SET-VALUED ORTHOGONALITY AND NEARNESS

ANNAMARIA BARBAGALLO, OCTAVIAN-EMIL ERNST, AND MICHEL THÉRA

Dedicated to Professor Antonino Maugeri

Abstract

We introduce nearness and orthogonality between set-valued mappings, extending the Campanato nearness and the Birkoff-James orthogonality of single-valued operators.

1. Introduction

In articles ($[4,6]$) published at the end of the eighties, S. Campanato introduced and studied the notion of nearness between two functions defined on a set S and taking values in a real normed vector space $(X,\|\cdot\|)$. More precisely, a function $f: S \rightarrow X$ is near function $g: S \rightarrow X$ in the sense of Campanato, iff there exist two real constants $\alpha>0$ and $\kappa \in[0,1)$ such that

$$
\begin{equation*}
\left\|\left(f\left(s_{1}\right)-\alpha g\left(s_{1}\right)\right)-\left(f\left(s_{2}\right)-\alpha g\left(s_{2}\right)\right)\right\| \leq \kappa\left\|f\left(s_{1}\right)-f\left(s_{2}\right)\right\| \tag{1}
\end{equation*}
$$

for every $s_{1}, s_{2} \in S$.
When X is a Banach space, S . Campanato proved [4, Theorem $1 \& 2$] that if f is bijective and f is near g with constants α and κ, then g is necessarily a bijection. Moreover, the Lipschitz modulus of the bijective function $g \circ f^{-1}: X \rightarrow X$ is less than or equal to $\frac{\alpha}{1-\kappa}$, namely

$$
\left\|g\left(f^{-1}(u)\right)-g\left(f^{-1}(v)\right)\right\| \leq \frac{\alpha}{1-\kappa}\|u-v\| \quad \forall u, v \in X
$$

When $S=X, f$ is the identity operator and g is a linear function, Campanato results boils down to the well-known Neumann's Lemma [8, Lemma 5.1.6], see also [2] for more details and extensions:

Lemma 1.1 (Neumann's lemma). Let X be a real Banach space, and A be a bounded linear operator on X, such that

$$
\begin{equation*}
\exists \alpha>0,0 \leq \kappa<1: \quad\|I d-\alpha A\| \leq \kappa\|I d\|, \tag{2}
\end{equation*}
$$

where $\|\cdot\|$ is the operator norm defined by

$$
\|A\|:=\inf \{c \geq 0:\|A(x)\| \leq c\|x\|, \forall x \in X\}
$$

Then A is invertible, and $\left\|A^{-1}\right\| \leq \frac{\alpha}{1-\kappa}$.
A strongly related notion to the Campanato nearness is the Birkoff-James orthogonality in a locally convex space (see, [9, Definition 1.1]). Given a vector space Y equipped with a family of semi-norms

$$
\mathcal{P}:=\left\{p_{\iota}: Y \rightarrow \mathbb{R}: \iota \in I\right\}
$$

[^0]we say that the vector $u \in Y$ is Birkhoff-James orthogonal to $v \in Y$ on (Y, \mathcal{P}) iff
\[

$$
\begin{equation*}
p_{\iota}(u) \leq p_{\iota}(u-t v) \quad \forall t \in \mathbb{R}, \iota \in I \tag{3}
\end{equation*}
$$

\]

Of course, when Y is a normed space, \mathcal{P} contains only one element, namely the norm of Y, and we retrieve the original Birkhoff's definition (see [3]; the reader is also referred to the very complete survey [1]).

An abstract notion of the Campanato nearness can be defined as follows: given two vectors u and v in a locally convex space (Y, \mathcal{P}), we say that u is Campanato near v iff there exist two real constants $\alpha>0$ and $\kappa \in[0,1)$ such that

$$
\begin{equation*}
p_{\iota}(u-\alpha v) \leq \kappa p_{\iota}(u) \quad \forall \iota \in I \tag{4}
\end{equation*}
$$

The original Campanato nearness is obtained for the particular case of the locally convex space $\left(X^{S}, \mathcal{P}\right)$, where X^{S} denotes the set of all functions from S to X, and the set \mathcal{P} contains all semi-norms of the form

$$
\begin{equation*}
p_{s_{1}, s_{2}}: X^{S} \rightarrow \mathbb{R}, \quad p_{s_{1}, s_{2}}(f):=\left\|f\left(s_{1}\right)-f\left(s_{2}\right)\right\|, \quad \forall f \in X^{S} \tag{5}
\end{equation*}
$$

for all the points $s_{1}, s_{2} \in S$ such that $s_{1} \neq s_{2}$. As no confusion risks to occur, we will drop, in the remaining part of this note, the wording "Birkhoff-James" and "Campanato", and simply speak of orthogonality and nearness.

The main object of this note is to extend the definitions of orthogonality and nearness from the original case of single-valued functions, to the case of set-valued mappings. As many operators of interest in non-smooth optimisation are set-valued - like the subdifferential of a convex function, to pick an example out of many - a correct definition of nearness covering the set-valued case should be a valuable tool in establishing set-valued generalizations of the Neumann and Campanato results.

This note is organized as follows. Section 2 addresses several very simple attempts to define set-valued orthogonality and nearness. Their coherence and possible uses is discussed in the light of several examples.

As a consequence of this analysis, we propose in Section 3 a new definition of orthogonality and nearness in the set-valued setting.

2. Three attempts of defining set-valued orthogonality and NEARNESS

This section is devoted to the study of three attempts to define orthogonality and nearness for set-valued mappings. The first one is based on the notion of PompeiuHausdorff distance in a metric space X, while the two others are stated in terms of the selections of the two involved set-valued mappings. The limitations of these three attempted definitions are highlighted by some elementary examples.
2.1. Distance-based nearness : first attempt of a definition. Let us consider the Pompeiu-Hausdorff distance, defined between two subsets of X by the following formula:

$$
\mathbf{d}(A, B):=\max \left(\sup _{v \in B} \inf _{u \in A}\|u-v\|, \sup _{u \in A} \inf _{v \in B}\|u-v\|\right) \quad \forall A, B \subset X
$$

Let us recall that by a set-valued mapping (multifunction, correspondance, point-to-set, in some other terminologies) F, we mean a function between S and the set $\mathcal{P}(X)$ of all the subsets (possibly empty) of X. Throughout the paper, we will use the notation $F: S \rightrightarrows X$.

A simple transposition to the set-valued setting of the original definition of orthogonality and nearness leads us to the following tentative definition.

Definition 1. Given two set-valued mappings $F, G: S \rightrightarrows X$, we say that F is orthogonal to G iff

$$
\left.\boldsymbol{d}\left(F\left(s_{1}\right)-t G\left(s_{1}\right), F\left(s_{1}\right)-t G\left(s_{2}\right)\right)\right) \geq \boldsymbol{d}\left(F\left(s_{1}\right), F\left(s_{2}\right)\right) \quad \forall t \in \mathbb{R}, s_{1}, s_{2} \in S
$$

and F is near G iff there are two real constants $\alpha>0$ and $\kappa \in[0,1)$ such that

$$
\left.\boldsymbol{d}\left(F\left(s_{1}\right)-\alpha G\left(s_{1}\right), F\left(s_{1}\right)-\alpha G\left(s_{2}\right)\right)\right) \leq \kappa \boldsymbol{d}\left(F\left(s_{1}\right), F\left(s_{2}\right)\right), \quad \forall s_{1}, s_{2} \in S
$$

However, within the setting of this definition, there are set-valued mappings which are not near themselves, as proved by the following result.

Proposition 2.1. Let S be a set containing at least two points, and X be a real normed vector space containing at least one non-null vector. Then, there is a setvalued mapping $F: S \rightrightarrows X$ which is not near itself, according to Definition 1.

Proof of Proposition 2.1. Let s_{1} and s_{2} two different elements from S, and consider the set-valued mapping $F: S \rightrightarrows X$ given by

$$
F(s)=\left\{\begin{array}{lll}
\mathcal{B}_{X} & \text { if } & s=s_{1} \\
\{0\} & \text { if } & s \neq s_{1}
\end{array}\right.
$$

where \mathcal{B}_{X} is the closed unit ball in X.
Let us pick a positive real number t. Since X contains at least a non-null element, the Pompeiu-Hausdorff distance between the sets $t B_{X}$ and $\{0\}$ amounts to t. Accordingly, the Pompeiu-Hausdorff distance between the two sets

$$
F\left(s_{1}\right)-\alpha F\left(s_{1}\right)=(1+\alpha) B_{X}, \quad F\left(s_{2}\right)-\alpha F\left(s_{2}\right)=\{0\}
$$

equals to $1+\alpha$, and we deduce that

$$
\mathbf{d}\left(F\left(s_{1}\right)-\alpha G\left(s_{1}\right), F\left(s_{2}\right)-\alpha G\left(s_{2}\right)\right)=1+\alpha>\kappa=\kappa \mathbf{d}\left(F\left(s_{1}\right), F\left(s_{2}\right)\right)
$$

for any two real constants $\alpha>0$ and $\kappa \in[0,1)$.
Let us remark that the existence of set-valued applications which are not near themselves is still achieved even when the Pompeiu-Hausdorff distance is replaced by one of the numerous distances between sets available in the mathematical literature.

It is easy to verify that, if $\delta: 2^{X} \times 2^{X} \rightarrow \mathbb{R}_{+}$is any of the distances described in the survey paper ([7]), then the function

$$
e: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}, \quad e(s):=\delta\left(\{0\}, s B_{X} \forall s \geq 0\right.
$$

in increasing. Accordingly, Proposition 2.1 holds true even if the Pompeiu-Hausdorff distance is replaced in Definition 1 by another distance between sets. It appears thus that no valid definition of the set-valued orthogonality and nearness can be achieved by using distance functions.
2.2. Selections-based nearness: second attempt of a definition. Given F : $S \rightrightarrows X$, we call selection of F any function $\sigma_{F}: S \rightarrow X$ such that $\sigma_{F}(s) \in F(s)$ for any $s \in S$.

Our second very simple attempt to define a correct set-valued orthogonality and nearness is based on the analysis of all the selections of the two set-valued mappings involved.

Definition 2. Let $F, G: S \rightrightarrows X$. Then F is orthogonal to (respectively near) G iff any selection of F is orthogonal to (respectively near) any selection of G.

Once again, this definition leads to the existence of set-valued mappings which are not near themselves.

Proposition 2.2. Let S be a set containing at least two points, and X be a real normed vector space containing at least one non-null vector. Then, there is a setvalued mapping $F: S \rightrightarrows X$ which is not near itself, according to Definition 2.

Proof of Proposition 2.2. Let us prove that the constant set-valued mapping $F: S \rightrightarrows X$,

$$
F(s):=\mathcal{B}_{X} \quad \forall s \in S,
$$

is not near itself according to Definition 2.
As the vector space X contains non-null vectors, it follows that there is u, a vector of norm equal to 1 . Let s_{1} and s_{2} two different elements of S. The functions

$$
\sigma_{1}: S \rightarrow X \quad \sigma_{1}(s):=\left\{\begin{array}{rlr}
u, & \text { if } & s=s_{1} \\
-u, & \text { if } & s \neq s_{1}
\end{array}\right.
$$

and

$$
\sigma_{2}: S \rightarrow X \quad \sigma_{2}(s):=\left\{\begin{aligned}
& u, \text { if } \\
& s \neq s_{1} \\
&-u, \text { if } \\
& s=s_{1}
\end{aligned}\right.
$$

are thus two selections of the set-valued mapping F. But
$\left\|\left(\sigma_{1}\left(s_{1}\right)-\alpha \sigma_{2}\left(s_{1}\right)\right)-\left(\sigma_{1}\left(s_{2}\right)-\alpha \sigma_{2}\left(s_{2}\right)\right)\right\|=2(1+\alpha)>2 \kappa=\kappa\left\|\sigma_{1}\left(s_{1}\right)-\sigma_{1}\left(s_{2}\right)\right\|$
for any two real constants $\alpha>0$ and $\kappa \in[0,1)$.
2.3. Selections-based nearness: third attempt of a definition. The first two attempts to define set-valued nearness were too restrictive. In both cases, setvalued mappings not being near themselves have been identified. Accordingly, in this subsection we address a selection-based definition which is considerably broader than Definitions 1 and 2.

Definition 3. A set-valued mapping F is orthogonal to (respectively near) G iff any selection of F is orthogonal (respectively near) to at least one selection of G, and for any selection of G, there is at least one selection of F which is orthogonal to (respectively near) it.

It is now obvious that any set-valued mapping is near itself, in the sense of Definition 3, so the main difficulty plaguing Definitions 1 and 2 is now removed. However, Definition 3 is not satisfactory since, unlike the single-valued case, basic algebraic properties are not inherited from F to G in the case when F is near G, as proved by the following result.

Proposition 2.3. Let $S:=\left\{s_{1}, s_{2}\right\}$ be a set containing two points, and X be a real normed vector space containing at least one non-null vector. Then, there is a set-valued mapping $F: S \rightrightarrows X$ which is injective, in the sense that $F\left(s_{1}\right) \neq F\left(s_{2}\right)$, and which is near a constant set-valued mapping G, according to Definition 3.

Proof of Proposition 2.3. Let u be a non-null vector from X, and define

$$
F: S \rightrightarrows X, \quad F\left(s_{1}\right):=\{-u, u\}, \quad F\left(s_{2}\right):=\{0, u\}
$$

and

$$
G: S \rightrightarrows X, \quad G\left(s_{1}\right)=G\left(s_{2}\right):=\{0, u\}
$$

Each of the two set-valued mappings F and G has exactly four selections:

$$
\begin{aligned}
\sigma_{F, 1}\left(s_{1}\right):=-u, \sigma_{F, 1}\left(s_{2}\right):=0, & & \sigma_{F, 2}\left(s_{1}\right):=-u, \sigma_{F, 2}\left(s_{2}\right):=u \\
\sigma_{F, 3}\left(s_{1}\right):=u, \sigma_{F, 1}\left(s_{2}\right):=0, & & \sigma_{F, 4}\left(s_{1}\right):=u, \sigma_{F, 2}\left(s_{2}\right):=u
\end{aligned}
$$

are the selections of F, while the selections of G are

$$
\begin{aligned}
\sigma_{G, 1}\left(s_{1}\right):=0, \sigma_{G, 1}\left(s_{2}\right):=0, & \sigma_{G, 2}\left(s_{1}\right):=0, \sigma_{F, 2}\left(s_{2}\right):=u \\
\sigma_{G, 3}\left(s_{1}\right):=u, \sigma_{F, 1}\left(s_{2}\right):=0, & \sigma_{G, 4}\left(s_{1}\right):=u, \sigma_{F, 2}\left(s_{2}\right):=u
\end{aligned}
$$

It is straight-forward to prove that $\sigma_{F, 1}$ is near $\sigma_{G, 2}$, that $\sigma_{F, 2}$ is near $\sigma_{G, 2}$, that $\sigma_{F, 3}$ is near $\sigma_{G, 3}$, that $\sigma_{F, 4}$ is near $\sigma_{G, 1}$, and that $\sigma_{F, 4}$ is near $\sigma_{G, 4}$. So the set-valued mappings F and G satisfy conditions of Definition 3. Yet, F is injective, while G is constant.

3. Nearness for set-valued functions

In view of the detailed analysis achieved in Section 2, we conclude the correct definition of set-valued orthogonality and nearness should be broader than Definition 2, but more restrictive than Definition 3. In order to attain this objective, let us introduce the following notations. Given $F, G: X \rightrightarrows X$, we say that a binary relation \mathcal{R} on X is (F, G)-compatible if

$$
\forall s \in S, \forall u \in F(s), \exists v \in G(s) \quad \text { s.t. } \quad u \mathcal{R} v
$$

and

$$
\forall s \in S, \forall v \in G(s), \exists u \in F(s) \quad \text { s.t. } \quad u \mathcal{R} v .
$$

Moreover, a selection σ_{G} of the set-valued mapping G is said \mathcal{R}-compatible with one selection σ_{F} de F, if $\sigma_{F}(s) \mathcal{R} \sigma_{G}(s)$ for any $s \in S$.

We are now ready to state the main notion of this note.
Definition 4. A set-valued mapping F is said to be orthogonal (respectively near) to G iff there exists a (F, G)-compatible binary relation \mathcal{R} on X such that any selection σ_{F} of F is orthogonal (respectively near) to any \mathcal{R}-compatible selection σ_{G} of G.

It is now easy to see that any set-valued function F is near itself (just take for \mathcal{R} the identity relation, $x \mathcal{R} y \Leftrightarrow x=y$, remark that \mathcal{R} is (F, F)-compatible, and notice that any selection σ_{F} of F is \mathcal{R}-compatible only with itself).

In a future article, we will investigate the properties of the set-valued mapping F which are inherited by any set-valued mapping G such that F is near G.

References

[1] J. Alonso, H. Martini, S. Wu, On Birkhoff orthogonality and isosceles orthogonality in normed linear spaces, Aequationes Math. 83, No. 1-2, 153-189 (2012).
[2] A. Barbagallo, E. Ernst, M. Théra, Orthogonality in locally convex spaces: Two nonlinear generalizations of Neumann's lemma, J. Math. Anal. Appl. 484 (2020).
[3] G. Birkhoff, Orthogonality in linear metric spaces, Duke Math. J. 1 (1935), no. 2, 169-172.
[4] S. Campanato, A Cordes type condition for nonlinear nonvariational systems, Rend. Accad. Naz. Sci. XL Mem. Mat., vol. 107 pp. 307-321 (1989).
[5] S. Campanato, Further contribution to the theory of near mappings, Matematiche, vol. 48, no. 1, pp. 183-187 (1993).
[6] S. Campanato, On the condition of nearness between operators, Ann. Mat. Pura Appl. (4), vol. 167, pp. 243-256, (1994).
[7] A. Conci, C. Kubrusly, Distances between set - a survey, Adv. Math. Sci. Appl, vol 26, pp. 1-18, (2017).
[8] V. L. Hansen, Functional analysis. Entering Hilbert space. 2nd edition. Hackensack, NJ: World Scientific (2016).
[9] H. Mazaheri, R. Kazemi, The orthogonality in the locally convex spaces, Taiwanese J. Math. 12, No. 5, 1101-1106 (2008).

Department of Mathematics and Applications "R. Caccioppoli", University of Naples "Federico II", Italy, e-mail: annamaria.barbagallo@unina.it

Aix-Marseille Université, Institut de Mathématiques de Marseille, I2M UMR 7373, 13453 Marseille Cedex, France, e-mail: emil.ernst@univ-amu.fr

Université de Limoges, Laboratoire XLIM, UMR-CNRS 6172, France and Centre for Informatics and Applied Optimization, Federation University, Australia, e-mail: michel.thera@unilim.fr

[^0]: Key words and phrases. Campanato nearness - Birkoff-James orthogonality - set-valued mappings.

