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ABSTRACT. We introduce nearness and orthogonality between set-valued map-
pings, extending the Campanato nearness and the Birkoff-James orthogonality
of single-valued operators.

1. INTRODUCTION

In articles ( [4,6]) published at the end of the eighties, S. Campanato introduced
and studied the notion of nearness between two functions defined on a set S and
taking values in a real normed vector space (X, || - ||). More precisely, a function
f S — X is near function g : S — X in the sense of Campanato, iff there exist
two real constants o > 0 and € [0,1) such that

(1) 1(f(s1) = ag(s1)) — (f(s2) — ag(s2)) || < k[l f(s1) = f(s2)]]

for every si,80 € S.

When X is a Banach space, S. Campanato proved [4, Theorem 1 & 2] that if f
is bijective and f is near g with constants a and &, then g is necessarily a bijection.
Moreover, the Lipschitz modulus of the bijective function go f~! : X — X is less
than or equal to 2., namely

«a
|l — v]| Yu,v € X.
K

lg(F =1 () = g(f NIl < 1=

When S = X, f is the identity operator and ¢ is a linear function, Campanato
results boils down to the well-known Neumann’s Lemma [8, Lemma 5.1.6], see
also [2] for more details and extensions:

Lemma 1.1 (Neumann’s lemma). Let X be a real Banach space, and A be a
bounded linear operator on X, such that

(2) Ja>0,0<k<1: |Id-—caAl< k|,
where || - || is the operator norm defined by
|A]| :=inf{c >0 : ||A(2)| < ¢||z|, Yz € X}.
Then A is invertible, and ||A7'] < 12
A strongly related notion to the Campanato nearness is the Birkoff-James or-

thogonality in a locally convex space (see, [9, Definition 1.1]). Given a vector space
Y equipped with a family of semi-norms

P={p,:Y —->R: eI},
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we say that the vector u € Y is Birkhoff-James orthogonal to v € Y on (Y, P) iff
(3) p.(u) < p,(u—tv) VieR, tel.

Of course, when Y is a normed space, P contains only one element, namely the
norm of Y, and we retrieve the original Birkhoff’s definition (see [3]; the reader is
also referred to the very complete survey [1]).

An abstract notion of the Campanato nearness can be defined as follows: given
two vectors u and v in a locally convex space (Y, P), we say that u is Campanato
near v iff there exist two real constants o > 0 and x € [0, 1) such that

(4) p(u—av) < kp,(u) Viel.

The original Campanato nearness is obtained for the particular case of the locally
convex space (X*, P), where X*° denotes the set of all functions from S to X, and
the set P contains all semi-norms of the form

(5) Psy,so P X5 R, psyso(f) :=|If(51) = f(s2)ll, Vfe€ XS,

for all the points s1,s2 € S such that s; # s3. As no confusion risks to occur, we
will drop, in the remaining part of this note, the wording “Birkhoff-James” and
“Campanato”, and simply speak of orthogonality and nearness.

The main object of this note is to extend the definitions of orthogonality and
nearness from the original case of single-valued functions, to the case of set-valued
mappings. As many operators of interest in non-smooth optimisation are set-valued
- like the subdifferential of a convex function, to pick an example out of many - a
correct definition of nearness covering the set-valued case should be a valuable tool
in establishing set-valued generalizations of the Neumann and Campanato results.

This note is organized as follows. Section 2 addresses several very simple at-
tempts to define set-valued orthogonality and nearness. Their coherence and pos-
sible uses is discussed in the light of several examples.

As a consequence of this analysis, we propose in Section 3 a new definition of
orthogonality and nearness in the set-valued setting.

2. THREE ATTEMPTS OF DEFINING SET-VALUED ORTHOGONALITY AND
NEARNESS

This section is devoted to the study of three attempts to define orthogonality and
nearness for set-valued mappings. The first one is based on the notion of Pompeiu-
Hausdorff distance in a metric space X, while the two others are stated in terms
of the selections of the two involved set-valued mappings. The limitations of these
three attempted definitions are highlighted by some elementary examples.

2.1. Distance-based nearness : first attempt of a definition. Let us consider
the Pompeiu-Hausdorff distance, defined between two subsets of X by the following
formula:
d(A, B) := max(sup inf ||u —v|, sup inf ||lu—v|]) VA, B C X.
veB uEA ueAVEB

Let us recall that by a set-valued mapping (multifunction, correspondance, point-
to-set, in some other terminologies) F, we mean a function between S and the set
P(X) of all the subsets (possibly empty) of X. Throughout the paper, we will use
the notation F': S = X.
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A simple transposition to the set-valued setting of the original definition of or-
thogonality and nearness leads us to the following tentative definition.

Definition 1. Given two set-valued mappings F,G : S = X, we say that F is
orthogonal to G iff

d(F(Sl) — tG(Sl),F(Sl) — tG(Sg))) > d(F(81)7F(82)> Vt € R, 51,89 € S,
and F is near G iff there are two real constants o > 0 and k € [0,1) such that
d(F(s1) — aG(s1), F(s1) —aG(s2))) <k d(F(s1), F(s2)), Vs1,82 € S.

However, within the setting of this definition, there are set-valued mappings
which are not near themselves, as proved by the following result.

Proposition 2.1. Let S be a set containing at least two points, and X be a real
normed vector space containing at least one non-null vector. Then, there is a set-
valued mapping F : S = X which is not near itself, according to Definition 1.

Proof of Proposition 2.1. Let s; and sy two different elements from S, and
consider the set-valued mapping F' : S = X given by

BX if s= S1
F(s) = :
{0} if s#s;

where By is the closed unit ball in X.

Let us pick a positive real number ¢. Since X contains at least a non-null
element, the Pompeiu-Hausdorff distance between the sets ¢t Bx and {0} amounts
to t. Accordingly, the Pompeiu-Hausdorff distance between the two sets

F(s1) —aF(s1) = (14 «a) By, F(s2) — aF(s2) = {0}
equals to 1 + o, and we deduce that
d(F(s1) — aG(s1), F(s2) —aG(s2)) =14+ a>rk=rd(F(s1), F(s2))
for any two real constants & > 0 and k € [0, 1). |

Let us remark that the existence of set-valued applications which are not near
themselves is still achieved even when the Pompeiu-Hausdorff distance is replaced
by one of the numerous distances between sets available in the mathematical liter-
ature.

It is easy to verify that, if § : 2X x 2% — R, is any of the distances described in
the survey paper ( [7]), then the function

e:Ry = Ry, e(s) :=6({0},s Bx ¥s>0

in increasing. Accordingly, Proposition 2.1 holds true even if the Pompeiu-Hausdorff
distance is replaced in Definition 1 by another distance between sets. It appears
thus that no valid definition of the set-valued orthogonality and nearness can be
achieved by using distance functions.
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2.2. Selections-based nearness: second attempt of a definition. Given F :
S = X, we call selection of F' any function op : S — X such that op(s) € F(s) for
any s € 5.

Our second very simple attempt to define a correct set-valued orthogonality and
nearness is based on the analysis of all the selections of the two set-valued mappings
involved.

Definition 2. Let F,G : S = X. Then F is orthogonal to (respectively near) G
iff any selection of F' is orthogonal to (respectively near) any selection of G.

Once again, this definition leads to the existence of set-valued mappings which
are not near themselves.

Proposition 2.2. Let S be a set containing at least two points, and X be a real
normed vector space containing at least one non-null vector. Then, there is a set-
valued mapping F : S = X which is not near itself, according to Definition 2.

Proof of Proposition 2.2. Let us prove that the constant set-valued mapping
F:5=2X,
F(s):=Bx Vs € S,
is not near itself according to Definition 2.
As the vector space X contains non-null vectors, it follows that there is u, a
vector of norm equal to 1. Let s; and s, two different elements of S. The functions

u, if s=s;
01:S— X o1(s) == ,
—u, if s#s
and
u, if s#s;
o2:5 =X oa(s) :=
—u, if s=s9

are thus two selections of the set-valued mapping F'. But
[(01(s1) — aoa(s1)) = (01(s2) — oa(s2))]| = 2(1 + @) > 2k = kllor(s1) — 1 (s2)]|

for any two real constants « > 0 and « € [0, 1). O

2.3. Selections-based nearness: third attempt of a definition. The first
two attempts to define set-valued nearness were too restrictive. In both cases, set-
valued mappings not being near themselves have been identified. Accordingly, in
this subsection we address a selection-based definition which is considerably broader
than Definitions 1 and 2.

Definition 3. A set-valued mapping F is orthogonal to (respectively near) G iff
any selection of F' is orthogonal (respectively near) to at least one selection of G,
and for any selection of G, there is at least one selection of F which is orthogonal
to ( respectively near) it.

It is now obvious that any set-valued mapping is near itself, in the sense of
Definition 3, so the main difficulty plaguing Definitions 1 and 2 is now removed.
However, Definition 3 is not satisfactory since, unlike the single-valued case, basic
algebraic properties are not inherited from F' to G in the case when F' is near G,
as proved by the following result.
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Proposition 2.3. Let S := {s1, s2} be a set containing two points, and X be a
real normed vector space containing at least one non-null vector. Then, there is a
set-valued mapping F : S = X which is injective, in the sense that F(s1) # F(s2),
and which is near a constant set-valued mapping G, according to Definition 3.

Proof of Proposition 2.3. Let u be a non-null vector from X, and define
F:5=3 X, F(s1) :={—u,u}, F(s2):={0,u}
and
G:5=X, G(s1) = G(s2) :={0,u}.

Each of the two set-valued mappings F' and G has exactly four selections:
UF,I(SI) = —u, O'F’l(sg) = 0, O'F’Q(Sl) = —u, O'F’Q(SQ) =u

0F,3(81) =u, 0F,1(82) =0, UF,4(51) =, UF,2($2) =u

are the selections of F', while the selections of G are
UG,l(sl) = 0, O-G’l(SQ) = 0, O—G,Q(Sl) = 0, O'F72(82) =Uu

oG 3(s1) =u, opi(s2) =0, 0G.a(s1) :=1u, opa(s2) = u.

It is straight-forward to prove that op; is near og 2, that ops is near og 2,
that op3 is near og,3, that op4 is near og,1, and that op4 is near og 4. So the
set-valued mappings F' and G satisfy conditions of Definition 3. Yet, F' is injective,
while G is constant. O

3. NEARNESS FOR SET-VALUED FUNCTIONS

In view of the detailed analysis achieved in Section 2, we conclude the correct
definition of set-valued orthogonality and nearness should be broader than Defini-
tion 2, but more restrictive than Definition 3. In order to attain this objective, let
us introduce the following notations. Given F,G : X == X, we say that a binary
relation R on X is (F,G)-compatible if

Vs € S,Vu € F(s),3v € G(s) s.t. uRw,

and
Vs € S,Vv € G(s),Ju € F(s) st. uRw.

Moreover, a selection og of the set-valued mapping G is said R-compatible with
one selection op de F, if op(s) Rog(s) for any s € S.

We are now ready to state the main notion of this note.

Definition 4. A set-valued mapping F is said to be orthogonal (respectively near)
to G iff there exists a (F,G)-compatible binary relation R on X such that any
selection o of F is orthogonal (respectively near) to any R-compatible selection
og of G.

It is now easy to see that any set-valued function F' is near itself (just take for
R the identity relation, x Ry < = = y, remark that R is (F, F')-compatible, and
notice that any selection oz of F is R-compatible only with itself).

In a future article, we will investigate the properties of the set-valued mapping
F which are inherited by any set-valued mapping G such that F' is near G.
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