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Channel estimation: unified view of optimal

performance and pilot sequences
Luc Le Magoarou, Stéphane Paquelet

Abstract—Channel estimation is of paramount importance in
most communication systems in order to maximize data rate. In
modern systems, the possibly large number of transmit/receive
antennas and subcarriers makes this task difficult. Several
parametric models, either linear or nonlinear, have thus been
proposed to ease channel estimation by reducing the dimension of
the estimation problem. In this paper, the problem of estimating
an object of interest parameterized according to a model, based
on noisy complex linear observations is studied. The Cramér-
Rao bound (CRB) for this general problem is given, highlighting
its key dependency on the introduced variation space. Then,
identifiability conditions are given, and the minimal value of the
CRB, as well as a general strategy to build minimal length power
constrained observation matrices are determined. The results are
finally illustrated in a general wideband MIMO context. They
allow to retrieve well known previous results, but also to exhibit
minimal length optimal pilot sequences in a simple nonlinear
physical model setting. Note that the results of this paper are
general and could perfectly be used in other applications as well.

Index Terms—Channel estimation, parametric model, Cramér-
Rao bound.

I. INTRODUCTION

COMMUNICATION systems make use of a physical

channel to convey information between a transmitter and

a receiver [1]. Knowing the channel state at both ends of

the link allows to maximize the data rate, hence the need

to estimate the channel. This can be carried out by sending

pilot signals known by both the transmitter and the receiver

to gather noisy observations used to estimate the channel.

Recently, the ever-growing need for data rate in modern

communication networks led to use channels of very high

dimension, which makes channel estimation difficult. For

example, it has been recently proposed to use massive multiple

input multiple output (massive MIMO) wireless systems [2],

[3], [4] with a large number of transmit and receive antennas

in the millimeter-wave band [5], [6], where a large bandwidth

can be exploited. In that case the channel comprises hundreds

or even thousands of complex numbers, whose estimation is

a very challenging signal processing problem [7].

In some cases, it is possible to express the channel as a

function of a small number of parameters compared to its

apparent dimension. This way, the dimension of the channel

estimation problem is reduced, which allows to reduce both

the estimation error and the quantity of pilots.

Luc Le Magoarou and Stéphane Paquelet are both with bcom,
Rennes, France. Contact addresses: luc.lemagoarou@b-com.com,
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Contributions and organization. In this paper, we study

channel estimation based on noisy linear observations and a

deterministic channel model, be it linear or not, provided it

is differentiable with respect to the parameters. The studied

problem is formulated in section II. The notion of variation

space is then introduced in section III, where a general result

about R-vector spaces is also stated in order to ease the re-

maining part of the paper. Then, the Cramér-Rao bound (CRB)

[8], [9] of the considered problem is stated in section IV-A,

where its dependency on the variation space is highlighted.

Identifiability conditions on the observation matrices and the

minimal number of observations for which they can be fulfilled

are given in section IV-B. In section IV-C, we express the

minimal variance of any unbiased estimator by optimizing

the CRB under a power constraint on the observation matrix.

Associated observation matrices of minimal length are also

exhibited. Note that the strength of this study lies in its gen-

erality, since it encompasses all deterministic models, linear

or not, depending on real or complex parameters, and is valid

for any unbiased estimator. This renders the obtained results

potentially useful well beyond the scope of channel estimation.

These results are illustrated in a wideband MIMO context in

section V. It is shown that the general framework allows to

retrieve well-known results previously established for linear

models, but also to derive optimal pilot sequences of minimal

length in settings for which they had not been determined yet.

The example of a very simple MIMO channel made of a single

path is taken to illustrate this fact.

Note that this paper is based on some of our previous work

[10], [11], in which the Cramér-Rao bound in the specific case

of a physical channel model was stated. The novelty of this

paper is that the Cramér-Rao bound is here optimized, and the

derivation is more general since it is valid for any parametric

model.

Related work. This paper generalizes results obtained in the

case of a linear deterministic channel model, both in a MIMO

context [12], [13] and for multicarrier systems [14], [15]. A

notable difference is that the analysis of the present paper

is based on the CRB (which depends only on the model

and not on the estimation method) and not directly on the

error incurred by a specific estimator, as is the case for the

aforementioned papers.

There is also a vast body of literature regarding optimal

pilot sequences in a bayesian channel estimation setting [16],

[17], [18], for which the channel is assumed to follow a

known distribution. In that case, the optimal pilot sequences

have to span the space generated by the leading eigenvectors

of the channel covariance matrix (which correspond in some
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sense to the space most likely to contain the channel). These

approaches are different in nature from the one of this paper,

since (i) they consider a specific estimator (the linear minimum

mean squared error (LMMSE)), and (ii) their objective is to

minimize the estimation error in average over the channel

distribution. On the other hand, the present paper is estimator

independent and its objective can be seen as the minimization

of the error for a given channel realization.

Recently, it has also been proposed to look for optimal pilot

sequences in a multi-user bayesian setting. In [19], sequences

are found by numerical optimization, minimizing a weighted

sum of the channel estimation errors of each user. In [20]

and [21], heuristics are proposed which amount to send pilot

sequences that span the union of the spaces generated by the

leading eigenvectors of the channel correlation matrices of all

users.

The optimization part of this paper is in spirit similar to

the one of [22]. Indeed, in [22] the objective is to find the

optimal power constrained covariance matrix which maximizes

the mutual information formula. Here, it is to find the optimal

power constrained observation matrix which minimizes the

CRB. Moreover, the proof of [22] uses a bound on the

determinant of a matrix by the product of its diagonal entries,

with an equality if and only if the matrix is diagonal (which

is the case at the optimal). Here, we use a bound on the trace

of the inverse of a matrix by the sum of the inverses of its

diagonal entries, with an equality also if and only if the matrix

is diagonal (which is also the case at the optimal).

II. PROBLEM FORMULATION

Notations. Matrices and vectors are denoted by bold upper-

case and lower-case letters: A and a (except 3D “spatial”

vectors that are denoted −→a ); the ith column of a matrix

A by ai; its entry at the ith line and jth column by aij .

A[i:j,:] denotes the matrix built taking the rows i to j of A

(matlab style indexing). A matrix transpose, conjugate and

transconjugate is denoted by AT , A∗ and AH respectively.

The trace of a linear transformation represented by A is

denoted Tr(A). The linear span of a set of vectors A and

its dimension (if it is a vector space) are denoted: span
R
(A)

and dimR(A) when considering linear combinations with real

coefficients, or span
C
(A) and dimC(A) when considering

linear combinations with complex coefficients. The orthogonal

complement of a subspace W is denoted W⊥. The Kronecker

product is denoted by ⊗.The identity matrix is denoted by Id.

CN (µ,Σ) denotes the standard complex gaussian distribution

with mean µ and covariance Σ. E(·) denotes the expectation

and cov(·) the covariance of its argument.

We consider the general channel estimation setting where a

channel h ∈ CNd is to be estimated, where Nd is the number

of complex dimensions of the channel. We assume it is deter-

ministic and follows a parametric model depending on Np real

parameters. It can then be seen as a function h : RNp → CNd

that maps each parameters value to the corresponding channel

(we will denote the channel indifferently h or h(θ) depending

on the context). Note that this is the most generic setting since

complex parameters can always be decomposed into real and

imaginary parts (or modulus and angle) and thus correspond to

two real parameters each. The only assumption that we make

about the channel model is that the function h is differentiable

with respect to the parameters.

Estimation is made based on Nm noisy linear measurements

of the form

y = MHh+ n, (1)

where n ∈ CNm corresponds to the noise whose entries

are assumed i.i.d. complex gaussians of variance σ2, so that

n ∼ CN
(

0, σ2IdNm

)

, and M ∈ CNd×Nm is the observation

matrix, which is entirely determined by the pilot sequences

sent by the emitter and the combining operations done at

the receiver. this way of expressing the observations is very

general (an example in a MIMO wideband context is given in

section V).

The estimator of the parameters is a function mapping

obervations to estimates, denoted θ̂ : CNm → RNp . The

estimate θ̂(y) will be denoted θ̂ (as the estimator) for shorter

notations. The channel estimate is given by the model function,

as h(θ̂).
The error is measured by the mean squared error (MSE):

MSE(θ̂) , E

[

∥

∥h(θ)− h(θ̂)
∥

∥

2

2

]

=
∥

∥h(θ)− E[h(θ̂)]
∥

∥

2

2
+ E

[

∥

∥h(θ̂)− E[h(θ̂)]
∥

∥

2

2

]

,

where the expectation is taken over the noise distribution, and

the second line corresponds to the well-known bias-variance

decomposition [23]. We assume throughout the paper that the

considered channel estimators are unbiased with respect to

h(θ), which reads E[h(θ̂)] = h(θ). It follows

MSE(θ̂) = E

[

∥

∥h(θ̂)− E[h(θ̂)]
∥

∥

2

2

]

= Tr[cov(h(θ̂))]. (2)

This way, the bias is null and the MSE is entirely due to the

variance of the estimator h(θ̂).
In this paper, we express this variance term as a function of

the observation matrix and optimize it under a power constraint

in order to exhibit optimal pilot sequences and the associated

minimal variance, for any deterministic channel model.

III. VARIATION SPACE

In this section, the notion of variation space, which plays

a central role in the analysis we propose, is first introduced.

Then, a result allowing to decompose it in order to ease the

following analysis is stated.

A. Preliminaries

We begin this section by defining notions needed for our

analysis. First, let ∂h
∂θ

,
(

∂h
∂θ1

, . . . , ∂h
∂θNp

)

∈ CNd×Np be

the complex gradient of the channel with respect to its real

parameters. We will make extensive use of the set defined

below.

Definition 1. (Variation space) Let the set

Vθ ,

{

∂h

∂θ
x, x ∈ R

Np

}
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be the variation space around the parameters value θ. This is

the set corresponding to the potential directions of variation of

the channel due to infinitesimal variations in the parameters

value.

It is interesting to note that the variation space has the

structure of an R-vector space, since it contains all linear

combinations of the columns of ∂h
∂θ

with real coefficients.

However, Vθ is not necessarily a C-vector space, since it

does not contain all linear combinations of the columns of
∂h
∂θ

with complex coefficients. This subtle distinction will

play a major role in the subsequent analysis, as evidenced

in section IV. To makes things clearer, we define also the real

inner product 〈x,y〉R , Re{xHy}. Two vectors x and y are

said to be real-orthogonal (or R-orthogonal) if 〈x,y〉R = 0.

Let E be a R-vector space, we denote dimR(E) its dimension

with the scalar field R. Similarly, we denote the classical

complex inner product 〈x,y〉C , xHy, and two vectors x

and y are said to be complex-orthogonal ((or C-orthogonal))

if 〈x,y〉C = 0. Let F be a C-vector space, we denote dimC(F)
its dimension with the scalar field C. Note that any C-vector

space is also a R-vector space of doubled dimension, so that

dimR(F) = 2dimC(F).

B. Decomposition of the variation space

As stated in the previous subsection, the set Vθ is an R-

vector space but not necessarily a C-vector space. Indeed, the

set Vθ is lacking stability when multiplying with the imaginary

constant j to be a C-vector space. However, the eigenspaces of

the matrix MMH are intrinsically C-vector spaces, so that it

is necessary to characterize the set Vθ with respect to C-vector

spaces in order to fully understand the relationship between the

variation space and the observation matrix, as will be useful

when analyzing the CRB.
1) General result: To do so, let us first state an important

result that will help decomposing Vθ into a direct sum of C-

orthogonal subspaces.

Lemma 1. (i) Any R-vector space E of dimension d that

belongs to a C-vector space F (containing jE) can be decom-

posed into the direct sum of subspaces of dimension 2 (and

possibly a subspace of dimension one if d is odd) that are mu-

tually C-orthogonal. (ii) The subspaces of the aforementioned

decomposition belong to eigenspaces of PE ◦PjE , where PE
(resp. PjE ) is the orthogonal projection onto E (resp. jE).

Proof. (i) The general strategy of the proof is to exhibit an

R-orthonormal basis of E in which vectors can be grouped by

two so that vectors of different groups are C-orthogonal. The

first step of the proof amounts to link the real and complex

inner products as

〈a,b〉C = Re{aHb}+jIm{aHb} = 〈a,b〉R+j〈ja,b〉R. (3)

Now, the idea is to maximize the second term of this sum

(which will automatically cancel the first one) in order to

build recursively an R-orthonormal basis of E with the sought

properties. To do so, let us choose

(v1,w1) ∈ argmax
(v,w)∈E2

‖v‖2=‖w‖2=1

〈v, jw〉R, (4)

which necessarily exist since the function 〈v, jw〉R to maxi-

mize is continuous and the constraint set is compact. More-

over, let

c1 , max
(v,w)∈E2

‖v‖2=‖w‖2=1

〈v, jw〉R = 〈v1, jw1〉R. (5)

Note that by the Cauchy-Schwarz inequality, c1 ≤ 1. More-

over, c1 ≥ 0 because if 〈v, jw〉R ≤ 0, then 〈−v, jw〉R ≥
〈v, jw〉R. The case c1 = 0 is easily handled since in that case,

any R-orthogonal basis is automatically also C-orthogonal and

(i) is proven. For the case 0 < c1 ≤ 1, let us write the

Lagrangian of the constrained maximization problem (4):

L(v,w, α, β) , 〈v, jw〉R+α(〈v,v〉R −1)+β(〈w,w〉R−1),

where α ∈ R and β ∈ R are the Lagrange multipliers

(voluntarily ignoring the constraint (v,w) ∈ E2 for now).

Differentiating it with respect to v and w and writing the

optimality conditions (introducing the constraint (v,w) ∈ E2)

yields ∀z ∈ E ,

〈jw1 + 2αv1, z〉R = 0 (6)

and

〈jv1 + 2βw1, z〉R = 0 (7)

From there, injecting z = v1 in (6) (resp. z = w1 in (7)) yields

−2α = c1 (resp. 2β = c1). Moreover, injecting z = w1 in (6)

yields v1 ⊥R w1, so that span
R
({v1,w1}) is of dimension

two. Moreover, if z ∈ E is R-orthogonal to both v1 and w1,

then (6) implies that z ⊥C w1 and (7) implies that z ⊥C v1.

This means that E can be decomposed into the direct sum of

a subspace of dimension 2 (span
R
({v1,w1})) and a subspace

of dimension d − 2 (containing all the z ∈ E that are R-

orthogonal to both v1 and w1) that are C-orthogonal. The

exact same reasoning can then be re-applied to the subspace

of dimension d−2 to prove the lemma by descent, introducing

the vectors v2 and w2 as the solution of (4) on this subspace

and the quantity c2 as the inner product 〈v2, jw2〉. The descent

stops when the dimension of the remaining subspace is strictly

smaller than two, so that if d is odd, the last subspace of the

decomposition is of dimension one.

(ii) Now, let us prove that the subspace of dimension two

identified at each step necessarily belongs to an eigenspace

of the operator PE ◦ PjE . First of all, by the Hilbert pro-

jection theorem, for any x ∈ F we can define PEx ,

argmin
s∈E ‖x− s‖2 and PjEx , argmin

s∈jE ‖x− s‖2, which

are the orthogonal projections of x onto E and jE . One can no-

tice that the two projections are linked since PE(jx) = jPjEx.

Then, combining the definition of the projection operators with

(4) and (5) yields

c1v1 = PE(jw1) = jPjEw1

and

c1w1 = PE(jv1) = jPjEv1.

Combining these two equations, we get

PE ◦PjE(v1) = −c21v1

and

PE ◦PjE(w1) = −c21w1,
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which proves our claim for the first step of the descent. The

exact same reasoning can be applied at each subsequent step

of the descent.

It is interesting to notice that another (more algebraic) proof

of this lemma is possible, which gives a practical way to obtain

the basis vectors corresponding to the decomposition. Indeed,

let U be any matrix whose columns form an R-orthonormal

basis of E . Then,

UHU = Id+ jA,

where the matrix A = Im{UHU} is skew-symmetric, so that

it admits the following normal form [24, Theorem 8.16] :

QTAQ =



















0 −c1
c1 0

0 −c2
c2 0

. . .

0



















, Γ,

with Q ∈ Rd×d a real orthogonal matrix (QTQ = Id) whose

columns are eigenvectors of the symmetric positive semi-

definite matrix ATA = −A2 (whose nonzero eigenvalues

are all of multiplicity two and correspond to c21, c
2
2, . . . ), and

where 0 ≤ ck ≤ 1, ∀k. This yields

QTUHUQ = Id+jΓ =



















1 −jc1
jc1 1

1 −jc2
jc2 1

. . .

1



















,

so that the columns of the matrix UQ form an R-orthonormal

basis of E in which vectors can be grouped by two so that

vectors of different groups are C-orthogonal. This is exactly

the main claim of lemma 1.

We preferred giving a geometric proof here in order to give

more insight on the interaction between R-vector spaces and

C-vector spaces. Indeed, our proof highlights the fact that the

quantity ci can be nicely interpreted as the squared cosine of

the i-th principal angle [25] between E and jE .

2) Application to Vθ: Applying lemma 1 to the variation

space Vθ (assuming it is of dimension Np and Np is even), it

is possible to decompose it as

Vθ = span
R

({

v1,w1, . . . ,vNp
2

,wNp
2

})

(8)

where vH
mvn = δmn, wH

mwn = δmn and vH
mwn = −δmnjcm

(δ being the Kronecker symbol). Let us introduce the matrix

V ,

(

v1,w1, . . . ,vNp
2

,wNp
2

)

(9)

whose columns form an R-orthonormal basis of Vθ . Similarly,

if Np is odd, the decomposition reads

Vθ = span
R

({

v1,w1, . . . ,v⌊

Np
2

⌋,w⌊

Np
2

⌋,v⌊

Np
2

⌋

+1

})

,

(10)

where vH
mvn = δmn, wH

mwn = δmn and vH
mwn = −δmnjcm,

and the matrix V can be built the same way. In practice,

the matrix V can be obtained by exhibiting any matrix U

whose columns form an R-orthonormal basis of Vθ, then

finding a matrix Q whose columns form a basis of eigen-

vectors for the matrix −Im{UHU}2 (eigenvalues sorted in

decreasing order). Then, we simply have V = UQ and ck
corresponds to the square root of the k-th greatest eigenvalue

of −Im{UHU}2.

IV. CRAMÉR-RAO BOUND AND OPTIMAL OBSERVATION

MATRICES

In this section, the Cramér-Rao bound is analyzed in order

to exhibit optimal observation matrices, from which can be

deduced optimal pilot sequences. The expression of the CRB

is first given. The identifiability of the parameters is then

studied. Finally, optimal observations matrices under a power

constraint are characterized.

A. Expression of the CRB

Let us give a general expression for the Cramér-Rao bound

[8], [9], which is a lower bound on the variance of any

unbiased estimator. The complex CRB [26] takes the form

CRB(θ,M) , Tr

[

∂h

∂θ
I(θ,M)−1 ∂h

∂θ

H]

where I(θ,M) ∈ RNp×Np is the Fisher information matrix

(FIM) which quantifies the amount of information about the

parameters θ that the observation y carries when using the

observation matrix M. This is a lower bound in the sense that

Tr
[

cov
(

h(θ̂)
)

]

≥ CRB(θ,M).

In the general setting we consider, the CRB can be ex-

pressed in a very simple way, as shown by the following

theorem.

Theorem 1. Provided dimR(Vθ) = Np, the Cramér-Rao

bound is expressed as

CRB(θ,M) =
σ2

2
Tr

[

Re

{

UHMMHU
}−1

]

,

where U is any matrix whose columns form an R-orthonormal

basis of the variation space Vθ .

Proof. The observation defined in (1) follows a gaussian

distribution,

y ∼ CN
(

MHh, σ2Id
)

,

so that the FIM is given by the Slepian-Bangs formula [27],

[28], [29]:

I(θ,M) =
2

σ2
Re

{

∂h

∂θ

H

MMH ∂h

∂θ

}

.

In this form, the FIM is difficult to invert, because it involves

the real part of a complex matrix. In [10], we proposed

to use real representations of complex matrices to get rid

of this problem. Here, in order to gain a deeper geometric

understanding of the bound, let us use the Gram-Schmidt
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process on the gradient matrix ∂h
∂θ

, with the real inner product

〈., .〉R to decompose it as

∂h

∂θ
= UR,

where U ∈ CNd×K is a matrix whose columns are R-

orthonormal (meaning that Re
{

UHU
}

= IdK), R ∈
R

K×Np is a real upper-triangular matrix, and K = dimR(Vθ).
This decomposition of the gradient matrix allows to rewrite

the FIM

I(θ,M) =
2

σ2
RT

Re

{

UHMMHU
}

R,

since Re{AHBA} = AT
Re{B}A as soon as A is a real

matrix. Now, if and only if R is invertible, which is equivalent

to K = Np, the CRB is expressed

CRB(θ,M) = Tr

[

∂h

∂θ
I(θ,M)−1∂h

∂θ

H]

=
σ2

2
Tr

[

URR−1
Re

{

UHMMHU
}−1

R−TRTUH

]

=
σ2

2
Tr

[

Re

{

UHMMHU
}−1

]

.

In order to conclude, one can remark that

Tr

[

Re

{

UHMMHU
}−1

]

= Tr

[

Re

{

QTUHMMHUQ
}−1

]

for any real orthogonal matrix Q ∈ RNp×Np , so that the

equation holds true for any matrix whose columns form an

R-orthogonal basis of Vθ.

The result of this theorem shows an invariance property, it

is true for any matrix U whose columns are an R-orthonormal

basis of Vθ . Moreover, the matrix Re
{

UHMMHU
}

can be

given a nice interpretation. Indeed, the orthogonal projection

PVθ
z of any vector z onto Vθ is expressed

PVθ
z =

∑Np

i=1
〈ui, z〉Rui = URe{UHz},

so that Re{UHz} corresponds to the coordinates of the

projection in the basis given by U. Now, if z = MMHt

with t ∈ Vθ then Re
{

UHMMHt
}

= Re
{

UHMMHU
}

r

for some r ∈ RNp corresponding to the coordinates of t

in the basis given by U. It means that Re
{

UHMMHU
}

is the matrix that corresponds to the operator PVθ
MMH

restricted to Vθ when expressed in the basis given by U.

Such an operator corresponds to the notion of compression

in functional analysis.

Definition 2. (Compression [30, p.120]) Let H be a subspace

of a Hilbert space K, let PH be the orthogonal projection

from K onto H, and let B : K → K be a linear operator on

K. The linear operator A : H → H is the compression of B

to H, denoted [B]H, if

Ax = PHBx, ∀x ∈ H.

In the following, and when no confusion is possible, we

denote the same way a matrix A and the operator associated

to the multiplication by A. Moreover, for an operator A :
H → H where H is a K-vector space (K ∈ {R,C}), we

define its trace as

Tr [A] ,
∑Np

i=1
〈vi,Avi〉K,

where {v1, . . . ,vNp
} is any K-orthonormal basis of H. It

coincides with the sum of the diagonal elements of a matrix

when the operator action is a matrix multiplication. These two

notions allow to express the CRB in a simpler form, as in the

following corollary (which is nothing more than a coordinate-

free version of theorem 1).

Corollary 1. Provided dimR(Vθ) = Np, the Cramér-Rao

bound admits an intrinsic expression as

CRB(θ,M) =
σ2

2
Tr

[

(

[

MMH
]

Vθ

)−1
]

,

where
[

MMH
]

Vθ

is the compression of MMH to the varia-

tion space Vθ .

This form of the CRB shows that the minimal variance

of any unbiased estimator is determined by the interaction

between the observation matrix M and the potential directions

of variations of the channel due to infinitesimal variations of

the parameters around their value, represented by the set Vθ.

This fact, which is key in our analysis, is further exploited in

the following subsections.

B. Identifiability

Parameters are said to be identifiable if and only if the CRB

is finite,

Identifiability ⇔ CRB(θ,M) < +∞.

Identifiability imposes conditions on the variation space Vθ

and on the observation matrix M, as stated in the following

theorem.

Theorem 2. The parameters are identifiable if and only if

dimR(Vθ) = Np

and

Vθ ∩ imC(M)⊥ = {0}.

Proof. The first condition dimR(Vθ) = Np is equivalent to

the invertibility of R that was shown to be a necessary

condition for the CRB to be finite in section IV-A. When

this condition is fulfilled, identifiability holds if and only if

the matrix Re

{

UHMMHU
}

is invertible. This matrix being

symmetric, it is invertible if and only if

∀x 6= 0 ∈ R
Np , xT

Re

{

UHMMHU
}

x 6= 0.

Moreover, for any real vector x, xT
Re

{

UHMMHU
}

x =

xTUHMMHUx. Thus, recalling that Vθ = imR(U), identi-

fiability holds if and only if

∀z 6= 0 ∈ Vθ, z
HMMHz =

∥

∥MHz
∥

∥

2

2
6= 0,



SUBMITTED 6

which is equivalent (since ker(MH) = imC(M)⊥) to

Vθ ∩ imC(M)⊥ = {0}.

Interpretations. The first identifiability condition

dimR(Vθ) = Np means that the columns of ∂h
∂θ

have to

be linearly independent over R for identifiability to be

possible, whatever the observation matrix. Said differently,

the number of degrees of freedom of the variation space

has to be equal to the number of parameters to estimate, so

that small variations of the channel h due to an infinitesimal

variation in the value of any parameter cannot be mistaken

with small variations of the channel due to infinitesimal

variations in the values of the other parameters. Note that

since dimR(Vθ) ≤ 2Nd, this condition implies Np ≤ 2Nd,

which means that it is impossible to identify a number of

parameters that is more than twice the dimension of the

observations space.

Then, if the first condition is fulfilled, the second condition

Vθ ∩ imC(M)⊥ = {0} means that no nonzero vector in the

space of variations Vθ can be orthogonal to the column space

of the observation matrix M for identifiability to hold. Said

differently, the observation matrix has to preserve some energy

for any element of the space of variations, every infinitesimal

variation in the values of the parameters has to cause a change

in the observation vector y.

Number of observations. Identifiability directly imposes a

minimal number of observations Nm, as stated in the following

corollary.

Corollary 2. Parameters can be identifiable only if

Nm ≥ Np

2
.

Proof. Identifiability can be stated:

∀z 6= 0 ∈ Vθ, M
Hz 6= 0,

which is possible only if the R-dimension of ker(MH) plus

the R-dimension of Vθ is no greater than the R-dimension

of the ambient space CNd (so that they can have a trivial

intersection). This writes

dimR(ker(MH)) +Np ≤ 2Nd.

Moreover, dimR(ker(MH)) = 2Nd−dimR(imC(M
H)) (rank-

nullity theorem), so that we end up with

dimR(imC(M
H)) ≥ Np.

The R-dimension of a C-vector space being twice its C-

dimension and the C-dimension being upper-bounded by the

number of columns, we finally get

Nm ≥ dimC(imC(M
H)) ≥ Np

2
,

which proves the result.

We just showed that the minimal number of observations

Nm required for identifiability to be possible is ⌈Np

2 ⌉. In other

words, the matrix M has to have at least ⌈Np

2 ⌉ columns for

the CRB to be finite. As will be shown in the next subsection,

there always exist an optimal observation matrix having ⌈Np

2 ⌉
columns.

C. Optimality

Let us now determine the minimal value of the CRB under

a power constraint, and the observation matrices allowing to

attain it. This corresponds to solve the optimization problem:

minimize
M

CRB(θ,M),

subject to ‖M‖2F = P.
(11)

Note that the quantity ‖M‖2F = P = Tr(MMH) corresponds

to the observation power, which is proportional to the received

power not directly equal to the transmitted power. The two

quantities are linked in section V. The main result of this

paper is given by the following theorem.

Theorem 3. If Np is even, the minimal value of the CRB is

CRBmin(θ) ,
2σ2

P

(

∑

Np

2

k=1

1√
1 + ck

)2

,

where the scalars ck are defined at (8). It is attained with

M =

√

P

C





v1 + jw1

(1 + c1)
3
4

, . . . ,
vNp

2

+ jwNp
2

(1 + cNp
2

)
3
4



 ,

where C , 2
∑

Np
2

l=1
1√
1+cl

and the vectors vk,wk are defined

at (8).

If Np is odd, the minimal value of the CRB is

CRBmin(θ) ,
2σ2

P

(

∑

⌊

Np
2

⌋

k=1

1√
1 + ck

+
1

2

)2

,

where the scalars ck are defined at (10). It is attained with

M =

√

P

C





v1 + jw1

(1 + c1)
3
4

, . . . ,

v⌊

Np
2

⌋ + jw⌊

Np
2

⌋

(1 + c⌊Np
2

⌋)
3
4

,v⌊

Np

2

⌋

+1



 ,

where C , 2
∑

⌊

Np
2

⌋

l=1
1√
1+cl

+ 1 and the vectors vk,wk are

defined at (10).

Proof. Let us first consider the case where Np is even. Starting

from the result of theorem 1 and using the fact that it holds

true for any matrix whose columns form an R-orthonormal

basis of Vθ , we express the CRB as

CRB(θ,M) =
σ2

2
Tr

[

Re

{

VHMMHV
}−1

]

,

where V is the matrix defined in (9) when applying lemma 1

to Vθ .

Next, using the fact that for a symmetric positive semidef-

inite matrix A, (A−1)ii ≥ 1
aii

, ∀i [31, Theorem 7.7.15], we

get

Tr

[

Re

{

VHMMHV
}−1

]

≥
Np
2
∑

k=1

1

‖MHvk‖22
+

1

‖MHwk‖22
,
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with an equality if and only if the matrix Re

{

VHMMHV
}

is diagonal. In order to proceed, let us define

ũ+
k =

1
√

2(1 + ck)
(vk + jwk)

and

ũ−
k =

1
√

2(1− ck)
(vk − jwk),

which are unitary vectors such that ũ+
k ⊥C ũ−

k , ∀k. These

vectors allow to express

∥

∥MHvk

∥

∥

2

2
=

1

2

[

(1 + ck)
∥

∥MHũ+
k

∥

∥

2

2
+ (1− ck)

∥

∥MHũ−
k

∥

∥

2

2

+
√

1− c2kRe{(ũ+
k )

HMMH ũ−
k }
]

,

and

∥

∥MHwk

∥

∥

2

2
=

1

2

[

(1 + ck)
∥

∥MH ũ+
k

∥

∥

2

2
+ (1 − ck)

∥

∥MHũ−
k

∥

∥

2

2

−
√

1− c2kRe{(ũ+
k )

HMMH ũ−
k }
]

.

Now, let us define P+
k ,

∥

∥MHũ+
k

∥

∥

2

2
, P−

k ,
∥

∥MHũ−
k

∥

∥

2

2
and

dk ,
√

1− c2kRe{(ũ+
k )

HMMH ũ−
k }, so that we have

∑

Np
2

k=1

1

‖MHvk‖22
+

1

‖MHwk‖22
=
∑

Np
2

k=1

2

(1 + ck)P
+
k + (1− ck)P

−
k + dk

+
2

(1− ck)P
−
k + (1 + ck)P

+
k − dk

≥
∑

Np
2

k=1

4

(1 − ck)P
−
k + (1 + ck)P

+
k

,

the last inequality being a direct consequence of the fact that
1

a+b
+ 1

a−b
≥ 2

a
(because of the convexity of the inverse

function on R+). It becomes an equality if and only if

dk =
√

1− c2kRe{(ũ+
k )

HMMH ũ−
k } = 0, ∀k.

In summary, we have

CRB(θ,M) =
σ2

2

∑

Np
2

k=1

4

(1− ck)P
−
k + (1 + ck)P

+
k

if and only if Re

{

VHMMHV
}

is diagonal

and Re{(ũ+
k )

HMMHũ−
k } = 0, ∀k. Moreover,

‖M‖2F = Tr[MMH ] ≥ ∑

Np
2

k=1 P
+
k + P−

k , with an equality

if and only if imC(M) ⊂ span
C
({ũ+

k , ũ
−
k }

Np
2

k=1). The

optimization problem (11) is thus lower-bounded by the

simpler problem

minimize
P

+

k
,P

−
k
,k=1,...,

Np
2

∑

Np
2

k=1

4

(1− ck)P
−
k + (1 + ck)P

+
k

,

subject to
∑

Np

2

k=1
P+
k + P−

k = P.

(12)

Let us solve this problem and then identify matrices M for

which the optimal values of (12) and (11) coincide. It is

obvious that at the optimum of (12), P−
k = 0, ∀k, so that

it is equivalent to solve the even simpler problem

minimize
P

+

k
,k=1,...,

Np
2

∑

Np
2

k=1

4

(1 + ck)P
+
k

,

subject to
∑

Np
2

k=1
P+
k = P.

(13)

Using the Lagrange multipliers method, it is straightforward

to obtain the optimal powers

(P+
k )opt =

P

√
1 + ck

∑

Np
2

j=1
1√
1+cj

,

and the optimal value of the optimization problems (12) and

(13) is

∑

Np

2

k=1

4

(1 + ck)(P
+
k )opt

=
4

P

(

∑

Np

2

k=1

1√
1 + ck

)2

.

It is also the optimal value of problem (11), since it is attained

with the observation matrix

Mopt =

(

√

(

P+
1

)

opt
ũ+
1 , . . . ,

√

(

P+
Np
2

)

opt

ũ+
Np
2

)

,

which indeed guarantees that P+
k = (P+

k )opt and dk = 0, ∀k,

that Re

{

VHMoptM
H
optV

}

is diagonal, and that ‖Mopt‖2F =

P .

The proof is very similar in the case where Np is odd, the

only difference being that the decomposition of Vθ is the one

given in (10) rather than the one given in (8).

This theorem exhibits the fact that the optimal CRB depends

on the noise level σ2, the observation power P and the

properties of the variation space Vθ , namely its dimension

Np and the quantities ck. Moreover it can be bounded above

and below as

σ2N2
p

4P
≤ CRBmin(θ) ≤

σ2N2
p

2P
,

with an equality on the left if and only if Np is even and

ck = 1, ∀k (Vθ is then a C-vector space), and equality on the

right if and only if ck = 0, ∀k (Vθ is then R-orthogonal to

jVθ).

Regarding the optimal observation matrices, a generic strat-

egy to design them is the following:

1) Compute ∂h
∂θ

,

2) Perform a QR factorization to get U,

3) Compute the eigendecomposition of Im{UHU} to get

vk, wk, ck, ∀k,

4) Apply theorem 3.

Note that this strategy does not always lead to schemes that

are realizable in practice. Indeed, ∂h
∂θ

may depend on the true

parameters value θ (which is unknown). The strategy can be

implemented only if; either ∂h
∂θ

is a constant with respect to

θ, or it can be estimated beforehand (as evoked in the next

section in the case of MIMO channel estimation, where it can

be determined based on the uplink channel estimates).
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V. ILLUSTRATIONS OF THE RESULTS

Let us now introduce the most widespread parametric

models used for channel estimation in a wideband MIMO

context, which will be used to illustrate the applicability of

the main results of the paper. However, note that the results

are applicable to any parametric model and any application

context, not just those presented here.

Setting. We consider the general case where the channel to

estimate is between Nt transmit antennas and Nr receive

antennas, on Nf subcarriers. This situation leads to a com-

plex channel vector of dimension Nd = NrNtNf denoted

h ∈ CNrNtNf , where hijk is the channel between the j-

th transmit antenna and the i-th receive antenna on the k-th

subcarriers. The observation matrix M takes a particular form

in this context. Indeed, if the transmitter sends a pilot sequence

of length T corresponding to the matrix X ∈ CNt×T on Nps

pilot subcarriers, then the signal at the receive antennas can

be written as in (1) with

M = IdNr
⊗X⊗ F ∈ C

NrNtNf×NrTNps , (14)

where F ∈ {0, 1}Nf×Nps is a column-sampled identity ma-

trix, keeping only the columns corresponding to the selected

pilot subcarriers. In such a setting, the number of complex

observations is Nm = NrTNps, and the transmitted power is

Pt , Nps ‖X‖22. On the other hand, the observation power

which is constrained in the optimization problem (11), is ex-

pressed P = ‖M‖22 = NrNps ‖X‖22. We thus have P = NrPt,

acknowledging the fact that adding receive antennas increases

the received power P without changing the transmitted power

Pt.

A. Least squares model

The most direct way to parameterize the channel is to take

as Np = 2NrNtNf = 2Nd parameters the real and imaginary

parts of the channel entries,

θLS , (Re(h)T , Im(h)T )T ∈ R
2NrNtNf ,

This leads to a linear channel model, expressed in function of

the parameters as

hLS(θLS) =
(

Id, jId
)

θLS. (15)

The observation defined in (1) then reads y =
(MH , jMH)θLS + n and the maximum likelihood estimation

problem becomes a least squares problem, hence the name of

the model. In this case, ∂h
∂θLS

= (Id, jId), which, following

the definition of the variation space gives

VθLS
= C

NrNtNf . (16)

This particular variation space can decomposed according to

lemma 1 as

VθLS
= span

R

({

b1,−jb1, . . . ,bNrNtNf
,−jbNrNtNf

})

,

where {b1, . . . ,bNrNtNf
} is any C-orthonormal basis of

CNrNtNf , and c1 = · · · = cNrNtNf
= 1.

Optimal CRB. Applying theorem 3, the optimal CRB of this

model is then

CRBmin(θLS) =
σ2N2

t N
2
fN

2
r

P
. (17)

It is attained for observation matrices of the form

MLS =

√

P

NrNtNf

(

b1, . . . ,bNrNtNf

)

. (18)

Such matrices have NrNtNf =
Np

2 columns, which, accord-

ing to corollary 2 is minimal for identifiability to be possible.

Let us now particularize this result, considering observation

matrix of the form given in (14). In the case of the least squares

model, the variation space is structured as a tensor product of

three simple vector spaces: VθLS
= CNr ⊗ CNt ⊗ CNf . This

factorization allows to derive easily optimal sequence matrices

X. Indeed, in order to span CNr ⊗ CNt ⊗ CNf , the columns

of F necessarily have to span CNf and those of X necessarily

have to span CNt . One simple way to satisfy these constraints

is to take

F = IdNf
and X =

√

Pt

NtNf

S, (19)

where S is unitary. This amounts to send Nt mutually or-

thogonal pilot sequences of duration T = Nt on the different

transmit antennas, on each subcarrier, and leads to

CRBmin(θLS) =
σ2N2

t N
2
fNr

Pt

. (20)

Equations (19) and (20) are nothing but a restatement of a

well-known result [12], in a more general setting (several

subcarriers). The method we propose here indeed allows to

derive results for any linear channel model. However, it is

more powerful since it generalizes also to nonlinear models,

as shown in the next subsections.

B. Physical models

Another way to parameterize the channel is to assume that

h is the sum of L atomic channels corresponding to distinct

physical paths, characterized by their direction of departure

(DoD) −→ut , direction of arrival (DoA) −→ur, delay τ and complex

gain β. Parameters of this kind of model are thus given by

θ =
[

(Re(βl), Im(βl),
−→ur,l,

−→ut,l, τl)
L

l=1

]T

. (21)

The corresponding number of parameters is Np = mL, where

m is the number of real parameters to be estimated per phys-

ical path. The quantity m can take different values depending

on the considered setting. The complex gain βl always has

to be estimated and accounts for two real parameters, so that

m ≥ 2. The DoD −→ut,l can either be assumed: (i) known (or

irrelevant if Nt = 1) and thus account for zero real parameter,

or (ii) unknown in which case it corresponds to a single real

parameter if only the azimuth or elevation is estimated (for

example in the case of a uniform linear array on the transmit

side) or to two real parameters if both azimuth and elevation

are estimated (for example in the case of a uniform planar

array). The same goes for the DoA −→ur,l, replacing transmit
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by receive in the previous sentence. The delay τl can either

be assumed: (i) known (or irrelevant if Nf = 1) and thus

account for zero real parameter, or (ii) unknown in which

case it corresponds to a single real parameter. In summary,

we have 2 ≤ m ≤ 7 depending on the situation. In any case,

the channel is expressed

h(θ) =
L
∑

l=1

βle(
−→ur,l,

−→ut,l, τl), (22)

where e(−→ur,l,
−→ut,l, τl) is the atomic channel of unit norm

corresponding to DoA −→ur,l, DoD −→ut,l and delay τl, that we

will denote el below for compactness. This model is generally

nonlinear (although it is linear with respect to the complex

gains βl). Such physical models are standard [32], [33]. A

specific expression for el can be found for example in [11].
1) Linear physical model: There is an interesting particular

case of the physical model described above, in which all

physical parameters except the ones corresponding to the gains

are assumed known. This corresponds for example to the

situation in which the directions and delays are estimated in

the uplink, and only the gains have to be estimated in the

downlink, thanks to the partial reciprocity of the channel. In

[34], such a setting is studied, with Nr = Nf = 1 and an

ULA at the base station, leading to a single parameter φ to

estimate for the DoD. This leads to the physical model of the

previous paragraph, with m = 2, and the parameters being

θLP ,
[(

Re(βl)
L
l=1, Im(βl)

L
l=1

)]T
. (23)

We thus have Np = 2L, and the channel is expressed

hLP(θLP) =
(

E, jE
)

θLP, (24)

where E ∈ CNd×L , (e(φ1), . . . , e(φL)) is a matrix of

atomic channels corresponding to DoDs estimated in the

uplink, so that e(φi)
He(φj) = δij . We call this model linear

physical model, since knowing all the physical parameters

except for the gains linearizes the estimation problem. Then,
∂h
∂θLP

= (E, jE) and the variation space of this model can

decomposed according to lemma 1 as

VθLP
= span

R
({e1,−je1, . . . , eL,−jeL}) ,

and c1 = · · · = cL = 1.

Optimal CRB. In the case where Nr = Nf = 1, (14)

reduces to M = X and consequently Pt = P . Thus, applying

theorem 3 in that particular case, the optimal CRB of the linear

physical model is

CRBmin(θLP) =
σ2L2

Pt

. (25)

It is attained for pilot sequences of the form

XLP = MLP =

√

P

L
(e1, . . . , eL) . (26)

Such matrices have L =
Np

2 columns, which, according to

corollary 2 is minimal for identifiability to be possible, and

is thus the minimal duration of the pilot sequences. Note

that equations (25) and (26) allow to retrieve the variance

of the channel estimators proposed in [34] (without proof of

optimality).

2) Nonlinear physical model: In order to demonstrate the

generality of the proposed results, let us give an example

of their application to a simple nonlinear physical model. In

[34], the DoDs are estimated in the uplink and considered

unchanged at the time of the downlink channel estimation.

This assumption could lead to a large bias in the model if the

channel changes with time. In order to track channel paths

more tightly, one could re-estimate these directions during the

downlink channel estimation phase. To simplify the exposition,

let us consider for this paragraph a channel made of a single

path (L = 1). This would lead to a channel of the form

hPHY(θPHY) , βe(φ), (27)

where the Np = 3 real parameters to estimate are

θPHY , [(Re(β), Im(β), φ)]
T
. (28)

∂hPHY

∂θPHY

=

(

e(φ), je(φ), βl

∂e(φ)

∂φ

)

,

We thus have As stated in [10], when the antenna positions

are expressed with respect to the centroid of the antenna array,

we have e(φ)H ∂e(φ)
∂φ

= 0, so that the variation space of this

model can decomposed according to lemma 1 as

VθPHY
= span

R

({

e(φ),−je(φ),
∂e(φ)

∂φ

})

,

with c1 = 1, and where
∂e(φ)
∂φ

is simply the normalized version

of
∂e(φ)
∂φ

.

Optimal CRB. Applying theorem 3 for this model (the odd

version this time) yield

CRBmin(θPHY) =
σ2

Pt

(

1 +
1√
2

)2

. (29)

It is attained for pilot sequences of the form

XPHY = MPHY =

√

Pt√
2 + 1

(

2
1
4 e(φ),

∂e(φ)

∂φ

)

. (30)

Such matrices have 2 =
⌈

Np

2

⌉

columns, which, according to

corollary 2 is minimal for identifiability to be possible, and is

thus the minimal duration of the pilot sequences. To the best

of the authors’ knowledge, this is the first time the minimal

CRB and associated optimal pilot sequences are proposed for

a nonlinear physical model, even in this very simple form.

One can notice that sending these optimal pilot sequences

requires knowing φ. This is not realizable in practice since

φ is a parameter to estimate. However, if a good estimate

of φ is obtained in the uplink channel estimation phase, one

can use it to build the downlink pilot sequences. Under the

hypothesis that the DoD changes slowly, the built sequence is

close to optimal and the variance of efficient estimators should

be close to (29).
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VI. CONCLUSION

In this paper, we studied the problem of estimating an object

of interest parameterized according to a nonlinear model,

based on noisy complex linear measurements, obeying (1).

The Cramér-Rao bound of such a general problem is es-

tablished, showing its key dependency on an R-vector space

we called variation space (theorem 1). The CRB is shown to

be proportional to the trace of the inverse compression of the

observation matrix to the variation space (corollary 1).

A general result about R-vector spaces is provided

(lemma 1), which allows to decompose the variation space into

C-orthogonal subspaces. Such a decomposition proves useful

in the study of observation matrices which is carried out next.

The identifiability conditions on the observation matrix

are given (theorem 2), as well as a minimal number of

measurements for identifiability to be possible (corollary 2).

The minimal CRB and associated observation matrices of

minimal length are determined (theorem 3). They are shown

to depend only on the observation power, the noise level and

intrinsic properties of the variation space.

The results obtained for the general estimation problem are

then particularized to MIMO channel estimation. It is shown

that the general framework allows to retrieve well-known

results, but also to derive optimal pilot sequences of minimal

length in settings for which they had not been determined yet.

The example of a very simple MIMO channel made of a single

path is taken to illustrate this fact.

In the future, the theoretical results provided here could

be applied to more practical MIMO systems, for example

including hybrid precoding and combining [7], [35], [36].

They could allow to determine optimal pilot sequences in

this context, as well as to quantify the suboptimality of

existing or simpler schemes. They could also very well be

applied outside the MIMO channel estimation scope, for any

estimation problem whose observation model fits (1).
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