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Introduction

In articles ( [START_REF] Campanato | A Cordes type condition for nonlinear nonvariational systems[END_REF][START_REF] Campanato | On the condition of nearness between operators[END_REF]) published at the end of the eighties, S. Campanato introduced and studied the notion of nearness between two functions defined on a set S and taking values in a real normed vector space (X, • ). More precisely, a function f : S → X is near function g : S → X in the sense of Campanato, iff there exist two real constants α > 0 and κ ∈ [0, 1) such that [START_REF] Alonso | On Birkhoff orthogonality and isosceles orthogonality in normed linear spaces[END_REF] (f (s 1 ) -αg(s 1 ))

-(f (s 2 ) -αg(s 2 )) ≤ κ f (s 1 ) -f (s 2 )
for every s 1 , s 2 ∈ S. When X is a Banach space, S. Campanato proved [4, Theorem 1 & 2] that if f is bijective and f is near g with constants α and κ, then g is necessarily a bijection. Moreover, the Lipschitz modulus of the bijective function g • f -1 : X → X is less than or equal to α 1-κ , namely

g(f -1 (u)) -g(f -1 (v)) ≤ α 1 -κ u -v ∀u, v ∈ X.
When S = X, f is the identity operator and g is a linear function, Campanato results boils down to the well-known Neumann's Lemma [START_REF] Hansen | Functional analysis. Entering Hilbert space[END_REF]Lemma 5.1.6], see also [START_REF] Barbagallo | Orthogonality in locally convex spaces: Two nonlinear generalizations of Neumann's lemma[END_REF] for more details and extensions:

Lemma 1.1 (Neumann's lemma). Let X be a real Banach space, and A be a bounded linear operator on X, such that

(2) ∃ α > 0, 0 ≤ κ < 1 : Id -α A ≤ κ Id ,
where • is the operator norm defined by

A := inf{c ≥ 0 : A(x) ≤ c x , ∀x ∈ X}.
Then A is invertible, and

A -1 ≤ α 1-κ .
A strongly related notion to the Campanato nearness is the Birkoff-James orthogonality in a locally convex space (see, [9, Definition 1.1]). Given a vector space Y equipped with a family of semi-norms we say that the vector

u ∈ Y is Birkhoff-James orthogonal to v ∈ Y on (Y, P) iff (3) p ι (u) ≤ p ι (u -t v) ∀t ∈ R, ι ∈ I.
Of course, when Y is a normed space, P contains only one element, namely the norm of Y , and we retrieve the original Birkhoff's definition (see [START_REF] Birkhoff | Orthogonality in linear metric spaces[END_REF]; the reader is also referred to the very complete survey [START_REF] Alonso | On Birkhoff orthogonality and isosceles orthogonality in normed linear spaces[END_REF]). An abstract notion of the Campanato nearness can be defined as follows: given two vectors u and v in a locally convex space (Y, P), we say that u is Campanato near v iff there exist two real constants > 0 and κ ∈ [0, 1) such that (4)

p ι (u -α v) ≤ κ p ι (u) ∀ι ∈ I.
The original Campanato nearness is obtained for the particular case of the locally convex space (X S , P), where X S denotes the set of all functions from S to X, and the set P contains all semi-norms of the form

(5) p s1,s2 : X S → R, p s1,s2 (f ) := f (s 1 ) -f (s 2 ) , ∀f ∈ X S ,
for all the points s 1 , s 2 ∈ S such that s 1 = s 2 . As no confusion risks to occur, we will drop, in the remaining part of this note, the wording "Birkhoff-James" and "Campanato", and simply speak of orthogonality and nearness.

The main object of this note is to extend the definitions of orthogonality and nearness from the original case of single-valued functions, to the case of set-valued mappings. As many operators of interest in non-smooth optimisation are set-valued -like the subdifferential of a convex function, to pick an example out of many -a correct definition of nearness covering the set-valued case should be a valuable tool in establishing set-valued generalizations of the Neumann and Campanato results. This note is organized as follows. Section 2 addresses several very simple attempts to define set-valued orthogonality and nearness. Their coherence and possible uses is discussed in the light of several examples.

As a consequence of this analysis, we propose in Section 3 a new definition of orthogonality and nearness in the set-valued setting.

Three attempts of defining set-valued orthogonality and nearness

This section is devoted to the study of three attempts to define orthogonality and nearness for set-valued mappings. The first one is based on the notion of Pompeiu-Hausdorff distance in a metric space X, while the two others are stated in terms of the selections of the two involved set-valued mappings. The limitations of these three attempted definitions are highlighted by some elementary examples.

2.1.

Distance-based nearness : first attempt of a definition. Let us consider the Pompeiu-Hausdorff distance, defined between two subsets of X by the following formula:

d(A, B) := max(sup v∈B inf u∈A u -v , sup u∈A inf v∈B u -v ) ∀A, B ⊂ X.
Let us recall that by a set-valued mapping (multifunction, correspondance, pointto-set, in some other terminologies) F , we mean a function between S and the set P(X) of all the subsets (possibly empty) of X. Throughout the paper, we will use the notation F : S ⇒ X.

A simple transposition to the set-valued setting of the original definition of orthogonality and nearness leads us to the following tentative definition.

Definition 1. Given two set-valued mappings F, G : S ⇒ X, we say that F is orthogonal to G iff d(F (s 1 ) -tG(s 1 ), F (s 1 ) -tG(s 2 ))) ≥ d(F (s 1 ), F (s 2 )) ∀t ∈ R, s 1 , s 2 ∈ S,
and F is near G iff there are two real constants α > 0 and κ ∈ [0, 1) such that

d(F (s 1 ) -αG(s 1 ), F (s 1 ) -αG(s 2 ))) ≤ κ d(F (s 1 ), F (s 2 )), ∀s 1 , s 2 ∈ S.
However, within the setting of this definition, there are set-valued mappings which are not near themselves, as proved by the following result.

Proposition 2.1. Let S be a set containing at least two points, and X be a real normed vector space containing at least one non-null vector. Then, there is a setvalued mapping F : S ⇒ X which is not near itself, according to Definition 1.

Proof of Proposition 2.1. Let s 1 and s 2 two different elements from S, and consider the set-valued mapping F : S ⇒ X given by

F (s) =    B X if s = s 1 {0} if s = s 1
, where B X is the closed unit ball in X.

Let us pick a positive real number t. Since X contains at least a non-null element, the Pompeiu-Hausdorff distance between the sets t B X and {0} amounts to t. Accordingly, the Pompeiu-Hausdorff distance between the two sets

F (s 1 ) -αF (s 1 ) = (1 + α) B X , F (s 2 ) -αF (s 2 ) = {0}
equals to 1 + α, and we deduce that

d(F (s 1 ) -αG(s 1 ), F (s 2 ) -αG(s 2 )) = 1 + α > κ = κ d(F (s 1 ), F (s 2 ))
for any two real constants α > 0 and κ ∈ [0, 1).

Let us remark that the existence of set-valued applications which are not near themselves is still achieved even when the Pompeiu-Hausdorff distance is replaced by one of the numerous distances between sets available in the mathematical literature.

It is easy to verify that, if δ : 2 X × 2 X → R + is any of the distances described in the survey paper ( [START_REF] Conci | Distances between set -a survey[END_REF]), then the function e : R + → R + , e(s) := δ({0}, s B X ∀s ≥ 0 in increasing. Accordingly, Proposition 2.1 holds true even if the Pompeiu-Hausdorff distance is replaced in Definition 1 by another distance between sets. It appears thus that no valid definition of the set-valued orthogonality and nearness can be achieved by using distance functions.

2.2.

Selections-based nearness: second attempt of a definition. Given F : S ⇒ X, we call selection of F any function σ F : S → X such that σ F (s) ∈ F (s) for any s ∈ S.

Our second very simple attempt to define a correct set-valued orthogonality and nearness is based on the analysis of all the selections of the two set-valued mappings involved.

Definition 2. Let F, G : S ⇒ X. Then F is orthogonal to (respectively near) G iff any selection of F is orthogonal to (respectively near) any selection of G.

Once again, this definition leads to the existence of set-valued mappings which are not near themselves. Proposition 2.2. Let S be a set containing at least two points, and X be a real normed vector space containing at least one non-null vector. Then, there is a setvalued mapping F : S ⇒ X which is not near itself, according to Definition 2.

Proof of Proposition 2.2. Let us prove that the constant set-valued mapping F : S ⇒ X, F (s) := B X ∀s ∈ S, is not near itself according to Definition 2.

As the vector space X contains non-null vectors, it follows that there is u, a vector of norm equal to 1. Let s 1 and s 2 two different elements of S. The functions

σ 1 : S → X σ 1 (s) :=    u, if s = s 1 -u, if s = s 1 , and 
σ 2 : S → X σ 2 (s) :=    u, if s = s 1 -u, if s = s 1 ,
are thus two selections of the set-valued mapping F . But

(σ 1 (s 1 ) -α σ 2 (s 1 )) -(σ 1 (s 2 ) -α σ 2 (s 2 )) = 2(1 + α) > 2κ = κ σ 1 (s 1 ) -σ 1 (s 2 )
for any two real constants α > 0 and κ ∈ [0, 1).

2.3.

Selections-based nearness: third attempt of a definition. The first two attempts to define set-valued nearness were too restrictive. In both cases, setvalued mappings not being near themselves have been identified. Accordingly, in this subsection we address a selection-based definition which is considerably broader than Definitions 1 and 2. Definition 3. A set-valued mapping F is orthogonal to (respectively near) G iff any selection of F is orthogonal (respectively near) to at least one selection of G, and for any selection of G, there is at least one selection of F which is orthogonal to ( respectively near) it.

It is now obvious that any set-valued mapping is near itself, in the sense of Definition 3, so the main difficulty plaguing Definitions 1 and 2 is now removed. However, Definition 3 is not satisfactory since, unlike the single-valued case, basic algebraic properties are not inherited from F to G in the case when F is near G, as proved by the following result. Proposition 2.3. Let S := {s 1 , s 2 } be a set containing two points, and X be a real normed vector space containing at least one non-null vector. Then, there is a set-valued mapping F : S ⇒ X which is injective, in the sense that F (s 1 ) = F (s 2 ), and which is near a constant set-valued mapping G, according to Definition 3.

Proof of Proposition 2.3. Let u be a non-null vector from X, and define Each of the two set-valued mappings F and G has exactly four selections:

F : S ⇒ X, F ( 
σ F,1 (s 1 ) := -u, σ F,1 (s 2 ) := 0, σ F,2 (s 1 ) := -u, σ F,2 (s 2 ) := u σ F,3 (s 1 ) := u, σ F,1 (s 2 ) := 0, σ F,4 (s 1 ) := u, σ F,2 (s 2 ) := u are the selections of F , while the selections of G are σ G,1 (s 1 ) := 0, σ G,1 (s 2 ) := 0, σ G,2 (s 1 ) := 0, σ F,2 (s 2 ) := u σ G,3 (s 1 ) := u, σ F,1 (s 2 ) := 0, σ G,4 (s 1 ) := u, σ F,2 (s 2 ) := u. It is straight-forward to prove that σ F,1 is near σ G,2 , that σ F,2 is near σ G,2 , that σ F,3 is near σ G,3 , that σ F,4 is near σ G,1
, and that σ F,4 is near σ G,4 . So the set-valued mappings F and G satisfy conditions of Definition 3. Yet, F is injective, while G is constant.

Nearness for set-valued functions

In view of the detailed analysis achieved in Section 2, we conclude the correct definition of set-valued orthogonality and nearness should be broader than Definition 2, but more restrictive than Definition 3. In order to attain this objective, let us introduce the following notations. Given F, G : X ⇒ X, we say that a binary relation R on X is (F,G)-compatible if ∀s ∈ S, ∀u ∈ F (s), ∃v ∈ G(s) s.t. u R v, and ∀s ∈ S, ∀v ∈ G(s), ∃u ∈ F (s) s.t. u R v.

Moreover, a selection σ G of the set-valued mapping G is said R-compatible with one selection σ F de F , if σ F (s) R σ G (s) for any s ∈ S.

We are now ready to state the main notion of this note. It is now easy to see that any set-valued function F is near itself (just take for R the identity relation, x R y ⇔ x = y, remark that R is (F, F )-compatible, and notice that any selection σ F of F is R-compatible only with itself).

In a future article, we will investigate the properties of the set-valued mapping F which are inherited by any set-valued mapping G such that F is near G.

  s 1 ) := {-u, u}, F (s 2 ) := {0, u} and G : S ⇒ X, G(s 1 ) = G(s 2 ) := {0, u}.

Definition 4 .

 4 A set-valued mapping F is said to be orthogonal (respectively near) to G iff there exists a (F, G)-compatible binary relation R on X such that any selection σ F of F is orthogonal (respectively near) to any R-compatible selection σ G of G.