced size (compared to the channel dimension) is
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thus a critical issue in massive MIMO systems. Classically, it
has been done by considering the channel as a random vector
whose distribution is known a priori, which naturally leads to
the use of bayesian methods and estimators such as the linear
minimum mean squared error (LMMSE). The minimal size of
the pilot sequence is then determined by the effective rank of
the channel covariance matrix [8], and efficient strategies such
as the joint spatial division and multiplexing (JSDM) [9], [10]
can be implemented. However, the main drawback of such
methods is that it requires to estimate the channel covariance
matrix, which can be computationally costly and unfit for high
mobility scenarios (since the channel covariance then changes
fast).

Another solution to envision channel estimation, which does
not require covariance estimation, is to consider the channel as
a function of parameters being deterministic unknown quan-
tities, such as the channel coefficients or the directions and
complex gains of the most significant propagation paths. This
naturally leads to classical estimators based on the maximum
likelihood (ML) principle. Following this line of thought,
modern approaches have emerged [11] [12] that exploit some
prior knowledge regarding the parameters to estimate in order
to design efficient transmission strategies. In this setting, which
quantity does determine the minimal size of pilot sequences?
What is the best attainable performance? How to design
optimal pilot sequences? Based on which a priori information?

Contributions. In this paper, we tackle these questions in a
general unified way, for any parametric channel model (linear
or not). Based on the Cramér-Rao bound (CRB) [13], [14]
of the considered problem, we show that the crucial object
for pilot sequences determination is the variation space of the
channel, which is a notion we introduce. Identifiability condi-
tions, the minimal size of pilot sequence, the minimal attain-
able variance and a strategy to build optimal pilot sequences
of minimal size are given, all based on the variation space. We
argue that the variation space is an object whose estimation
may be simpler than that of the covariance. The theoretical part
of the paper (which constitute the main contribution) is then
illustrated on several MIMO channel models, and it allows to
determine optimal pilot sequences and optimal performance
for a new promising channel estimation strategy we propose
for MIMO systems that operate in frequency division duplex
(FDD) mode.
Related work. On the theoretical side, this paper is a general-
ization and an unification of many results obtained in the case
of linear deterministic channel models (in which the model
parameters are simply the channel coefficients), both in a
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MIMO context [8], [15] and for multicarrier systems [16],
[17], [18]. Indeed, the present analysis based on the variation
space allows to treat simple linear models and more elaborate
nonlinear physical channel models the same way. Another
significant difference with prior work is that the analysis of
the present paper is based on the CRB (which depends only on
the model and not on the estimation method) and not directly
on the error incurred by a specific estimator.

There is also a vast body of literature regarding optimal
pilot sequences in a bayesian channel estimation setting, for
which the channel is assumed to follow a known Gaussian
[19], [20], [21], or more elaborate Gaussian mixture [22]
distribution. These approaches are different in nature from the
one of this paper, since (i) they consider a specific estimator
(the linear minimum mean squared error (LMMSE)), and (ii)
their objective is to minimize the estimation error in average
over the channel estimated distribution. On the other hand,
the analysis of the present paper is estimator independent and
its objective can be seen as the minimization of the error
for a given channel realization. Recently, it has also been
proposed to look for optimal pilot sequences in a multi-user
bayesian setting. In [23], sequences are found by numerical
optimization, minimizing a weighted sum of the channel
estimation errors of each user. In [24] and [25], heuristics are
proposed which amount to send pilot sequences that span the
union of the spaces generated by the leading eigenvectors of
the channel correlation matrices of all users.

On the practical side, the analysis performed in this paper
allows us to suggest a new transmission strategy for massive
MIMO systems operating in FDD mode. It relies on the
physical assumptions that the angles of arrival for channel
propagation paths vary slowly and are reciprocal between
the uplink and the downlink. This assumption is also at the
origin of recent proposals [11] [12]. The strategy we propose
is similar to this prior work in that is uses previous angle
estimates (indifferently acquired in the uplink or downlink) to
design pilot sequences. However, it is different since it allows
to reestimate the angles at each step (with a small additional
overhead), which leads to better performance lower bounds,
as shown in section V.
Organization of the paper. The studied problem is formulated
in section II. The notion of variation space is introduced,
and an expression of the Cramér-Rao bound (CRB) based
on it is given in section III. Identifiability conditions on the
observation matrices and the minimal number of observations
for which they can be fulfilled are given in section IV-A. In
section IV-B, we express the minimal variance of any unbiased
estimator by optimizing the CRB under a power constraint
on the observation matrix. Associated observation matrices
of minimal size are also exhibited in section IV-C, as well
as an algorithm to build it based on an estimation of the
variation space. These results are illustrated in section V,
where it is shown that the proposed theoretical framework
allows to retrieve well-known results previously established for
linear models, but also to propose a new efficient transmission
strategy for massive MIMO systems operating in FDD mode.
For convenience and in order to keep the flow of the paper,
most technical proofs are given in appendix.

Note that this paper is partially based on some of our
previous work [26], [27], in which the Cramér-Rao bound in
the specific case of a physical channel model was stated. The
novelty of this paper is that the Cramér-Rao bound is here
optimized, and the derivation is more general since it is valid
for any parametric model.

II. PROBLEM FORMULATION

Notations. Matrices and vectors are denoted by bold upper-
case and lower-case letters: A and a (except 3D “spatial”
vectors that are denoted −→a ); the ith column of a matrix
A by ai; its entry at the ith line and jth column by aij .
A[i:j,:] denotes the matrix built taking the rows i to j of A
(matlab style indexing). A matrix transpose, conjugate and
transconjugate is denoted by AT , A∗ and AH respectively.
The trace of a linear transformation represented by A is
denoted Tr(A). The linear span of a set of vectors A and
its dimension (if it is a vector space) are denoted: spanR(A)
and dimR(A) when considering linear combinations with real
coefficients, or spanC(A) and dimC(A) when considering
linear combinations with complex coefficients. The orthogonal
complement of a subspace W is denoted W⊥. The Kronecker
product is denoted by ⊗.The identity matrix is denoted by Id.
CN (µ,Σ) denotes the standard complex gaussian distribution
with mean µ and covariance Σ. E(·) denotes the expectation
and cov(·) the covariance of its argument.

A. Observations

We consider the general channel estimation setting where
a channel h ∈ CNd is to be estimated, Nd being the total
number of complex dimensions of the channel. For example,
in the case of a channel between Nt transmit antennas and Nr
receive antennas on Nf subcarriers, we have Nd = NrNtNf .
We assume it is deterministic and follows a parametric model
depending on Np real parameters. It can then be seen as a
function h : RNp → CNd that maps each parameters value
to the corresponding channel (we will denote the channel
indifferently h or h(θ) depending on the context). Note that
this is the most generic setting since complex parameters
can always be decomposed into real and imaginary parts (or
modulus and angle) and thus correspond to two real parameters
each. The only assumption that we make about the channel
model is that the function h is differentiable with respect to
the parameters. We denote ∂h

∂θ ,
(
∂h
∂θ1

, . . . , ∂h
∂θNp

)
∈ CNd×Np

the complex gradient of the channel with respect to its real
parameters.

Estimation is made based on Nm noisy linear observations
of the form

y = MHh + n, (1)

where n ∈ CNm corresponds to the noise whose entries
are assumed i.i.d. complex gaussians of variance σ2, so that
n ∼ CN

(
0, σ2IdNm

)
, and M ∈ CNd×Nm is the matrix rep-

resenting the measurement process, that we hereafter denote
the observation matrix. It is entirely determined by the pilot
sequences sent by the transmitter and the combining operations
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done at the receiver. this way of expressing the observations
is very general (an example in a generic MIMO wideband
context is given in section V).

B. Estimation

The estimator of the parameters is a function mapping
obervations to estimates, denoted θ̂ : CNm → RNp . The
estimate θ̂(y) will be denoted θ̂ (as the estimator) for shorter
notations. The channel estimate is given by the model function,
as h(θ̂). The error is measured by the mean squared error
(MSE):

MSE(θ̂) , E
[∥∥h(θ)− h(θ̂)

∥∥2
2

]
=
∥∥h(θ)− E[h(θ̂)]

∥∥2
2

+ E
[∥∥h(θ̂)− E[h(θ̂)]

∥∥2
2

]
,

where the expectation is taken over the noise distribution, and
the second line corresponds to the well-known bias-variance
decomposition [28]. We assume throughout the paper that the
considered channel estimators are unbiased with respect to
h(θ), which reads E[h(θ̂)] = h(θ). It follows

MSE(θ̂) = E
[∥∥h(θ̂)− E[h(θ̂)]

∥∥2
2

]
= Tr[cov(h(θ̂))]. (2)

This way, the bias is null and the MSE is entirely due to the
variance of the estimator h(θ̂).

C. Cramér-Rao bound

The variance of any unbiased estimator is bounded below
by the Cramér-Rao bound [13], [14], so that

MSE(θ̂) = Tr
[
cov
(
h(θ̂)

)]
≥ CRB(θ,M),

where the complex CRB [29] takes the form

CRB(θ,M) , Tr
[
∂h

∂θ
I(θ,M)−1

∂h

∂θ

H]
, (3)

I(θ,M) ∈ RNp×Np being the Fisher information matrix
(FIM) which quantifies the amount of information about the
parameters θ that the observation y carries when using the
observation matrix M. The observation defined in (1) follows
a gaussian distribution,

y ∼ CN
(
MHh, σ2Id

)
,

so that the FIM is given by the Slepian-Bangs formula [30],
[31], [32]:

I(θ,M) =
2

σ2
Re

{
∂h

∂θ

H

MMH ∂h

∂θ

}
. (4)

This finally yields

MSE(θ̂) ≥ σ2

2
Tr
[
∂h

∂θ
Re

{
∂h

∂θ

H

MMH ∂h

∂θ

}−1
∂h

∂θ

H]
.

In this paper, we analyze the right-hand side of this inequality.
It is expressed in a compact way with help of the introduced
variation space in section III. Then, viewed as a function of the
observation matrix M, it is optimized under a power constraint
in section IV in order to exhibit optimal pilot sequences and

the associated minimal error, for any deterministic channel
model. Note that the approach we propose can be generalized
to deal with improper measurements [33], [34], [35], using a
more general form of the Slepian-Bangs formula [36].

III. CRB BASED ON THE VARIATION SPACE

In this section, the notion of variation space, which plays
a central role in the analysis we propose, is first introduced
and discussed. Then, the CRB is expressed as a function of
the variation space.

A. Variation space and related notions

Definition 1. (Variation space) Let the set

Vθ ,

{
∂h

∂θ
x, x ∈ RNp

}
be the variation space around the parameters value θ. This is
the set corresponding to the potential directions of variation of
the channel due to infinitesimal variations in the parameters
value.

It is interesting to note that the variation space has the
structure of an R-vector space, since it contains all linear
combinations of the columns of ∂h

∂θ with real coefficients.
However, Vθ is not necessarily a C-vector space, since it does
not contain all linear combinations of the columns of ∂h

∂θ with
complex coefficients (because we consider real parameters).
This subtle distinction will play a major role in the subsequent
analysis, as evidenced in section IV. To makes things clearer,
we define also the real inner product

〈x,y〉R , Re{xHy}.
Two vectors x and y are said to be real-orthogonal (or R-
orthogonal) if 〈x,y〉R = 0. Let E be a R-vector space,
we denote dimR(E) its dimension with the scalar field R.
Similarly, we denote the classical complex inner product

〈x,y〉C , xHy,

and two vectors x and y are said to be complex-orthogonal
((or C-orthogonal)) if 〈x,y〉C = 0. Let F be a C-vector space,
we denote dimC(F) its dimension with the scalar field C. Note
that any C-vector space is also a R-vector space of doubled
dimension, so that dimR(F) = 2dimC(F), but the converse is
not true (a R-vector space is in general not a C-vector space).

B. Expression of the CRB

In the general setting we consider, the CRB can be ex-
pressed in a very simple way, depending only on the variation
space, the observation matrix and the noise level. The obtained
form of the CRB will prove very useful in section IV in order
to optimize the observation matrix, and thus the sent pilot
sequences. It is given by the following theorem.

Theorem 1. Provided dimR(Vθ) = Np, the Cramér-Rao
bound is expressed as

CRB(θ,M) =
σ2

2
Tr
[
Re
{

UHMMHU
}−1]

,
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where U is any matrix whose columns form an R-orthonormal
basis of the variation space Vθ.

Proof. Let us start from (3) and (4). In this basic form,
the FIM is difficult to invert, because it involves the real
part of a complex matrix. In [26], we proposed to use real
representations of complex matrices to get rid of this problem.
Here, in order to gain a deeper geometric understanding of the
bound, let us use the Gram-Schmidt process on the gradient
matrix ∂h

∂θ , with the real inner product 〈., .〉R to decompose it
as

∂h

∂θ
= UR, (5)

where U ∈ CNd×K is a matrix whose columns are R-
orthonormal (meaning that Re

{
UHU

}
= IdK), R ∈

RK×Np is a real upper-triangular matrix, and K = dimR(Vθ).
This decomposition of the gradient matrix allows to rewrite
the FIM

I(θ,M) =
2

σ2
RTRe

{
UHMMHU

}
R,

since Re{AHBA} = ATRe{B}A as soon as A is a real
matrix. Now, if and only if R is invertible, which is equivalent
to K = Np, the CRB is expressed

CRB(θ,M) = Tr
[
∂h

∂θ
I(θ,M)−1

∂h

∂θ

H]
=
σ2

2
Tr
[
URR−1Re

{
UHMMHU

}−1
R−TRTUH

]
=
σ2

2
Tr
[
Re
{

UHMMHU
}−1]

.

In order to conclude, one can remark that

Tr
[
Re
{

UHMMHU
}−1]

= Tr
[
Re
{

BTUHMMHUB
}−1]

for any real orthogonal matrix B ∈ RNp×Np , so that the
equation holds true for any matrix whose columns form an
R-orthogonal basis of Vθ.

This theorem can be given an even simpler form. Indeed, it
shows an invariance property, it is true for any matrix U whose
columns are an R-orthonormal basis of Vθ. Moreover, the
matrix Re

{
UHMMHU

}
can be given a nice interpretation.

Indeed, the orthogonal projection PVθz of any vector z onto
Vθ is expressed

PVθz =
∑Np

i=1
〈ui, z〉Rui = URe{UHz},

so that Re{UHz} corresponds to the coordinates of the
projection in the basis given by U. Now, if z = MMHt
with t ∈ Vθ then Re

{
UHMMHt

}
= Re

{
UHMMHU

}
r

for some r ∈ RNp corresponding to the coordinates of t
in the basis given by U. It means that Re

{
UHMMHU

}
is the matrix that corresponds to the operator PVθMMH

restricted to Vθ when expressed in the basis given by U.
Such an operator corresponds to the notion of compression
in functional analysis.

Definition 2. (Compression [37, p.120]) Let H be a subspace
of a Hilbert space K, let PH be the orthogonal projection

from K onto H, and let B : K → K be a linear operator on
K. The linear operator A : H → H is the compression of B
to H, denoted [B]H, if

Ax = PHBx, ∀x ∈ H.

In the following, and when no confusion is possible, we
denote the same way a matrix A and the operator associated
to the multiplication by A. Moreover, for an operator A :
H → H where H is a K-vector space (K ∈ {R,C}), we
define its trace as

Tr [A] ,
∑Np

i=1
〈vi,Avi〉K,

where {v1, . . . ,vNp} is any K-orthonormal basis of H. It
coincides with the sum of the diagonal elements of a matrix
when the operator action is a matrix multiplication. These
two notions allow to express the CRB in a simpler and more
intrinsic form, as in the following corollary (which is nothing
more than a coordinate-free version of theorem 1).

Corollary 1. Provided dimR(Vθ) = Np, the Cramér-Rao
bound admits an intrinsic expression as

CRB(θ,M) =
σ2

2
Tr
[([

MMH
]
Vθ

)−1]
,

where
[
MMH

]
Vθ

is the compression of MMH to the varia-
tion space Vθ.

This form of the CRB shows that the minimal variance
of any unbiased estimator is determined by the interaction
between the observation matrix M and the potential directions
of variations of the channel due to infinitesimal variations of
the parameters around their value, represented by the set Vθ.
This fact, which is key in our analysis, is further exploited in
the following subsections.

IV. OPTIMIZED OBSERVATION MATRICES

In this section, the objective is to optimize the observation
matrix M with respect to the particular form of the CRB
given in theorem 1. We first give identifiability conditions,
which allow to determine a minimal number of observations.
Then, the optimal CRB and associated observation matrices of
minimal size are given. Finally, we give a practical algorithm
to design observation matrices based on an estimation of the
variation space.
A. Identifiability

Parameters are said to be identifiable if and only if the CRB
is finite,

Identifiability⇔ CRB(θ,M) < +∞.
Identifiability imposes conditions on the variation space Vθ
and on the observation matrix M, as stated in the following
theorem.

Theorem 2. The parameters are identifiable if and only if

dimR(Vθ) = Np
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and
Vθ ∩ imC(M)⊥ = {0}.

Proof. The first condition dimR(Vθ) = Np is equivalent to
the invertibility of R that was shown to be a necessary
condition for the CRB to be finite in section III-B. When
this condition is fulfilled, identifiability holds if and only if
the matrix Re

{
UHMMHU

}
is invertible. This matrix being

symmetric, it is invertible if and only if

∀x 6= 0 ∈ RNp , xTRe
{

UHMMHU
}

x 6= 0.

Moreover, for any real vector x, xTRe
{

UHMMHU
}

x =

xTUHMMHUx. Thus, recalling that Vθ = imR(U), identi-
fiability holds if and only if

∀z 6= 0 ∈ Vθ, zHMMHz =
∥∥MHz

∥∥2
2
6= 0,

which is equivalent (since ker(MH) = imC(M)⊥) to

Vθ ∩ imC(M)⊥ = {0}.

Interpretations. The first identifiability condition
dimR(Vθ) = Np means that the columns of ∂h

∂θ have to
be linearly independent over R for identifiability to be
possible, whatever the observation matrix. Said differently,
the number of degrees of freedom of the variation space
has to be equal to the number of parameters to estimate, so
that small variations of the channel h due to an infinitesimal
variation in the value of any parameter cannot be mistaken
with small variations of the channel due to infinitesimal
variations in the values of the other parameters. Note that
since dimR(Vθ) ≤ 2Nd, this condition implies Np ≤ 2Nd,
which means that it is impossible to identify a number of
parameters that is more than twice the dimension of the
channel.

Then, if the first condition is fulfilled, the second condition
Vθ ∩ imC(M)⊥ = {0} means that no nonzero vector in the
space of variations Vθ can be orthogonal to the column space
of the observation matrix M for identifiability to hold. Said
differently, the observation matrix has to preserve some energy
for any element of the space of variations, every infinitesimal
variation in the values of the parameters has to cause a change
in the observation vector y.
Number of observations. Identifiability directly imposes a
minimal number of observations Nm, as stated in the following
corollary.

Corollary 2. Parameters can be identifiable only if

Nm ≥
Np
2
.

Proof. Identifiability can be stated:

∀z 6= 0 ∈ Vθ, MHz 6= 0,

which is possible only if the R-dimension of ker(MH) plus
the R-dimension of Vθ is no greater than the R-dimension
of the ambient space CNd (so that they can have a trivial
intersection). This writes

dimR(ker(MH)) +Np ≤ 2Nd.

Moreover, dimR(ker(MH)) = 2Nd−dimR(imC(MH)) (rank-
nullity theorem), so that we end up with

dimR(imC(MH)) ≥ Np.
The R-dimension of a C-vector space being twice its C-
dimension and the C-dimension being upper-bounded by the
number of columns, we finally get

Nm ≥ dimC(imC(MH)) ≥ Np
2
,

which proves the result.

We just showed that the minimal number of observations
Nm required for identifiability to be possible is dNp2 e. In other
words, the matrix M has to have at least dNp2 e columns for
the CRB to be finite. As will be shown in the next subsection,
there always exist an optimal observation matrix having dNp2 e
columns.

B. Optimality

Let us now determine the minimal value of the CRB under
a power constraint, and the observation matrices allowing to
attain it. This corresponds to solve the optimization problem:

minimize
M

CRB(θ,M),

subject to ‖M‖2F = P.
(6)

Note that the quantity ‖M‖2F = P = Tr(MMH) corresponds
to the observation power, which is proportional to the received
power not directly equal to the transmitted power. The two
quantities are linked in section V.

1) Decomposition of the variation space: The expression
of the CRB given in theorem 1 is valid for any R-orthogonal
basis of Vθ. In order to ease optimization, we exhibit here a
specific basis with useful properties. To do so, let us state the
following lemma that allows to decompose Vθ into a direct
sum of C-orthogonal subspaces.

Lemma 1. (i) Any R-vector space E of dimension d that
belongs to a C-vector space F (containing jE) can be decom-
posed into the direct sum of subspaces of dimension 2 (and
possibly a subspace of dimension one if d is odd) that are mu-
tually C-orthogonal. (ii) The subspaces of the aforementioned
decomposition belong to eigenspaces of PE ◦PjE , where PE
(resp. PjE ) is the orthogonal projection onto E (resp. jE).

Proof. This lemma is proven in appendix A.

Applying lemma 1 to the variation space Vθ (assuming it is
of dimension Np and Np is even), it is possible to decompose
it as

Vθ = spanR
({

v1,w1, . . . ,vNp
2

,wNp
2

})
(7)
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where vHmvn = δmn, wH
mwn = δmn and vHmwn = −δmnjcm

(with 0 ≤ cm ≤ 1, and δ being the Kronecker symbol).
The quantities cm can be seen as the lack of C-orthogonality
of the R-orthogonal basis

{
v1,w1, . . . ,vNp

2

,wNp
2

}
. Let us

introduce the matrix

V ,
(
v1,w1, . . . ,vNp

2

,wNp
2

)
(8)

whose columns form an R-orthonormal basis of Vθ. Similarly,
if Np is odd, the decomposition reads

Vθ = spanR

({
v1,w1, . . . ,v⌊

Np
2

⌋,w⌊
Np
2

⌋,v⌊
Np
2

⌋
+1

})
,

(9)
where vHmvn = δmn, wH

mwn = δmn and vHmwn = −δmnjcm,
and the matrix V can be built the same way. Said differently,
this result means that for any matrix U whose columns form
an R-orthogonal basis of Vθ, there exists a real orthogonal
matrix B such that

BTIm{UHU}B =


0 −c1
c1 0

0 −c2
c2 0

. . .

 , Γ,

(10)
and then V = UB. In practice, the matrices B and Γ can be
obtained by computing the real Schur decomposition of the
matrix Im{UHU} and reordering the diagonal blocks.

2) Optimal CRB and observation matrices: Using this
decomposition allows us to state the main result of this paper
in the following theorem.

Theorem 3. The minimal value of the CRB is

CRBmin(θ) ,
2σ2

P

(∑bNp2 c

k=1

1√
1 + ck

+
ε

2

)2

,

where the scalars ck are defined at (7) and ε = 0 if Np is
even, and the scalars ck are defined at (9) and ε = 1 if Np is
odd.

It is attained with the observation matrix of minimal size

M =

√
P

C

 v1 + jw1

(1 + c1)
3
4

, . . . ,
vNp

2

+ jwNp
2

(1 + cNp
2

)
3
4

 ,

where C , 2
∑Np

2

l=1
1√
1+cl

and the vectors vk,wk are defined
at (7) if Np is even, and with

M =

√
P

C

 v1 + jw1

(1 + c1)
3
4

, . . . ,

v⌊
Np
2

⌋ + jw⌊
Np
2

⌋
(1 + c⌊Np

2

⌋)
3
4

,v⌊
Np
2

⌋
+1

 ,

where C , 2
∑⌊

Np
2

⌋
l=1

1√
1+cl

+ 1 and the vectors vk,wk are
defined at (9) if Np is odd.

Proof. This theorem is proven in appendix B.

This theorem exhibits the fact that the optimal CRB depends
on the noise level σ2, the observation power P and the
properties of the variation space Vθ, namely its dimension

Np and the quantities ck. Moreover it can be bounded above
and below as

σ2N2
p

4P
≤ CRBmin(θ) ≤ σ2N2

p

2P
,

with an equality on the left if and only if Np is even and
ck = 1, ∀k (Vθ is then a C-vector space), and equality on the
right if and only if ck = 0, ∀k (Vθ is then R-orthogonal to
jVθ).

C. Observation matrix design

Based on theorem 3, it is possible to build optimal obser-
vation matrices of minimal size dNp2 e, provided the variation
space is known. Since the variation space depends itself on
the parameters to estimate, this result may seem of little use.
However, in some cases, an estimation V̂θ of the variation
space can be obtained. For example, this is the case for MIMO
systems operating in FDD mode using a physical model, where
the variation space can be determined based on the previous
uplink or downlink channel estimates since it depends only on
the directions of arrival of the channel paths, which vary in
general slowly. This interesting application is studied in details
in the next section.

Algorithm 1 Observation matrix determination (Np even)

Input: An estimate V̂θ of the variation space (i.e. a matrix G
whose columns are a generating family of V̂θ with real
scalars), the observation power P .

1: Find a matrix U whose columns form an R-orthonormal
basis of V̂θ:

Real QR decomposition (5):
(
Re{G}
Im{G}

)
= QR,

U← ∂̂h
∂θR−1

2: Decompose V̂θ as in lemma 1:
Real Schur decomposition (10): Im{UHU} = BΓBT ,
c1 ← γ21, c2 ← γ43,. . . ,cNp

2

← γNp,Np−1,
V← UB

3: Build the observation matrix according to theorem 3:

S←


1 0 . . .
j 0 . . .
0 1 . . .
0 j . . .
...

...
. . .

 ∈ CNp×
Np
2 , C ← 2

∑Np
2

l=1
1√
1+cl

,

D←
√

P
C


1

(1+c1)
3
4

0

0 1

(1+c2)
3
4

. . .

 ∈ C
Np
2 ×

Np
2 ,

M← VSD
Output: The observation matrix M ∈ CNd×

Np
2 that is opti-

mal with respect to V̂θ.

The strategy we propose to build observation matrices based
on an estimate of the variation space is given in algorithm 1
for an even number of parameters (the algorithm is almost
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the same for an odd number, except for the third step being
slightly modified according to theorem 3). It comprises three
steps. The first one amounts to find an R-orthogonal basis of
V̂θ. The second one corresponds to apply the decomposition
of lemma 1 to V̂θ. Finally the third one uses the result of
theorem 3 based on the aforementioned decomposition to build
the observation matrix. Overall, the computational complexity
of this algorithm is O(NdN

2
p ).

V. ILLUSTRATIONS OF THE RESULTS

Let us now illustrate the applicability of the presented theo-
retical results, whose ultimate goal is to facilitate the design of
optimal and short pilot sequences for any deterministic channel
model. To do so, we consider a massive MIMO system and
compare various models.
Scenarios. Three scenarios are chosen to apply our results:

• First, in section V-A, the classical least squares model
is studied in the proposed framework, showing that our
approach is trivial in that case and allows to retrieve previous
results. This model makes no use of any a priori information,
so that pilot sequences have to be as long as the channel
dimension and the optimal CRB is proportional to the square
of the channel dimension.

• Then, in section V-B, physical models are investigated,
which allow to design shorter pilot sequences and theoreti-
cally lead to better performance, thanks to the lower number
of parameters to estimate. In that case, our framework
allows to theoretically justify previous approaches based on
estimates of the channel directions of arrival (DoA), assum-
ing their reciprocity [12] or time persistence [11]. These
approaches lead to the length of optimal pilot sequences
being proportional to the number of dominant paths and
the optimal CRB being proportional to the square of this
quantity. However, such methods induce a biased model,
due to the fact that DoA estimates are considered perfect
and kept fixed.

• Finally, in section V-C, still in the physical models context,
we show that our result allows to suggest a new strategy
that takes into account the DoA estimation error. It is based
on an update of the DoA estimates, and comes with better
theoretical guarantees than previous approaches. Indeed, it
corrects their bias and causes only a small increase of the
optimal CRB and pilot sequence length (due to the DoA
update). This approach is compared numerically to the one
of section V-B, taking into account the DoA estimation error,
showing its potential advantage.

Setting. In the general case where the channel to estimate is
between Nt transmit antennas and Nr receive antennas, on
Nf subcarriers, the channel is a complex vector of dimension
Nd = NrNtNf denoted h ∈ CNrNtNf , where hijk is the
channel between the j-th transmit antenna and the i-th receive
antenna on the k-th subcarriers. The observation matrix M
takes a particular form in this context, and can be linked
directly to the sent pilot sequence. Indeed, if the transmitter
sends a pilot sequence of length T corresponding to the matrix

X ∈ CNt×T on Nps pilot subcarriers, then the signal at the
receive antennas can be written as in (1) with

M = IdNr ⊗X⊗ F ∈ CNrNtNf×NrTNps , (11)

where F ∈ {0, 1}Nf×Nps is a column-sampled identity ma-
trix, keeping only the columns corresponding to the selected
pilot subcarriers. In such a setting, the number of complex
observations is Nm = NrTNps, and the transmitted power is
Pt , Nps ‖X‖22. On the other hand, the observation power
which is constrained in the optimization problem (6), is ex-
pressed P = ‖M‖22 = NrNps ‖X‖22. We thus have P = NrPt,
acknowledging the fact that adding receive antennas increases
the received power P without changing the transmitted power
Pt.

In this section, let us perform the analysis considering a
massive MIMO setting where the base station is equipped with
an uniform linear array (ULA) with half-wavelength separated
antennas aligned with the y-axis, and user terminals are
equipped with a single antenna (Nr = 1). Let us also consider
a single subcarrier (Nf = 1) for ease of exposition, but note
that the study straightforwardly extends to the multi-carrier
case. These assumptions directly imply the direct equality of
the observation matrix and the pilot sequences matrix:

M = X, P = Pt, (12)

which greatly simplifies the following subsections.

A. Application to the least squares model

The most direct and simple way to parameterize the channel
with no a priori is to take as Np = 2Nt = 2Nd parameters
the real and imaginary parts of the channel entries,

θLS , (Re(h)T , Im(h)T )T ∈ R2Nt ,

This leads to a linear channel model, expressed in function of
the parameters as

hLS(θLS) =
(
Id, jId

)
θLS. (13)

The observation defined in (1) then reads y =
(MH , jMH)θLS + n and the maximum likelihood estimation
problem becomes a least squares problem, hence the name of
the model. In this case, ∂h

∂θLS
= (Id, jId), which, following

the definition of the variation space gives

VθLS = CNt . (14)

Regarding the framework proposed in this paper, this is a
trivial case since the variation space is independent of the
parameters value, due to the linearity of the model. Conse-
quently, no estimation of the variation space is needed to
design optimal pilot sequences. Indeed, this particular variation
space can decomposed according to lemma 1 as

VθLS = spanR ({b1,−jb1, . . . ,bNt ,−jbNt}) ,
where {b1, . . . ,bNt} is any C-orthonormal basis of CNt , and
c1 = · · · = cNt = 1.
Optimal CRB. Applying theorem 3, the optimal CRB of this
model is then

CRBmin(θLS) =
σ2N2

t

Pt
. (15)
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It is attained for observation matrices (pilot sequences) of the
form

XLS = MLS =

√
P

Nt
(b1, . . . ,bNt) . (16)

Such matrices have Nt =
Np
2 columns, which, according to

corollary 2 is minimal for identifiability to be possible.
Equations (15) and (16) are nothing but a restatement of

a well-known result [8]. The method we propose here indeed
allows to derive results for any linear channel model. However,
it is more powerful since it generalizes also to nonlinear
models, as shown in the next subsections.

B. Application to physical models

Another way to parameterize the channel is to assume that
h is the sum of L atomic channels corresponding to distinct
physical paths, characterized by their direction of departure
(DoD) −→ut , direction of arrival (DoA) −→ur, delay τ and complex
gain β. Parameters of this kind of model are thus given by

θ =
[
(Re(βl), Im(βl),

−→ur,l,−→ut,l, τl)Ll=1

]T
. (17)

The corresponding number of parameters is Np = mL,
where m is the number of real parameters to be estimated
per physical path. The quantity m can take different values
depending on the considered setting.

In the massive MIMO setting studied here, (17) reduces to

θPHY =
[
(Re(βl), Im(βl), φl)

L
l=1

]T
, (18)

where φl is the azimuth angle for the l-th physical path. The
downlink channel is then expressed

hPHY(θPHY) =

L∑
l=1

βle(φl), (19)

where e(φ) = 1√
Nt

(e−j
2π
λ (Nt−1

4 ) sinφ, . . . , ej
2π
λ (Nt−1

4 ) sinφ)T

is the steering vector associated with azimuth φ (for an even
number of antennas). This model is nonlinear (although it is
linear with respect to the complex gains βl). Such physical
models are quite standard [38], [39] and successful due to the
possibility to take L small (typically less than ten) with good
channel modeling accuracy (the channel is then called sparse).
The variation space for such physical model is expressed

VθPHY = spanR

({
e(φl),−je(φl),

∂e(φl)

∂φl

}L
l=1

)
. (20)

As opposed to the least squares case, this variation space
depends on the parameter value, so that it is not possible
to build optimal short-length pilot sequences without relying
on some prior information about the parameters. However, it
is interesting to notice that the variation space depends only
on the azimuth angles φ1, . . . , φL and not on the path gains.
Fortunately, the azimuth angles vary much more slowly than
the path gains and are the same for the uplink and downlink
channels, so that one can hope to acquire good estimates of
them in order to design pilot sequences.

Angle-constrained estimation strategy. Under these assump-
tions, it has already been proposed to design short length don-
wlink pilot sequences considering azimuth angles are already
known by the base station, either thanks to uplink channel
estimates [12] (using the channel angle reciprocity), or thanks
to previous downlink channel estimates [11] (using angle time
persistence). Let us analyze these methods that we call angle-
constrained within our framework. Denoting φ̂1, . . . , φ̂L the
estimated azimuths and Ê ∈ CNd×L , (e(φ̂1), . . . , e(φ̂L))
the matrix of corresponding steering vectors, they amount to
simplify the estimation problem considering only the path
gains remain to estimate, yielding parameters

θAC ,
[(
Re(βl)

L
l=1, Im(βl)

L
l=1

)]T
. (21)

It thus corresponds to have Np = 2L, and the channel is
expressed

hAC(θAC) =
(
Ê, jÊ

)
θAC. (22)

Considering this model, the variation space simplifies to

VθAC = spanR
({

e(φ̂1),−je(φ̂1), . . . , e(φ̂L),−je(φ̂L)
})

.

Optimal CRB. Thus, applying theorem 3 in that particular
case, the optimal CRB of the angle-constrained physical model
is bounded as

σ2L2

Pt
≤ CRBmin(θPHY) ≤ 2× σ2L2

Pt
, (23)

where the lower bound is attained if the columns of Ê are
mutually orthogonal (which is assumed in [11], [12]), in
which case the decomposition of lemma 1 is trivial with
c1 = · · · = cL = 1. In that case, it is interesting to compare
this CRB to the CRB of the least squares model (15): using
the physical model allows to divide by

(
Nt
L

)2
the minimal

attainable variance. This potentially huge gain is attained
provided the azimuth estimates are perfect, and for downlink
pilot sequences of the form

XAC = MAC =

√
Pt
L

(
e(φ̂1), . . . , e(φ̂L)

)
. (24)

Such matrices have L =
Np
2 columns, which, according to

corollary 2 is minimal for identifiability to be possible, and
is thus the minimal duration of the pilot sequences, that
corresponds to the number of estimated channel paths. In
practice, the number of estimated paths is small (rarely more
than ten), so that such sequences are short when compared
to the ones required when using the least squares model (of
length Nt). Note that equations (23) and (24) allow to retrieve
the variance and pilot sequences proposed in [11] and [12]
(without proof of optimality).
The bias problem. It is important to mention that the model
simplification implied by the angle-constrained estimation
strategy induces bias. Indeed, the obtained channel estimate
hAC(θ̂AC) is constrained to belong to the range of the matrix
Ê, which is not necessarily the case for the true channel h
since the azimuth estimation is not error free and the azimuth



SUBMITTED 9

angles may have changed since their estimation. We indeed
have ∥∥h− hAC(θ̂AC)

∥∥2
2
≥
∥∥h− Ê(ÊHÊ)−1ÊHh

∥∥2
2
,

Ê(ÊHÊ)−1ÊH being the matrix representing orthogonal pro-
jection onto the range of Ê. Combined with the CRB, we get
the following bound on the MSE for the angle-constrained
channel estimation strategy:

MSE(θ̂AC) ≥ max
(∥∥h− Ê(ÊHÊ)−1ÊHh

∥∥2
2
,
σ2L2

Pt

)
.

(25)
A high level summary of the angle-constrained channel esti-
mation strategy for a single user in given in algorithm 2. It
fits into a multi-user framework and a complete transmission
workflow nicely, as explained in [11], [12], but we do not
give too much details on this here since the present illustration
focuses only on the downlink channel estimation phase.

Algorithm 2 High level summary of angle-constrained esti-
mation strategy

Input: Estimates φ̂1, . . . , φ̂L of the azimuth angles (obtained
through previous downlink or uplink channel estimates).

1: Build Ê = (e(φ̂1), . . . , e(φ̂L)).

2: Send pilot sequences XAC =
√

Pt
L

(
e(φ̂1), . . . , e(φ̂L)

)
of

duration L and receive user feedback to build observations
following (1).

3: Estimate path gains β̂1, . . . , β̂L.
4: Estimate channel hAC(θ̂AC) =

∑L
l=1 β̂le(φ̂l).

Output: MSE(θ̂AC) ≥ max
(∥∥h− Ê(ÊHÊ)−1ÊHh

∥∥2
2
, σ

2L2

Pt

)

C. A new channel estimation strategy for physical models

Let us now propose another strategy that does not suf-
fer from the same bias problem as the angle-constrained
strategy, but also leads to short pilot sequences and incurs
only a small variance increase. We argue that is is possible
to make better use of previously acquired azimuth angles
estimates φ̂1, . . . , φ̂L than to bias the model by considering
them perfectly estimated and to constrain the channel estimate
to belong to the range of Ê. Indeed, one could instead use
the azimuth estimates to design pilot sequences according
to algorithm 1, so as to update the angle estimation while
estimating the channel. This amounts to consider the physical
model of (18) and (19) as is, without fixing the angles. This
way, the variation space is expressed as in (20).
Optimal CRB. Applying theorem 3, the optimal CRB of this
full physical model is thus bounded as

9

4
× σ2L2

Pt
≤ CRBmin(θPHY) ≤ 9

2
× σ2L2

Pt
, (26)

its exact value depending on the values of the scalars
c1, . . . , cbNp2 c

. These bounds are 9
4 times larger than the CRB

bounds of the angle-constrained strategy (23), because of the
larger number of real parameters to estimate (3L instead of

2L). It is attained for perfect estimates of the azimuth angles.
A natural estimate of the variation space based an azimuth
estimates reads

V̂θPHY = spanR

({
e(φ̂l),−je(φ̂l),

∂e(φ̂l)

∂φ̂l

}L
l=1

)
. (27)

This estimate can be used directly to design pilot sequences
according to algorithm 1. The proposed estimation strategy is
summarized in algorithm 3. It fits into a multi-user framework
and a complete transmission strategy exactly as its angle-
constrained counterpart, to which it is pretty similar. The
two main differences with algorithm 2 are the slightly longer
pilot sequences (d 3L2 e instead of L) and the fact that azimuth
angles are not kept fixed but updated. This has the effect of
suppressing the bias and leads to a lower bound on the MSE
comprising only variance, which vanishes at high SNR.

Algorithm 3 High level summary of the proposed estimation
strategy (L even)

Input: Estimates φ̂1, . . . , φ̂L of the azimuth angles (obtained
through previous downlink or uplink channel estimates).

1: Build V̂θPHY = spanR

({
e(φ̂l),−je(φ̂l),

∂e(φ̂l)

∂φ̂l

}L
l=1

)
.

2: Send pilot sequences XPHY of duration d 3L2 e built using
algorithm 1 and receive user feedback to build observa-
tions following (1).

3: Estimate path gains β̂1, . . . , β̂L and update φ̂1, . . . , φ̂L.
4: Estimate channel hPHY(θ̂PHY) =

∑L
l=1 β̂le(φ̂l).

Output: MSE(θ̂PHY) ≥ 9
4 × σ2L2

Pt

Comparison of strategies with azimuth error. Let us now
compare numerically the proposed strategy with the angle-
constrained estimation strategy, taking into account the az-
imuth estimation error. To do so, we consider Nt = 64
antennas at the base station (half-wavelength separated ULA).
First, to illustrate the fundamental difference on a simple
example, we consider a single path channel h = βe(φ) with
estimated azimuth φ̂ = 0 and true azimuth φ = φ̂ + ∆, ∆
being the azimuth estimation error. Then, a lower bound on
the relative MSE (MSE divided by the squared norm of the
channel) is computed for both strategies. Regarding the new
proposed strategy, the lower bound is simply the relative CRB,
which is the bound of theorem 1 divided by the squared norm
of the channel:

σ2

2 ‖h‖22
Tr
[
Re
{

UHMMHU
}−1]

. (28)

with

U =

(
e(φ),

∂e(φ)

∂φ

)
,M =

√
Pt√
2 + 1

(
2

1
4 e(φ̂),

∂e(φ̂)

∂φ̂

)
,

where ∂e(φ)
∂φ is simply the normalized version of ∂e(φ)

∂φ (this
observation matrix is the result of applying algorithm 1). In
this case, the physical model comprises Np = 3 parameters,
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leading to sequences of length d 3L2 e = 2. Regarding the angle-
constrained estimation strategy, the lower bound on the relative
MSE is computed as the maximum of (28) and the relative bias∥∥h− Ê(ÊHÊ)−1ÊHh

∥∥2
2

‖h‖22
, (29)

with
U = e(φ), Ê = e(φ̂),M =

√
Pte(φ̂)

In this case, the simplified physical model comprises Np = 2
parameters, leading to sequences of length L = 1. These error
lower bounds are shown for ∆ ∈ {0.25◦, 1.0◦} on figure 1 as
a function of the potential signal to noise ratio (pSNR)

pSNR ,
Pt ‖h‖22
σ2

,

which is an upper bound on the classical SNR, attained only
if the precoder is perfectly collinear to the channel. From the
figure, it is interesting to notice that, irrespective of the angle
estimation error ∆, the proposed strategy is always theoreti-
cally better than the angle constrained strategy at high pSNR.
This is because it is not biased toward the previously estimated
azimuth angles, as is the angle-constrained strategy, since the
bias is independent of the pSNR. Moreover, at low pSNR, the
proposed strategy is only a few decibels worse than the angle-
constrained one, because of the supplementary parameter to
estimate (in order to update the azimuth estimate). Finally,
as expected, the larger the azimuth estimation error, the lower
the pSNR for which the proposed estimation strategy becomes
better than the angle-constrained. This is because in that case
the bias is larger. The estimation error seems to have much
less effect on the performance of the proposed strategy than
on those of the angle constrained strategy. Once again, this
is explained by the fact that updating the azimuths estimation
allows to reduce the impact of the initial estimation error.
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Fig. 1. Comparison of estimation strategies for single path channels (L = 1).

In order to further validate the approach, let us now study
a more practical scenario, with multipath channels. To do
so, we consider a clustered channel model at a frequency

of 28 GHz, with L being equal to the number of clusters.
The number of clusters and their powers are drawn according
to the NYUSIM channel model [40] in the NLOS scenario,
which yields L ∈ [1, 7]. Azimuth angles corresponding to
the main azimuth of each cluster φ1, . . . , φL are uniformly
distributed between 0 and 2π. In order to simulate the azimuth
estimation error, the estimated azimuths are generated as
φ̂l = φl + δl, δl being uniformly distributed between −∆
and ∆. Pilot sequences are built using algorithm 1. Results
for ∆ ∈ {0.25◦, 1.0◦} are shown on figure 2. The curves
exhibit qualitatively the same behavior as for the single path
case studied before, definitely showing the proposed approach
is an interesting strategy deserving further investigations.
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Fig. 2. Comparison of estimation strategies for multipath channels generated
according to NYUSIM channel model [40]. Averages over 1000 channel
realizations are shown.

VI. CONCLUSION

In this paper, we studied the problem of estimating a channel
of interest parameterized according to a nonlinear model,
based on noisy complex linear measurements, obeying (1).

The Cramér-Rao bound of such a general problem is es-
tablished, showing its key dependency on an R-vector space
we called variation space (theorem 1). The CRB is shown to
be proportional to the trace of the inverse compression of the
observation matrix to the variation space (corollary 1).

The identifiability conditions on the observation matrix
are given (theorem 2), as well as a minimal number of
measurements for identifiability to be possible (corollary 2).

A general result about R-vector spaces is provided
(lemma 1), which allows to decompose the variation space into
C-orthogonal subspaces. Such a decomposition proves useful
in the study of optimal observation matrices which is carried
out next.

The minimal CRB and associated observation matrices of
minimal length are determined (theorem 3). They are shown
to depend only on the observation power, the noise level and
intrinsic properties of the variation space.
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The results obtained for the general estimation problem are
then particularized to MIMO channel estimation. It is shown
that the general framework allows to retrieve well-known
results, but also to derive optimal pilot sequences of minimal
length in a setting for which they had not been determined
yet.

In the future, the theoretical results provided here could
be applied to more practical MIMO systems, for example
including hybrid precoding and combining [7], [41], [42].
They could allow to determine optimal pilot sequences in
this context, as well as to quantify the suboptimality of
existing or simpler schemes. They could also very well be
applied outside the MIMO channel estimation scope, for any
estimation problem whose observation model fits (1). Note
that the strength of this study lies in its generality, since it
encompasses all deterministic models, linear or not, depending
on real or complex parameters, and is valid for any unbiased
estimator. This renders the obtained results potentially useful
well beyond the scope of channel estimation.

APPENDIX A
PROOF OF LEMMA 1

(i) The general strategy of the proof is to exhibit an R-
orthonormal basis of E in which vectors can be grouped by
two so that vectors of different groups are C-orthogonal. The
first step of the proof amounts to link the real and complex
inner products as

〈a,b〉C = Re{aHb}+ jIm{aHb} = 〈a,b〉R + j〈ja,b〉R.
(30)

Now, the idea is to maximize the second term of this sum
(which will automatically cancel the first one) in order to
build recursively an R-orthonormal basis of E with the sought
properties. To do so, let us choose

(v1,w1) ∈ argmax
(v,w)∈E2
‖v‖2=‖w‖2=1

〈v, jw〉R, (31)

which necessarily exist since the function 〈v, jw〉R to maxi-
mize is continuous and the constraint set is compact. More-
over, let

c1 , max
(v,w)∈E2
‖v‖2=‖w‖2=1

〈v, jw〉R = 〈v1, jw1〉R. (32)

Note that by the Cauchy-Schwarz inequality, c1 ≤ 1. More-
over, c1 ≥ 0 because if 〈v, jw〉R ≤ 0, then 〈−v, jw〉R ≥
〈v, jw〉R. The case c1 = 0 is easily handled since in that case,
any R-orthogonal basis is automatically also C-orthogonal and
(i) is proven. For the case 0 < c1 ≤ 1, let us write the
Lagrangian of the constrained maximization problem (31):

L(v,w, α, β) , 〈v, jw〉R +α(〈v,v〉R−1)+β(〈w,w〉R−1),

where α ∈ R and β ∈ R are the Lagrange multipliers
(voluntarily ignoring the constraint (v,w) ∈ E2 for now).
Differentiating it with respect to v and w and writing the
optimality conditions (introducing the constraint (v,w) ∈ E2)
yields ∀z ∈ E ,

〈jw1 + 2αv1, z〉R = 0 (33)

and
〈jv1 + 2βw1, z〉R = 0 (34)

From there, injecting z = v1 in (33) (resp. z = w1 in (34))
yields −2α = c1 (resp. 2β = c1). Moreover, injecting z =
w1 in (33) yields v1 ⊥R w1, so that spanR({v1,w1}) is of
dimension two. Moreover, if z ∈ E is R-orthogonal to both v1

and w1, then (33) implies that z ⊥C w1 and (34) implies that
z ⊥C v1. This means that E can be decomposed into the direct
sum of a subspace of dimension 2 (spanR({v1,w1})) and a
subspace of dimension d−2 (containing all the z ∈ E that are
R-orthogonal to both v1 and w1) that are C-orthogonal. The
exact same reasoning can then be re-applied to the subspace
of dimension d−2 to prove the lemma by descent, introducing
the vectors v2 and w2 as the solution of (31) on this subspace
and the quantity c2 as the inner product 〈v2, jw2〉. The descent
stops when the dimension of the remaining subspace is strictly
smaller than two, so that if d is odd, the last subspace of the
decomposition is of dimension one.

(ii) Now, let us prove that the subspace of dimension two
identified at each step necessarily belongs to an eigenspace
of the operator PE ◦ PjE . First of all, by the Hilbert pro-
jection theorem, for any x ∈ F we can define PEx ,
argmins∈E ‖x− s‖2 and PjEx , argmins∈jE ‖x− s‖2, which
are the orthogonal projections of x onto E and jE . One can no-
tice that the two projections are linked since PE(jx) = jPjEx.
Then, combining the definition of the projection operators with
(31) and (32) yields

c1v1 = PE(jw1) = jPjEw1

and
c1w1 = PE(jv1) = jPjEv1.

Combining these two equations, we get

PE ◦PjE(v1) = −c21v1

and
PE ◦PjE(w1) = −c21w1,

which proves our claim for the first step of the descent. The
exact same reasoning can be applied at each subsequent step
of the descent.

It is interesting to notice that another (more algebraic) proof
of this lemma is possible, which gives a practical way to obtain
the basis vectors corresponding to the decomposition. Indeed,
let U be any matrix whose columns form an R-orthonormal
basis of E . Then,

UHU = Id + jA,

where the matrix A = Im{UHU} is skew-symmetric, so that
it admits the following real normal form [43, Theorem 8.16]
also known as the Youla decomposition [44] :

BTAB =


0 −c1
c1 0

0 −c2
c2 0

. . .

 , Γ, (35)



SUBMITTED 12

with B ∈ Rd×d a real orthogonal matrix (BTB = Id) whose
columns are eigenvectors of the symmetric positive semi-
definite matrix ATA = −A2 (whose nonzero eigenvalues
are all of multiplicity two and correspond to c21, c

2
2, . . . ), and

where 0 ≤ ck ≤ 1, ∀k. This yields

BTUHUB = Id + jΓ =


1 −jc1

jc1 1
1 −jc2

jc2 1
. . .

 ,

so that the columns of the matrix UB form an R-orthonormal
basis of E in which vectors can be grouped by two so that
vectors of different groups are C-orthogonal. This is exactly
the main claim of lemma 1. In practice, the matrix B and the
values c1, c2, . . . can be obtained by computing the real Schur
decomposition of the matrix Im{UHU} and reordering the
blocks.

We preferred giving a geometric proof here in order to give
more insight on the interaction between R-vector spaces and
C-vector spaces. Indeed, our proof highlights the fact that the
quantity ci can be nicely interpreted as the squared cosine of
the i-th principal angle [45] between E and jE .

APPENDIX B
PROOF OF THEOREM 3

Let us first consider the case where Np is even. Starting
from the result of theorem 1 and using the fact that it holds
true for any matrix whose columns form an R-orthonormal
basis of Vθ, we express the CRB as

CRB(θ,M) =
σ2

2
Tr
[
Re
{

VHMMHV
}−1]

,

where V is the matrix defined in (8) when applying lemma 1
to Vθ.

Next, using the fact that for a symmetric positive semidef-
inite matrix A, (A−1)ii ≥ 1

aii
,∀i [46, Theorem 7.7.15], we

get

Tr
[
Re
{

VHMMHV
}−1]

≥
Np
2∑

k=1

1

‖MHvk‖22
+

1

‖MHwk‖22
,

with an equality if and only if the matrix Re
{

VHMMHV
}

is diagonal. In order to proceed, let us define

ũ+
k =

1√
2(1 + ck)

(vk + jwk)

and
ũ−k =

1√
2(1− ck)

(vk − jwk),

which are unitary vectors such that ũ+
k ⊥C ũ−k , ∀k. These

vectors allow to express∥∥MHvk
∥∥2
2

=
1

2

[
(1 + ck)

∥∥MH ũ+
k

∥∥2
2

+ (1− ck)
∥∥MH ũ−k

∥∥2
2

+
√

1− c2kRe{(ũ+
k )HMMH ũ−k }

]
,

and∥∥MHwk

∥∥2
2

=
1

2

[
(1 + ck)

∥∥MH ũ+
k

∥∥2
2

+ (1− ck)
∥∥MH ũ−k

∥∥2
2

−
√

1− c2kRe{(ũ+
k )HMMH ũ−k }

]
.

Now, let us define P+
k ,

∥∥MH ũ+
k

∥∥2
2
, P−k ,

∥∥MH ũ−k
∥∥2
2

and
dk ,

√
1− c2kRe{(ũ+

k )HMMH ũ−k }, so that we have∑Np
2

k=1

1

‖MHvk‖22
+

1

‖MHwk‖22
=
∑Np

2

k=1

2

(1 + ck)P+
k + (1− ck)P−k + dk

+
2

(1− ck)P−k + (1 + ck)P+
k − dk

≥
∑Np

2

k=1

4

(1− ck)P−k + (1 + ck)P+
k

,

the last inequality being a direct consequence of the fact that
1
a+b + 1

a−b ≥ 2
a (because of the convexity of the inverse

function on R+). It becomes an equality if and only if
dk =

√
1− c2kRe{(ũ+

k )HMMH ũ−k } = 0, ∀k.
In summary, we have

CRB(θ,M) =
σ2

2

∑Np
2

k=1

4

(1− ck)P−k + (1 + ck)P+
k

if and only if Re
{

VHMMHV
}

is diagonal

and Re{(ũ+
k )HMMH ũ−k } = 0, ∀k. Moreover,

‖M‖2F = Tr[MMH ] ≥ ∑Np
2

k=1 P
+
k + P−k , with an equality

if and only if imC(M) ⊂ spanC({ũ+
k , ũ

−
k }

Np
2

k=1). The
optimization problem (6) is thus lower-bounded by the
simpler problem

minimize
P+
k ,P

−
k ,k=1,...,

Np
2

∑Np
2

k=1

4

(1− ck)P−k + (1 + ck)P+
k

,

subject to
∑Np

2

k=1
P+
k + P−k = P.

(36)

Let us solve this problem and then identify matrices M for
which the optimal values of (36) and (6) coincide. It is obvious
that at the optimum of (36), P−k = 0, ∀k, so that it is equivalent
to solve the even simpler problem

minimize
P+
k ,k=1,...,

Np
2

∑Np
2

k=1

4

(1 + ck)P+
k

,

subject to
∑Np

2

k=1
P+
k = P.

(37)

Using the Lagrange multipliers method, it is straightforward
to obtain the optimal powers

(P+
k )opt =

P
√

1 + ck
∑Np

2
j=1

1√
1+cj

,

and the optimal value of the optimization problems (36) and
(37) is∑Np

2

k=1

4

(1 + ck)(P+
k )opt

=
4

P

(∑Np
2

k=1

1√
1 + ck

)2

.
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It is also the optimal value of problem (6), since it is attained
with the observation matrix

Mopt =

(√(
P+
1

)
optũ

+
1 , . . . ,

√(
P+
Np
2

)
opt

ũ+
Np
2

)
,

which indeed guarantees that P+
k = (P+

k )opt and dk = 0, ∀k,
that Re

{
VHMoptM

H
optV

}
is diagonal, and ‖Mopt‖2F = P .

The proof is very similar in the case where Np is odd, the
only difference being that the decomposition of Vθ is the one
given in (9) rather than the one given in (7).
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