
Byzantine Generalized Lattice Agreement
Giuseppe Antonio Di Luna

DIAG, Sapienza University of Rome
Italy

diluna@diag.uniroma1.it

Emmanuelle Anceaume1
CNRS, Univ Rennes, Inria, IRISA

France
Emmanuelle.Anceaume@irisa.fr

Leonardo Querzoni
DIAG, Sapienza University of Rome

Italy
querzoni@diag.uniroma1.it

Abstract—The paper investigates the Lattice Agreement (LA)
problem in asynchronous systems. In LA each process proposes
an element e from a predetermined lattice, and has to decide on
an element e′ of the lattice such that e ≤ e′. Moreover, decisions
of different processes have to be comparable (no two processes
can decide two elements e′ and e such that (e 6≤ e′) ∧ (e′ 6≤ e)).

It has been shown that Generalized LA (i.e., a version of
LA proposing and deciding on sequences of values) can be used
to build a Replicated State Machine (RSM) with commutative
update operations. The key advantage of LA and Generalized
LA is that they can be solved in asynchronous systems prone to
crash-failures (which is not the case with standard Consensus).

In this paper we assume Byzantine failures. We propose the
Wait Till Safe (WTS) algorithm for LA, and we show that its
resilience to f ≤ (n − 1)/3 Byzantine processes is optimal. We
then generalize WTS obtaining a Generalized LA algorithm,
namely GWTS. We use GWTS to build a RSM with commutative
updates. Our RSM works in asynchronous systems and tolerates
f ≤ (n − 1)/3 malicious entities. All our algorithms use the
minimal assumption of authenticated channels. When the more
powerful public signatures are available, we discuss how to
improve the message complexity of our results (from quadratic
to linear, when f = O(1)). To the best of our knowledge this
is the first paper proposing a solution for Byzantine LA that
works on any possible lattice, and it is the first work proposing
a Byzantine tolerant RSM built on it.

Index Terms—lattice agreement, replicated state machine,
Byzantine faults

I. INTRODUCTION

State machine replication (RSM) is today the foundation of
many cloud-based highly-available products: it allows some
service to be deployed such to guarantee its correct function-
ing despite possible faults. In RSM, clients issue operation
requests to a set of distributed processes implementing the
replicated service, that, in turn, run a protocol to decide
the order of execution of incoming operations and provide
clients with outputs. Faults can be accidental (e.g. a computer
crashing due to a loss of power) or have a malicious intent
(e.g. a compromised server). Whichever is the chosen fault
model, RSM has proven to be a reliable and effective solution
for the deployment of dependable services. RSM is usually
built on top of a distributed Consensus primitive that is used
by processes to agree on the order of execution of requests
concurrently issued by clients. The main problem with this
approach is that Consensus is impossible to achieve determin-
istically in a distributed settings if the system is asynchronous

1This work has been realized while the author was at Sapienza University
of Rome, funded by the “Sapienza Visiting Professor Programme”.

and even just a single process may fail by crashing [1]. This
led the research community to study and develop alternative
solutions based on the relaxation of some of the constraints,
to allow agreement to be reached in partially synchronous
systems with faulty processes by trading off consistency with
availability.

An alternative approach consists in imposing constraints on
the set of operations that can be issued by clients, i.e. imposing
updates that commute. In particular, in 2012 Faleiro et al. [2]
introduced a RSM approach based on a generalized version
of the well known Lattice Agreement (LA) problem, that
restricts the set of allowed update operations to commuting
ones [3]. They have shown that commutative replicated data
types (CRDTs) can be implemented with an RSM approach
in asynchronous settings using the monotonic growth of a
join semilattice, i.e., a partially ordered set that defines a
join (least upper bound) for all element pairs (see Figure 1
for an example). A typical example is the implementation of
a dependable counter with add and read operations, where
updates (i.e. adds) are commutative.

In the LA problem, introduced by Attiya et al. [4], each
process pi has an input value xi drawn from the join semi-
lattice and must decide an output value yi, such that (i) yi is
the join of xi and some set of input values and (ii) all output
values are comparable to each other in the lattice, that is form
a chain in the lattice (see Figure 1). LA describes situations in
which processes need to obtain some knowledge on the global
execution of the system, for example a global photography of
the system.

Differently from Consensus, LA can be deterministically
solved in an asynchronous setting in presence of crash failures.
Faleiro et al. [2] have shown that a majority of correct
processes and reliable communication channels are sufficient
to solve LA, while Garg et al. [5] proposed a solution that
requires O(log n) message delays, where n is the number of
processes participating to the algorithm. The very recent solu-
tion of Skrzypczak et al. [6] considerably improves Faleiro’s
construction in terms of memory consumption, at the expense
of progress.

In the Generalized Lattice Agreement (GLA) problem pro-
cesses propose an infinite number of input values (drawn from
an infinite semilattice) and decide an infinite sequence of out-
put values, such that, all output values are comparable to each
other in the lattice i.e. form a chain (as for LA); the sequence
of decision values are non-decreasing, and every input value

eventually appears in some decision values. Solving GLA in
asynchronous distributed systems reveals to be very powerful
as it allows to built a linearizable RSM of commutative update
operations [2].

Despite recent advancements in this field, to the best of our
knowledge no general solution exists that solves LA problems
in an asynchronous setting with Byzantine faults. In the present
paper we continue the line of research on LA in asynchronous
message-passing systems by considering a Byzantine fault
model, i.e. a model where processes may exhibit arbitrary
behaviors. The contributions of this work can be summarized
as follows:
• We first introduce a LA specification that takes into account

Byzantine faults. Then we propose an algorithm, namely
Wait Till Safe (WTS), which, in presence of less than
(n− 1)/3 Byzantine processes, guarantees that any correct
process decides in no more than 5 + 2f message delays
with a global message complexity in O(n2) per process.
We show that (n− 1)/3 is an upper bound. The algorithm
is wait-free, i.e., every process completes its execution of
the algorithm within a bounded number of steps, regardless
of the execution of other processes.

• We then go a step further by proposing an algorithm,
namely Generalized Wait Till Safe (GWTS), to solve GLA
in a Byzantine fault model. Our “wait until safe” strategy
guarantees that each correct process performs an infinite
sequence of decisions, and for each input received at a
correct process, its value is eventually included in a decision.
Our algorithm is wait-free and is resilient to f ≤ (n− 1)/3
Byzantine processes.

• We further present the construction of a RSM for objects
with commuting update operations that guarantees both
linearizability and progress in asynchronous environments
with Byzantine failures.

• Finally, we sketch the main lines of a signature-based
version of our algorithms which take advantage of digital
signatures to reduce the message complexity to O(n) per
process, when f = O(1).
To the best of our knowledge this is the first paper proposing

a solution for Byzantine LA that works on any possible lattice,
and it is the first work proposing a Byzantine tolerant RSM
built on it.

The rest of this paper is organized as follows: Section II
discussed the related works; Section III describes the system
model, Section IV formalises LA and illustrates the necessity
of at least 3f+1 processes; Section V and Section VI introduce
the algorithms for Byzantine LA and Byzantine GLA, respec-
tively; Section VII describe the construction of a byzantine
tolerant RSM; Section VIII sketches a signature-based variant
of our solutions and, finally, Section IX concludes the paper.
For space reason some details and proofs are omitted and can
be found in the full version [7].

II. RELATED WORK

Lattice Agreement has been introduced by Attiya et al. [4]
to efficiently implement an atomic snapshot object [8], [9].

{1}
<latexit sha1_base64="/5usagn9omzN3B5p6SDgobu529s=">AAACI3icbVDLSsNAFJ2pr1pfrS7dDBbBVUmkoMuCG5cVTFtoQplMb+vQyYOZG6WEfoNb/QC/xp24ceG/mMQsbOtZHc65l3M4fqykQcv6opWNza3tnepubW//4PCo3jjumSjRAhwRqUgPfG5AyRAclKhgEGvgga+g789ucr//CNrIKLzHeQxewKehnEjBMZMcN7XdxajetFpWAbZO7JI0SYnuqEGr7jgSSQAhCsWNGdpWjF7KNUqhYFFzEwMxFzM+hWFGQx6A8dKi7YKdJ4ZjxGLQTCpWiPD3I+WBMfPAzy4Djg9m1cvF/7xhgpNrL5VhnCCEIg9CqaAIMkLLbAZgY6kBkefNgcmQCa45ImjJuBCZmGS7LAUGiUKpo6fFspqF+36k8u3s1aXWSe+yZVst+67d7LTLFavklJyRC2KTK9Iht6RLHCKIJM/khbzSN/pOP+jn72mFlj8nZAn0+wdV46S9</latexit><latexit sha1_base64="/5usagn9omzN3B5p6SDgobu529s=">AAACI3icbVDLSsNAFJ2pr1pfrS7dDBbBVUmkoMuCG5cVTFtoQplMb+vQyYOZG6WEfoNb/QC/xp24ceG/mMQsbOtZHc65l3M4fqykQcv6opWNza3tnepubW//4PCo3jjumSjRAhwRqUgPfG5AyRAclKhgEGvgga+g789ucr//CNrIKLzHeQxewKehnEjBMZMcN7XdxajetFpWAbZO7JI0SYnuqEGr7jgSSQAhCsWNGdpWjF7KNUqhYFFzEwMxFzM+hWFGQx6A8dKi7YKdJ4ZjxGLQTCpWiPD3I+WBMfPAzy4Djg9m1cvF/7xhgpNrL5VhnCCEIg9CqaAIMkLLbAZgY6kBkefNgcmQCa45ImjJuBCZmGS7LAUGiUKpo6fFspqF+36k8u3s1aXWSe+yZVst+67d7LTLFavklJyRC2KTK9Iht6RLHCKIJM/khbzSN/pOP+jn72mFlj8nZAn0+wdV46S9</latexit><latexit sha1_base64="/5usagn9omzN3B5p6SDgobu529s=">AAACI3icbVDLSsNAFJ2pr1pfrS7dDBbBVUmkoMuCG5cVTFtoQplMb+vQyYOZG6WEfoNb/QC/xp24ceG/mMQsbOtZHc65l3M4fqykQcv6opWNza3tnepubW//4PCo3jjumSjRAhwRqUgPfG5AyRAclKhgEGvgga+g789ucr//CNrIKLzHeQxewKehnEjBMZMcN7XdxajetFpWAbZO7JI0SYnuqEGr7jgSSQAhCsWNGdpWjF7KNUqhYFFzEwMxFzM+hWFGQx6A8dKi7YKdJ4ZjxGLQTCpWiPD3I+WBMfPAzy4Djg9m1cvF/7xhgpNrL5VhnCCEIg9CqaAIMkLLbAZgY6kBkefNgcmQCa45ImjJuBCZmGS7LAUGiUKpo6fFspqF+36k8u3s1aXWSe+yZVst+67d7LTLFavklJyRC2KTK9Iht6RLHCKIJM/khbzSN/pOP+jn72mFlj8nZAn0+wdV46S9</latexit><latexit sha1_base64="/5usagn9omzN3B5p6SDgobu529s=">AAACI3icbVDLSsNAFJ2pr1pfrS7dDBbBVUmkoMuCG5cVTFtoQplMb+vQyYOZG6WEfoNb/QC/xp24ceG/mMQsbOtZHc65l3M4fqykQcv6opWNza3tnepubW//4PCo3jjumSjRAhwRqUgPfG5AyRAclKhgEGvgga+g789ucr//CNrIKLzHeQxewKehnEjBMZMcN7XdxajetFpWAbZO7JI0SYnuqEGr7jgSSQAhCsWNGdpWjF7KNUqhYFFzEwMxFzM+hWFGQx6A8dKi7YKdJ4ZjxGLQTCpWiPD3I+WBMfPAzy4Djg9m1cvF/7xhgpNrL5VhnCCEIg9CqaAIMkLLbAZgY6kBkefNgcmQCa45ImjJuBCZmGS7LAUGiUKpo6fFspqF+36k8u3s1aXWSe+yZVst+67d7LTLFavklJyRC2KTK9Iht6RLHCKIJM/khbzSN/pOP+jn72mFlj8nZAn0+wdV46S9</latexit>

{2}
<latexit sha1_base64="gTB7vxIwK3e8HbmioWWfUS6fHWM=">AAACI3icbVDLSsNAFJ3xWeur1aWbwSK4Kkkp6LLgxmUF0xaaUCbT2zp08mDmRimh3+BWP8CvcSduXPgvJjEL23pWh3Pu5RyOHytp0LK+6Mbm1vbObmWvun9weHRcq5/0TJRoAY6IVKQHPjegZAgOSlQwiDXwwFfQ92c3ud9/BG1kFN7jPAYv4NNQTqTgmEmOm7bcxajWsJpWAbZO7JI0SInuqE4r7jgSSQAhCsWNGdpWjF7KNUqhYFF1EwMxFzM+hWFGQx6A8dKi7YJdJIZjxGLQTCpWiPD3I+WBMfPAzy4Djg9m1cvF/7xhgpNrL5VhnCCEIg9CqaAIMkLLbAZgY6kBkefNgcmQCa45ImjJuBCZmGS7LAUGiUKpo6fFspqF+36k8u3s1aXWSa/VtK2mfddudNrlihVyRs7JJbHJFemQW9IlDhFEkmfyQl7pG32nH/Tz93SDlj+nZAn0+wdXoKS+</latexit><latexit sha1_base64="gTB7vxIwK3e8HbmioWWfUS6fHWM=">AAACI3icbVDLSsNAFJ3xWeur1aWbwSK4Kkkp6LLgxmUF0xaaUCbT2zp08mDmRimh3+BWP8CvcSduXPgvJjEL23pWh3Pu5RyOHytp0LK+6Mbm1vbObmWvun9weHRcq5/0TJRoAY6IVKQHPjegZAgOSlQwiDXwwFfQ92c3ud9/BG1kFN7jPAYv4NNQTqTgmEmOm7bcxajWsJpWAbZO7JI0SInuqE4r7jgSSQAhCsWNGdpWjF7KNUqhYFF1EwMxFzM+hWFGQx6A8dKi7YJdJIZjxGLQTCpWiPD3I+WBMfPAzy4Djg9m1cvF/7xhgpNrL5VhnCCEIg9CqaAIMkLLbAZgY6kBkefNgcmQCa45ImjJuBCZmGS7LAUGiUKpo6fFspqF+36k8u3s1aXWSa/VtK2mfddudNrlihVyRs7JJbHJFemQW9IlDhFEkmfyQl7pG32nH/Tz93SDlj+nZAn0+wdXoKS+</latexit><latexit sha1_base64="gTB7vxIwK3e8HbmioWWfUS6fHWM=">AAACI3icbVDLSsNAFJ3xWeur1aWbwSK4Kkkp6LLgxmUF0xaaUCbT2zp08mDmRimh3+BWP8CvcSduXPgvJjEL23pWh3Pu5RyOHytp0LK+6Mbm1vbObmWvun9weHRcq5/0TJRoAY6IVKQHPjegZAgOSlQwiDXwwFfQ92c3ud9/BG1kFN7jPAYv4NNQTqTgmEmOm7bcxajWsJpWAbZO7JI0SInuqE4r7jgSSQAhCsWNGdpWjF7KNUqhYFF1EwMxFzM+hWFGQx6A8dKi7YJdJIZjxGLQTCpWiPD3I+WBMfPAzy4Djg9m1cvF/7xhgpNrL5VhnCCEIg9CqaAIMkLLbAZgY6kBkefNgcmQCa45ImjJuBCZmGS7LAUGiUKpo6fFspqF+36k8u3s1aXWSa/VtK2mfddudNrlihVyRs7JJbHJFemQW9IlDhFEkmfyQl7pG32nH/Tz93SDlj+nZAn0+wdXoKS+</latexit><latexit sha1_base64="gTB7vxIwK3e8HbmioWWfUS6fHWM=">AAACI3icbVDLSsNAFJ3xWeur1aWbwSK4Kkkp6LLgxmUF0xaaUCbT2zp08mDmRimh3+BWP8CvcSduXPgvJjEL23pWh3Pu5RyOHytp0LK+6Mbm1vbObmWvun9weHRcq5/0TJRoAY6IVKQHPjegZAgOSlQwiDXwwFfQ92c3ud9/BG1kFN7jPAYv4NNQTqTgmEmOm7bcxajWsJpWAbZO7JI0SInuqE4r7jgSSQAhCsWNGdpWjF7KNUqhYFF1EwMxFzM+hWFGQx6A8dKi7YJdJIZjxGLQTCpWiPD3I+WBMfPAzy4Djg9m1cvF/7xhgpNrL5VhnCCEIg9CqaAIMkLLbAZgY6kBkefNgcmQCa45ImjJuBCZmGS7LAUGiUKpo6fFspqF+36k8u3s1aXWSa/VtK2mfddudNrlihVyRs7JJbHJFemQW9IlDhFEkmfyQl7pG32nH/Tz93SDlj+nZAn0+wdXoKS+</latexit>

{4}
<latexit sha1_base64="/UkhdY7x/fHTEfOcCuocn/WAMZI=">AAACI3icbVDLSsNAFJ2pr1pfrS7dDBbBVUmkoMuCG5cVTFtoQplMb+vQyYOZG6WEfoNb/QC/xp24ceG/mMQsbOtZHc65l3M4fqykQcv6opWNza3tnepubW//4PCo3jjumSjRAhwRqUgPfG5AyRAclKhgEGvgga+g789ucr//CNrIKLzHeQxewKehnEjBMZMcN227i1G9abWsAmyd2CVpkhLdUYNW3XEkkgBCFIobM7StGL2Ua5RCwaLmJgZiLmZ8CsOMhjwA46VF2wU7TwzHiMWgmVSsEOHvR8oDY+aBn10GHB/MqpeL/3nDBCfXXirDOEEIRR6EUkERZISW2QzAxlIDIs+bA5MhE1xzRNCScSEyMcl2WQoMEoVSR0+LZTUL9/1I5dvZq0utk95ly7Za9l272WmXK1bJKTkjF8QmV6RDbkmXOEQQSZ7JC3mlb/SdftDP39MKLX9OyBLo9w9bGqTA</latexit><latexit sha1_base64="/UkhdY7x/fHTEfOcCuocn/WAMZI=">AAACI3icbVDLSsNAFJ2pr1pfrS7dDBbBVUmkoMuCG5cVTFtoQplMb+vQyYOZG6WEfoNb/QC/xp24ceG/mMQsbOtZHc65l3M4fqykQcv6opWNza3tnepubW//4PCo3jjumSjRAhwRqUgPfG5AyRAclKhgEGvgga+g789ucr//CNrIKLzHeQxewKehnEjBMZMcN227i1G9abWsAmyd2CVpkhLdUYNW3XEkkgBCFIobM7StGL2Ua5RCwaLmJgZiLmZ8CsOMhjwA46VF2wU7TwzHiMWgmVSsEOHvR8oDY+aBn10GHB/MqpeL/3nDBCfXXirDOEEIRR6EUkERZISW2QzAxlIDIs+bA5MhE1xzRNCScSEyMcl2WQoMEoVSR0+LZTUL9/1I5dvZq0utk95ly7Za9l272WmXK1bJKTkjF8QmV6RDbkmXOEQQSZ7JC3mlb/SdftDP39MKLX9OyBLo9w9bGqTA</latexit><latexit sha1_base64="/UkhdY7x/fHTEfOcCuocn/WAMZI=">AAACI3icbVDLSsNAFJ2pr1pfrS7dDBbBVUmkoMuCG5cVTFtoQplMb+vQyYOZG6WEfoNb/QC/xp24ceG/mMQsbOtZHc65l3M4fqykQcv6opWNza3tnepubW//4PCo3jjumSjRAhwRqUgPfG5AyRAclKhgEGvgga+g789ucr//CNrIKLzHeQxewKehnEjBMZMcN227i1G9abWsAmyd2CVpkhLdUYNW3XEkkgBCFIobM7StGL2Ua5RCwaLmJgZiLmZ8CsOMhjwA46VF2wU7TwzHiMWgmVSsEOHvR8oDY+aBn10GHB/MqpeL/3nDBCfXXirDOEEIRR6EUkERZISW2QzAxlIDIs+bA5MhE1xzRNCScSEyMcl2WQoMEoVSR0+LZTUL9/1I5dvZq0utk95ly7Za9l272WmXK1bJKTkjF8QmV6RDbkmXOEQQSZ7JC3mlb/SdftDP39MKLX9OyBLo9w9bGqTA</latexit><latexit sha1_base64="/UkhdY7x/fHTEfOcCuocn/WAMZI=">AAACI3icbVDLSsNAFJ2pr1pfrS7dDBbBVUmkoMuCG5cVTFtoQplMb+vQyYOZG6WEfoNb/QC/xp24ceG/mMQsbOtZHc65l3M4fqykQcv6opWNza3tnepubW//4PCo3jjumSjRAhwRqUgPfG5AyRAclKhgEGvgga+g789ucr//CNrIKLzHeQxewKehnEjBMZMcN227i1G9abWsAmyd2CVpkhLdUYNW3XEkkgBCFIobM7StGL2Ua5RCwaLmJgZiLmZ8CsOMhjwA46VF2wU7TwzHiMWgmVSsEOHvR8oDY+aBn10GHB/MqpeL/3nDBCfXXirDOEEIRR6EUkERZISW2QzAxlIDIs+bA5MhE1xzRNCScSEyMcl2WQoMEoVSR0+LZTUL9/1I5dvZq0utk95ly7Za9l272WmXK1bJKTkjF8QmV6RDbkmXOEQQSZ7JC3mlb/SdftDP39MKLX9OyBLo9w9bGqTA</latexit>

{3}
<latexit sha1_base64="VLJzcFZWllscCuRqqzQFMHCUlV8=">AAACI3icbVDLSsNAFJ3xWeur1aWbwSK4KokWdFlw47KCaQtNKJPpbR06eTBzo5TQb3CrH+DXuBM3LvwXk5iFbT2rwzn3cg7Hj5U0aFlfdG19Y3Nru7JT3d3bPzis1Y+6Jkq0AEdEKtJ9nxtQMgQHJSroxxp44Cvo+dOb3O89gjYyCu9xFoMX8Ekox1JwzCTHTS/d+bDWsJpWAbZK7JI0SInOsE4r7igSSQAhCsWNGdhWjF7KNUqhYF51EwMxF1M+gUFGQx6A8dKi7ZydJYZjxGLQTCpWiPD3I+WBMbPAzy4Djg9m2cvF/7xBguNrL5VhnCCEIg9CqaAIMkLLbAZgI6kBkefNgcmQCa45ImjJuBCZmGS7LAQGiUKpo6f5opqF+36k8u3s5aVWSfeiaVtN+67VaLfKFSvkhJySc2KTK9Imt6RDHCKIJM/khbzSN/pOP+jn7+kaLX+OyQLo9w9ZXaS/</latexit><latexit sha1_base64="VLJzcFZWllscCuRqqzQFMHCUlV8=">AAACI3icbVDLSsNAFJ3xWeur1aWbwSK4KokWdFlw47KCaQtNKJPpbR06eTBzo5TQb3CrH+DXuBM3LvwXk5iFbT2rwzn3cg7Hj5U0aFlfdG19Y3Nru7JT3d3bPzis1Y+6Jkq0AEdEKtJ9nxtQMgQHJSroxxp44Cvo+dOb3O89gjYyCu9xFoMX8Ekox1JwzCTHTS/d+bDWsJpWAbZK7JI0SInOsE4r7igSSQAhCsWNGdhWjF7KNUqhYF51EwMxF1M+gUFGQx6A8dKi7ZydJYZjxGLQTCpWiPD3I+WBMbPAzy4Djg9m2cvF/7xBguNrL5VhnCCEIg9CqaAIMkLLbAZgI6kBkefNgcmQCa45ImjJuBCZmGS7LAQGiUKpo6f5opqF+36k8u3s5aVWSfeiaVtN+67VaLfKFSvkhJySc2KTK9Imt6RDHCKIJM/khbzSN/pOP+jn7+kaLX+OyQLo9w9ZXaS/</latexit><latexit sha1_base64="VLJzcFZWllscCuRqqzQFMHCUlV8=">AAACI3icbVDLSsNAFJ3xWeur1aWbwSK4KokWdFlw47KCaQtNKJPpbR06eTBzo5TQb3CrH+DXuBM3LvwXk5iFbT2rwzn3cg7Hj5U0aFlfdG19Y3Nru7JT3d3bPzis1Y+6Jkq0AEdEKtJ9nxtQMgQHJSroxxp44Cvo+dOb3O89gjYyCu9xFoMX8Ekox1JwzCTHTS/d+bDWsJpWAbZK7JI0SInOsE4r7igSSQAhCsWNGdhWjF7KNUqhYF51EwMxF1M+gUFGQx6A8dKi7ZydJYZjxGLQTCpWiPD3I+WBMbPAzy4Djg9m2cvF/7xBguNrL5VhnCCEIg9CqaAIMkLLbAZgI6kBkefNgcmQCa45ImjJuBCZmGS7LAQGiUKpo6f5opqF+36k8u3s5aVWSfeiaVtN+67VaLfKFSvkhJySc2KTK9Imt6RDHCKIJM/khbzSN/pOP+jn7+kaLX+OyQLo9w9ZXaS/</latexit><latexit sha1_base64="VLJzcFZWllscCuRqqzQFMHCUlV8=">AAACI3icbVDLSsNAFJ3xWeur1aWbwSK4KokWdFlw47KCaQtNKJPpbR06eTBzo5TQb3CrH+DXuBM3LvwXk5iFbT2rwzn3cg7Hj5U0aFlfdG19Y3Nru7JT3d3bPzis1Y+6Jkq0AEdEKtJ9nxtQMgQHJSroxxp44Cvo+dOb3O89gjYyCu9xFoMX8Ekox1JwzCTHTS/d+bDWsJpWAbZK7JI0SInOsE4r7igSSQAhCsWNGdhWjF7KNUqhYF51EwMxF1M+gUFGQx6A8dKi7ZydJYZjxGLQTCpWiPD3I+WBMbPAzy4Djg9m2cvF/7xBguNrL5VhnCCEIg9CqaAIMkLLbAZgI6kBkefNgcmQCa45ImjJuBCZmGS7LAQGiUKpo6f5opqF+36k8u3s5aVWSfeiaVtN+67VaLfKFSvkhJySc2KTK9Imt6RDHCKIJM/khbzSN/pOP+jn7+kaLX+OyQLo9w9ZXaS/</latexit>

{3, 4}
<latexit sha1_base64="DjnMLU4XyZVEA08coJbiOW3XOFk=">AAACJXicbVDLSsNAFJ3UV62vVpduBovgQkqiBV0W3LisYB/QlDKZ3tahk0mYuVFKyEe41Q/wa9yJ4MpfMYlZ2NazOpxzL+dwvFAKg7b9ZZXW1jc2t8rblZ3dvf2Dau2wa4JIc+jwQAa67zEDUijooEAJ/VAD8z0JPW92k/m9R9BGBOoe5yEMfTZVYiI4w1TqufHledNNRtW63bBz0FXiFKROCrRHNavsjgMe+aCQS2bMwLFDHMZMo+ASkoobGQgZn7EpDFKqmA9mGOd9E3oaGYYBDUFTIWkuwt+PmPnGzH0vvfQZPphlLxP/8wYRTq6HsVBhhKB4FoRCQh5kuBbpEEDHQgMiy5oDFYpyphkiaEEZ56kYpcssBPqRRKGDp2RRTcM9L5DZds7yUquke9Fw7IZz16y3msWKZXJMTsgZccgVaZFb0iYdwsmMPJMX8mq9We/Wh/X5e1qyip8jsgDr+wdM1KUz</latexit><latexit sha1_base64="DjnMLU4XyZVEA08coJbiOW3XOFk=">AAACJXicbVDLSsNAFJ3UV62vVpduBovgQkqiBV0W3LisYB/QlDKZ3tahk0mYuVFKyEe41Q/wa9yJ4MpfMYlZ2NazOpxzL+dwvFAKg7b9ZZXW1jc2t8rblZ3dvf2Dau2wa4JIc+jwQAa67zEDUijooEAJ/VAD8z0JPW92k/m9R9BGBOoe5yEMfTZVYiI4w1TqufHledNNRtW63bBz0FXiFKROCrRHNavsjgMe+aCQS2bMwLFDHMZMo+ASkoobGQgZn7EpDFKqmA9mGOd9E3oaGYYBDUFTIWkuwt+PmPnGzH0vvfQZPphlLxP/8wYRTq6HsVBhhKB4FoRCQh5kuBbpEEDHQgMiy5oDFYpyphkiaEEZ56kYpcssBPqRRKGDp2RRTcM9L5DZds7yUquke9Fw7IZz16y3msWKZXJMTsgZccgVaZFb0iYdwsmMPJMX8mq9We/Wh/X5e1qyip8jsgDr+wdM1KUz</latexit><latexit sha1_base64="DjnMLU4XyZVEA08coJbiOW3XOFk=">AAACJXicbVDLSsNAFJ3UV62vVpduBovgQkqiBV0W3LisYB/QlDKZ3tahk0mYuVFKyEe41Q/wa9yJ4MpfMYlZ2NazOpxzL+dwvFAKg7b9ZZXW1jc2t8rblZ3dvf2Dau2wa4JIc+jwQAa67zEDUijooEAJ/VAD8z0JPW92k/m9R9BGBOoe5yEMfTZVYiI4w1TqufHledNNRtW63bBz0FXiFKROCrRHNavsjgMe+aCQS2bMwLFDHMZMo+ASkoobGQgZn7EpDFKqmA9mGOd9E3oaGYYBDUFTIWkuwt+PmPnGzH0vvfQZPphlLxP/8wYRTq6HsVBhhKB4FoRCQh5kuBbpEEDHQgMiy5oDFYpyphkiaEEZ56kYpcssBPqRRKGDp2RRTcM9L5DZds7yUquke9Fw7IZz16y3msWKZXJMTsgZccgVaZFb0iYdwsmMPJMX8mq9We/Wh/X5e1qyip8jsgDr+wdM1KUz</latexit><latexit sha1_base64="DjnMLU4XyZVEA08coJbiOW3XOFk=">AAACJXicbVDLSsNAFJ3UV62vVpduBovgQkqiBV0W3LisYB/QlDKZ3tahk0mYuVFKyEe41Q/wa9yJ4MpfMYlZ2NazOpxzL+dwvFAKg7b9ZZXW1jc2t8rblZ3dvf2Dau2wa4JIc+jwQAa67zEDUijooEAJ/VAD8z0JPW92k/m9R9BGBOoe5yEMfTZVYiI4w1TqufHledNNRtW63bBz0FXiFKROCrRHNavsjgMe+aCQS2bMwLFDHMZMo+ASkoobGQgZn7EpDFKqmA9mGOd9E3oaGYYBDUFTIWkuwt+PmPnGzH0vvfQZPphlLxP/8wYRTq6HsVBhhKB4FoRCQh5kuBbpEEDHQgMiy5oDFYpyphkiaEEZ56kYpcssBPqRRKGDp2RRTcM9L5DZds7yUquke9Fw7IZz16y3msWKZXJMTsgZccgVaZFb0iYdwsmMPJMX8mq9We/Wh/X5e1qyip8jsgDr+wdM1KUz</latexit>

{1, 2}
<latexit sha1_base64="rHGGev1zcJXAc+FbITZE9nHdlf4=">AAACJXicbVDLSsNAFJ3UV62vVpduBovgQkpSCrosuHFZwT6gCWUyva1DJw9m7igl9CPc6gf4Ne5EcOWvmMQsbOtZHc65l3M4fiyFRtv+skobm1vbO+Xdyt7+weFRtXbc05FRHLo8kpEa+EyDFCF0UaCEQayABb6Evj+7yfz+IygtovAe5zF4AZuGYiI4w1Tqu4lz2XQXo2rdbtg56DpxClInBTqjmlV2xxE3AYTIJdN66NgxeglTKLiERcU1GmLGZ2wKw5SGLADtJXnfBT03mmFEY1BUSJqL8PcjYYHW88BPLwOGD3rVy8T/vKHBybWXiDA2CCHPglBIyIM0VyIdAuhYKEBkWXOgIqScKYYISlDGeSqadJmlwMBIFCp6WiyrabjvRzLbzlldap30mg3Hbjh3rXq7VaxYJqfkjFwQh1yRNrklHdIlnMzIM3khr9ab9W59WJ+/pyWr+DkhS7C+fwBF3KUv</latexit><latexit sha1_base64="rHGGev1zcJXAc+FbITZE9nHdlf4=">AAACJXicbVDLSsNAFJ3UV62vVpduBovgQkpSCrosuHFZwT6gCWUyva1DJw9m7igl9CPc6gf4Ne5EcOWvmMQsbOtZHc65l3M4fiyFRtv+skobm1vbO+Xdyt7+weFRtXbc05FRHLo8kpEa+EyDFCF0UaCEQayABb6Evj+7yfz+IygtovAe5zF4AZuGYiI4w1Tqu4lz2XQXo2rdbtg56DpxClInBTqjmlV2xxE3AYTIJdN66NgxeglTKLiERcU1GmLGZ2wKw5SGLADtJXnfBT03mmFEY1BUSJqL8PcjYYHW88BPLwOGD3rVy8T/vKHBybWXiDA2CCHPglBIyIM0VyIdAuhYKEBkWXOgIqScKYYISlDGeSqadJmlwMBIFCp6WiyrabjvRzLbzlldap30mg3Hbjh3rXq7VaxYJqfkjFwQh1yRNrklHdIlnMzIM3khr9ab9W59WJ+/pyWr+DkhS7C+fwBF3KUv</latexit><latexit sha1_base64="rHGGev1zcJXAc+FbITZE9nHdlf4=">AAACJXicbVDLSsNAFJ3UV62vVpduBovgQkpSCrosuHFZwT6gCWUyva1DJw9m7igl9CPc6gf4Ne5EcOWvmMQsbOtZHc65l3M4fiyFRtv+skobm1vbO+Xdyt7+weFRtXbc05FRHLo8kpEa+EyDFCF0UaCEQayABb6Evj+7yfz+IygtovAe5zF4AZuGYiI4w1Tqu4lz2XQXo2rdbtg56DpxClInBTqjmlV2xxE3AYTIJdN66NgxeglTKLiERcU1GmLGZ2wKw5SGLADtJXnfBT03mmFEY1BUSJqL8PcjYYHW88BPLwOGD3rVy8T/vKHBybWXiDA2CCHPglBIyIM0VyIdAuhYKEBkWXOgIqScKYYISlDGeSqadJmlwMBIFCp6WiyrabjvRzLbzlldap30mg3Hbjh3rXq7VaxYJqfkjFwQh1yRNrklHdIlnMzIM3khr9ab9W59WJ+/pyWr+DkhS7C+fwBF3KUv</latexit><latexit sha1_base64="rHGGev1zcJXAc+FbITZE9nHdlf4=">AAACJXicbVDLSsNAFJ3UV62vVpduBovgQkpSCrosuHFZwT6gCWUyva1DJw9m7igl9CPc6gf4Ne5EcOWvmMQsbOtZHc65l3M4fiyFRtv+skobm1vbO+Xdyt7+weFRtXbc05FRHLo8kpEa+EyDFCF0UaCEQayABb6Evj+7yfz+IygtovAe5zF4AZuGYiI4w1Tqu4lz2XQXo2rdbtg56DpxClInBTqjmlV2xxE3AYTIJdN66NgxeglTKLiERcU1GmLGZ2wKw5SGLADtJXnfBT03mmFEY1BUSJqL8PcjYYHW88BPLwOGD3rVy8T/vKHBybWXiDA2CCHPglBIyIM0VyIdAuhYKEBkWXOgIqScKYYISlDGeSqadJmlwMBIFCp6WiyrabjvRzLbzlldap30mg3Hbjh3rXq7VaxYJqfkjFwQh1yRNrklHdIlnMzIM3khr9ab9W59WJ+/pyWr+DkhS7C+fwBF3KUv</latexit>

{1, 3}
<latexit sha1_base64="RhwGK14FynUSgcS+0kADb+P99Cg=">AAACJXicbVDLSsNAFJ3UV62vVpduBovgQkqiBV0W3LisYB/QlDKZ3tahkwczd5QS8hFu9QP8GnciuPJXTGIWtvWsDufcyzkcL5JCo21/WaW19Y3NrfJ2ZWd3b/+gWjvs6tAoDh0eylD1PaZBigA6KFBCP1LAfE9Cz5vdZH7vEZQWYXCP8wiGPpsGYiI4w1TqubFzfukmo2rdbtg56CpxClInBdqjmlV2xyE3PgTIJdN64NgRDmOmUHAJScU1GiLGZ2wKg5QGzAc9jPO+CT01mmFII1BUSJqL8PcjZr7Wc99LL32GD3rZy8T/vIHByfUwFkFkEAKeBaGQkAdprkQ6BNCxUIDIsuZARUA5UwwRlKCM81Q06TILgb6RKFT4lCyqabjnhTLbzlleapV0LxqO3XDumvVWs1ixTI7JCTkjDrkiLXJL2qRDOJmRZ/JCXq036936sD5/T0tW8XNEFmB9/wBHmaUw</latexit><latexit sha1_base64="RhwGK14FynUSgcS+0kADb+P99Cg=">AAACJXicbVDLSsNAFJ3UV62vVpduBovgQkqiBV0W3LisYB/QlDKZ3tahkwczd5QS8hFu9QP8GnciuPJXTGIWtvWsDufcyzkcL5JCo21/WaW19Y3NrfJ2ZWd3b/+gWjvs6tAoDh0eylD1PaZBigA6KFBCP1LAfE9Cz5vdZH7vEZQWYXCP8wiGPpsGYiI4w1TqubFzfukmo2rdbtg56CpxClInBdqjmlV2xyE3PgTIJdN64NgRDmOmUHAJScU1GiLGZ2wKg5QGzAc9jPO+CT01mmFII1BUSJqL8PcjZr7Wc99LL32GD3rZy8T/vIHByfUwFkFkEAKeBaGQkAdprkQ6BNCxUIDIsuZARUA5UwwRlKCM81Q06TILgb6RKFT4lCyqabjnhTLbzlleapV0LxqO3XDumvVWs1ixTI7JCTkjDrkiLXJL2qRDOJmRZ/JCXq036936sD5/T0tW8XNEFmB9/wBHmaUw</latexit><latexit sha1_base64="RhwGK14FynUSgcS+0kADb+P99Cg=">AAACJXicbVDLSsNAFJ3UV62vVpduBovgQkqiBV0W3LisYB/QlDKZ3tahkwczd5QS8hFu9QP8GnciuPJXTGIWtvWsDufcyzkcL5JCo21/WaW19Y3NrfJ2ZWd3b/+gWjvs6tAoDh0eylD1PaZBigA6KFBCP1LAfE9Cz5vdZH7vEZQWYXCP8wiGPpsGYiI4w1TqubFzfukmo2rdbtg56CpxClInBdqjmlV2xyE3PgTIJdN64NgRDmOmUHAJScU1GiLGZ2wKg5QGzAc9jPO+CT01mmFII1BUSJqL8PcjZr7Wc99LL32GD3rZy8T/vIHByfUwFkFkEAKeBaGQkAdprkQ6BNCxUIDIsuZARUA5UwwRlKCM81Q06TILgb6RKFT4lCyqabjnhTLbzlleapV0LxqO3XDumvVWs1ixTI7JCTkjDrkiLXJL2qRDOJmRZ/JCXq036936sD5/T0tW8XNEFmB9/wBHmaUw</latexit><latexit sha1_base64="RhwGK14FynUSgcS+0kADb+P99Cg=">AAACJXicbVDLSsNAFJ3UV62vVpduBovgQkqiBV0W3LisYB/QlDKZ3tahkwczd5QS8hFu9QP8GnciuPJXTGIWtvWsDufcyzkcL5JCo21/WaW19Y3NrfJ2ZWd3b/+gWjvs6tAoDh0eylD1PaZBigA6KFBCP1LAfE9Cz5vdZH7vEZQWYXCP8wiGPpsGYiI4w1TqubFzfukmo2rdbtg56CpxClInBdqjmlV2xyE3PgTIJdN64NgRDmOmUHAJScU1GiLGZ2wKg5QGzAc9jPO+CT01mmFII1BUSJqL8PcjZr7Wc99LL32GD3rZy8T/vIHByfUwFkFkEAKeBaGQkAdprkQ6BNCxUIDIsuZARUA5UwwRlKCM81Q06TILgb6RKFT4lCyqabjnhTLbzlleapV0LxqO3XDumvVWs1ixTI7JCTkjDrkiLXJL2qRDOJmRZ/JCXq036936sD5/T0tW8XNEFmB9/wBHmaUw</latexit>

{2, 3}
<latexit sha1_base64="3E1nlP8yy3GIhd7hNo2DS350vFk=">AAACJXicbVDLSsNAFJ34rPXV6tLNYBFcSElqQZcFNy4r2Ac0oUymt3XoZBJmbpQS+hFu9QP8GnciuPJXTGIWtvWsDufcyzkcP5LCoG1/WWvrG5tb26Wd8u7e/sFhpXrUNWGsOXR4KEPd95kBKRR0UKCEfqSBBb6Enj+9yfzeI2gjQnWPswi8gE2UGAvOMJV6btK4uHTnw0rNrts56CpxClIjBdrDqlVyRyGPA1DIJTNm4NgRegnTKLiEedmNDUSMT9kEBilVLADjJXnfOT2LDcOQRqCpkDQX4e9HwgJjZoGfXgYMH8yyl4n/eYMYx9deIlQUIyieBaGQkAcZrkU6BNCR0IDIsuZAhaKcaYYIWlDGeSrG6TILgUEsUejwab6opuG+H8psO2d5qVXSbdQdu+7cNWutZrFiiZyQU3JOHHJFWuSWtEmHcDIlz+SFvFpv1rv1YX3+nq5Zxc8xWYD1/QNJWKUx</latexit><latexit sha1_base64="3E1nlP8yy3GIhd7hNo2DS350vFk=">AAACJXicbVDLSsNAFJ34rPXV6tLNYBFcSElqQZcFNy4r2Ac0oUymt3XoZBJmbpQS+hFu9QP8GnciuPJXTGIWtvWsDufcyzkcP5LCoG1/WWvrG5tb26Wd8u7e/sFhpXrUNWGsOXR4KEPd95kBKRR0UKCEfqSBBb6Enj+9yfzeI2gjQnWPswi8gE2UGAvOMJV6btK4uHTnw0rNrts56CpxClIjBdrDqlVyRyGPA1DIJTNm4NgRegnTKLiEedmNDUSMT9kEBilVLADjJXnfOT2LDcOQRqCpkDQX4e9HwgJjZoGfXgYMH8yyl4n/eYMYx9deIlQUIyieBaGQkAcZrkU6BNCR0IDIsuZAhaKcaYYIWlDGeSrG6TILgUEsUejwab6opuG+H8psO2d5qVXSbdQdu+7cNWutZrFiiZyQU3JOHHJFWuSWtEmHcDIlz+SFvFpv1rv1YX3+nq5Zxc8xWYD1/QNJWKUx</latexit><latexit sha1_base64="3E1nlP8yy3GIhd7hNo2DS350vFk=">AAACJXicbVDLSsNAFJ34rPXV6tLNYBFcSElqQZcFNy4r2Ac0oUymt3XoZBJmbpQS+hFu9QP8GnciuPJXTGIWtvWsDufcyzkcP5LCoG1/WWvrG5tb26Wd8u7e/sFhpXrUNWGsOXR4KEPd95kBKRR0UKCEfqSBBb6Enj+9yfzeI2gjQnWPswi8gE2UGAvOMJV6btK4uHTnw0rNrts56CpxClIjBdrDqlVyRyGPA1DIJTNm4NgRegnTKLiEedmNDUSMT9kEBilVLADjJXnfOT2LDcOQRqCpkDQX4e9HwgJjZoGfXgYMH8yyl4n/eYMYx9deIlQUIyieBaGQkAcZrkU6BNCR0IDIsuZAhaKcaYYIWlDGeSrG6TILgUEsUejwab6opuG+H8psO2d5qVXSbdQdu+7cNWutZrFiiZyQU3JOHHJFWuSWtEmHcDIlz+SFvFpv1rv1YX3+nq5Zxc8xWYD1/QNJWKUx</latexit><latexit sha1_base64="3E1nlP8yy3GIhd7hNo2DS350vFk=">AAACJXicbVDLSsNAFJ34rPXV6tLNYBFcSElqQZcFNy4r2Ac0oUymt3XoZBJmbpQS+hFu9QP8GnciuPJXTGIWtvWsDufcyzkcP5LCoG1/WWvrG5tb26Wd8u7e/sFhpXrUNWGsOXR4KEPd95kBKRR0UKCEfqSBBb6Enj+9yfzeI2gjQnWPswi8gE2UGAvOMJV6btK4uHTnw0rNrts56CpxClIjBdrDqlVyRyGPA1DIJTNm4NgRegnTKLiEedmNDUSMT9kEBilVLADjJXnfOT2LDcOQRqCpkDQX4e9HwgJjZoGfXgYMH8yyl4n/eYMYx9deIlQUIyieBaGQkAcZrkU6BNCR0IDIsuZAhaKcaYYIWlDGeSrG6TILgUEsUejwab6opuG+H8psO2d5qVXSbdQdu+7cNWutZrFiiZyQU3JOHHJFWuSWtEmHcDIlz+SFvFpv1rv1YX3+nq5Zxc8xWYD1/QNJWKUx</latexit>

{2, 4}
<latexit sha1_base64="cXoYTA/Vgfna1AX3VlgysPCAV7c=">AAACJXicbVDLSsNAFJ3UV62vVpduBovgQkpSCrosuHFZwT6gCWUyva1DJw9m7igl9CPc6gf4Ne5EcOWvmMQsbOtZHc65l3M4fiyFRtv+skobm1vbO+Xdyt7+weFRtXbc05FRHLo8kpEa+EyDFCF0UaCEQayABb6Evj+7yfz+IygtovAe5zF4AZuGYiI4w1Tqu0nzsuUuRtW63bBz0HXiFKROCnRGNavsjiNuAgiRS6b10LFj9BKmUHAJi4prNMSMz9gUhikNWQDaS/K+C3puNMOIxqCokDQX4e9HwgKt54GfXgYMH/Sql4n/eUODk2svEWFsEEKeBaGQkAdprkQ6BNCxUIDIsuZARUg5UwwRlKCM81Q06TJLgYGRKFT0tFhW03Dfj2S2nbO61DrpNRuO3XDuWvV2q1ixTE7JGbkgDrkibXJLOqRLOJmRZ/JCXq036936sD5/T0tW8XNClmB9/wBLFaUy</latexit><latexit sha1_base64="cXoYTA/Vgfna1AX3VlgysPCAV7c=">AAACJXicbVDLSsNAFJ3UV62vVpduBovgQkpSCrosuHFZwT6gCWUyva1DJw9m7igl9CPc6gf4Ne5EcOWvmMQsbOtZHc65l3M4fiyFRtv+skobm1vbO+Xdyt7+weFRtXbc05FRHLo8kpEa+EyDFCF0UaCEQayABb6Evj+7yfz+IygtovAe5zF4AZuGYiI4w1Tqu0nzsuUuRtW63bBz0HXiFKROCnRGNavsjiNuAgiRS6b10LFj9BKmUHAJi4prNMSMz9gUhikNWQDaS/K+C3puNMOIxqCokDQX4e9HwgKt54GfXgYMH/Sql4n/eUODk2svEWFsEEKeBaGQkAdprkQ6BNCxUIDIsuZARUg5UwwRlKCM81Q06TJLgYGRKFT0tFhW03Dfj2S2nbO61DrpNRuO3XDuWvV2q1ixTE7JGbkgDrkibXJLOqRLOJmRZ/JCXq036936sD5/T0tW8XNClmB9/wBLFaUy</latexit><latexit sha1_base64="cXoYTA/Vgfna1AX3VlgysPCAV7c=">AAACJXicbVDLSsNAFJ3UV62vVpduBovgQkpSCrosuHFZwT6gCWUyva1DJw9m7igl9CPc6gf4Ne5EcOWvmMQsbOtZHc65l3M4fiyFRtv+skobm1vbO+Xdyt7+weFRtXbc05FRHLo8kpEa+EyDFCF0UaCEQayABb6Evj+7yfz+IygtovAe5zF4AZuGYiI4w1Tqu0nzsuUuRtW63bBz0HXiFKROCnRGNavsjiNuAgiRS6b10LFj9BKmUHAJi4prNMSMz9gUhikNWQDaS/K+C3puNMOIxqCokDQX4e9HwgKt54GfXgYMH/Sql4n/eUODk2svEWFsEEKeBaGQkAdprkQ6BNCxUIDIsuZARUg5UwwRlKCM81Q06TJLgYGRKFT0tFhW03Dfj2S2nbO61DrpNRuO3XDuWvV2q1ixTE7JGbkgDrkibXJLOqRLOJmRZ/JCXq036936sD5/T0tW8XNClmB9/wBLFaUy</latexit><latexit sha1_base64="cXoYTA/Vgfna1AX3VlgysPCAV7c=">AAACJXicbVDLSsNAFJ3UV62vVpduBovgQkpSCrosuHFZwT6gCWUyva1DJw9m7igl9CPc6gf4Ne5EcOWvmMQsbOtZHc65l3M4fiyFRtv+skobm1vbO+Xdyt7+weFRtXbc05FRHLo8kpEa+EyDFCF0UaCEQayABb6Evj+7yfz+IygtovAe5zF4AZuGYiI4w1Tqu0nzsuUuRtW63bBz0HXiFKROCnRGNavsjiNuAgiRS6b10LFj9BKmUHAJi4prNMSMz9gUhikNWQDaS/K+C3puNMOIxqCokDQX4e9HwgKt54GfXgYMH/Sql4n/eUODk2svEWFsEEKeBaGQkAdprkQ6BNCxUIDIsuZARUg5UwwRlKCM81Q06TJLgYGRKFT0tFhW03Dfj2S2nbO61DrpNRuO3XDuWvV2q1ixTE7JGbkgDrkibXJLOqRLOJmRZ/JCXq036936sD5/T0tW8XNClmB9/wBLFaUy</latexit>

{1, 4}
<latexit sha1_base64="MTTYAbC71tpKBNaJBTFYXAYUCfs=">AAACJXicbVDLSsNAFJ3xWeur1aWbwSK4kJJIQZcFNy4r2Ac0oUymt3Xo5MHMjVJCPsKtfoBf404EV/6KSczCtp7V4Zx7OYfjRUoatKwvura+sbm1Xdmp7u7tHxzW6kc9E8ZaQFeEKtQDjxtQMoAuSlQwiDRw31PQ92Y3ud9/BG1kGNzjPALX59NATqTgmEl9J7EvWk46qjWsplWArRK7JA1SojOq04ozDkXsQ4BCcWOGthWhm3CNUihIq05sIOJixqcwzGjAfTBuUvRN2VlsOIYsAs2kYoUIfz8S7hsz973s0uf4YJa9XPzPG8Y4uXYTGUQxQiDyIJQKiiAjtMyGADaWGhB53hyYDJjgmiOClowLkYlxtsxCoB8rlDp8ShfVLNzzQpVvZy8vtUp6l03batp3rUa7Va5YISfklJwTm1yRNrklHdIlgszIM3khr/SNvtMP+vl7ukbLn2OyAPr9A0lWpTE=</latexit><latexit sha1_base64="MTTYAbC71tpKBNaJBTFYXAYUCfs=">AAACJXicbVDLSsNAFJ3xWeur1aWbwSK4kJJIQZcFNy4r2Ac0oUymt3Xo5MHMjVJCPsKtfoBf404EV/6KSczCtp7V4Zx7OYfjRUoatKwvura+sbm1Xdmp7u7tHxzW6kc9E8ZaQFeEKtQDjxtQMoAuSlQwiDRw31PQ92Y3ud9/BG1kGNzjPALX59NATqTgmEl9J7EvWk46qjWsplWArRK7JA1SojOq04ozDkXsQ4BCcWOGthWhm3CNUihIq05sIOJixqcwzGjAfTBuUvRN2VlsOIYsAs2kYoUIfz8S7hsz973s0uf4YJa9XPzPG8Y4uXYTGUQxQiDyIJQKiiAjtMyGADaWGhB53hyYDJjgmiOClowLkYlxtsxCoB8rlDp8ShfVLNzzQpVvZy8vtUp6l03batp3rUa7Va5YISfklJwTm1yRNrklHdIlgszIM3khr/SNvtMP+vl7ukbLn2OyAPr9A0lWpTE=</latexit><latexit sha1_base64="MTTYAbC71tpKBNaJBTFYXAYUCfs=">AAACJXicbVDLSsNAFJ3xWeur1aWbwSK4kJJIQZcFNy4r2Ac0oUymt3Xo5MHMjVJCPsKtfoBf404EV/6KSczCtp7V4Zx7OYfjRUoatKwvura+sbm1Xdmp7u7tHxzW6kc9E8ZaQFeEKtQDjxtQMoAuSlQwiDRw31PQ92Y3ud9/BG1kGNzjPALX59NATqTgmEl9J7EvWk46qjWsplWArRK7JA1SojOq04ozDkXsQ4BCcWOGthWhm3CNUihIq05sIOJixqcwzGjAfTBuUvRN2VlsOIYsAs2kYoUIfz8S7hsz973s0uf4YJa9XPzPG8Y4uXYTGUQxQiDyIJQKiiAjtMyGADaWGhB53hyYDJjgmiOClowLkYlxtsxCoB8rlDp8ShfVLNzzQpVvZy8vtUp6l03batp3rUa7Va5YISfklJwTm1yRNrklHdIlgszIM3khr/SNvtMP+vl7ukbLn2OyAPr9A0lWpTE=</latexit><latexit sha1_base64="MTTYAbC71tpKBNaJBTFYXAYUCfs=">AAACJXicbVDLSsNAFJ3xWeur1aWbwSK4kJJIQZcFNy4r2Ac0oUymt3Xo5MHMjVJCPsKtfoBf404EV/6KSczCtp7V4Zx7OYfjRUoatKwvura+sbm1Xdmp7u7tHxzW6kc9E8ZaQFeEKtQDjxtQMoAuSlQwiDRw31PQ92Y3ud9/BG1kGNzjPALX59NATqTgmEl9J7EvWk46qjWsplWArRK7JA1SojOq04ozDkXsQ4BCcWOGthWhm3CNUihIq05sIOJixqcwzGjAfTBuUvRN2VlsOIYsAs2kYoUIfz8S7hsz973s0uf4YJa9XPzPG8Y4uXYTGUQxQiDyIJQKiiAjtMyGADaWGhB53hyYDJjgmiOClowLkYlxtsxCoB8rlDp8ShfVLNzzQpVvZy8vtUp6l03batp3rUa7Va5YISfklJwTm1yRNrklHdIlgszIM3khr/SNvtMP+vl7ukbLn2OyAPr9A0lWpTE=</latexit>

{1, 2, 3}
<latexit sha1_base64="oqFtwiIdYkbWwUAtcxHKpMZ2Oyg=">AAACJ3icbVDLTsJAFJ36RHyBLt1MJCYuCGmRRJckblxiIg9DCZkOF5ww0zYztxrS8BVu9QP8GndGl/6Jbe1CwLM6OefenJPjhVIYtO0va219Y3Nru7BT3N3bPzgslY86Jog0hzYPZKB7HjMghQ9tFCihF2pgypPQ9abXqd99BG1E4N/hLISBYhNfjAVnmEj3buxU69ULdz4sVeyanYGuEicnFZKjNSxbBXcU8EiBj1wyY/qOHeIgZhoFlzAvupGBkPEpm0A/oT5TYAZx1nhOzyLDMKAhaCokzUT4+xEzZcxMecmlYvhglr1U/M/rRzi+GsTCDyMEn6dBKCRkQYZrkUwBdCQ0ILK0OVDhU840QwQtKOM8EaNkm4VAFUkUOniaL6pJuOcFMt3OWV5qlXTqNceuObeNSrORr1ggJ+SUnBOHXJImuSEt0iacKPJMXsir9Wa9Wx/W5+/pmpX/HJMFWN8/OFalog==</latexit><latexit sha1_base64="oqFtwiIdYkbWwUAtcxHKpMZ2Oyg=">AAACJ3icbVDLTsJAFJ36RHyBLt1MJCYuCGmRRJckblxiIg9DCZkOF5ww0zYztxrS8BVu9QP8GndGl/6Jbe1CwLM6OefenJPjhVIYtO0va219Y3Nru7BT3N3bPzgslY86Jog0hzYPZKB7HjMghQ9tFCihF2pgypPQ9abXqd99BG1E4N/hLISBYhNfjAVnmEj3buxU69ULdz4sVeyanYGuEicnFZKjNSxbBXcU8EiBj1wyY/qOHeIgZhoFlzAvupGBkPEpm0A/oT5TYAZx1nhOzyLDMKAhaCokzUT4+xEzZcxMecmlYvhglr1U/M/rRzi+GsTCDyMEn6dBKCRkQYZrkUwBdCQ0ILK0OVDhU840QwQtKOM8EaNkm4VAFUkUOniaL6pJuOcFMt3OWV5qlXTqNceuObeNSrORr1ggJ+SUnBOHXJImuSEt0iacKPJMXsir9Wa9Wx/W5+/pmpX/HJMFWN8/OFalog==</latexit><latexit sha1_base64="oqFtwiIdYkbWwUAtcxHKpMZ2Oyg=">AAACJ3icbVDLTsJAFJ36RHyBLt1MJCYuCGmRRJckblxiIg9DCZkOF5ww0zYztxrS8BVu9QP8GndGl/6Jbe1CwLM6OefenJPjhVIYtO0va219Y3Nru7BT3N3bPzgslY86Jog0hzYPZKB7HjMghQ9tFCihF2pgypPQ9abXqd99BG1E4N/hLISBYhNfjAVnmEj3buxU69ULdz4sVeyanYGuEicnFZKjNSxbBXcU8EiBj1wyY/qOHeIgZhoFlzAvupGBkPEpm0A/oT5TYAZx1nhOzyLDMKAhaCokzUT4+xEzZcxMecmlYvhglr1U/M/rRzi+GsTCDyMEn6dBKCRkQYZrkUwBdCQ0ILK0OVDhU840QwQtKOM8EaNkm4VAFUkUOniaL6pJuOcFMt3OWV5qlXTqNceuObeNSrORr1ggJ+SUnBOHXJImuSEt0iacKPJMXsir9Wa9Wx/W5+/pmpX/HJMFWN8/OFalog==</latexit><latexit sha1_base64="oqFtwiIdYkbWwUAtcxHKpMZ2Oyg=">AAACJ3icbVDLTsJAFJ36RHyBLt1MJCYuCGmRRJckblxiIg9DCZkOF5ww0zYztxrS8BVu9QP8GndGl/6Jbe1CwLM6OefenJPjhVIYtO0va219Y3Nru7BT3N3bPzgslY86Jog0hzYPZKB7HjMghQ9tFCihF2pgypPQ9abXqd99BG1E4N/hLISBYhNfjAVnmEj3buxU69ULdz4sVeyanYGuEicnFZKjNSxbBXcU8EiBj1wyY/qOHeIgZhoFlzAvupGBkPEpm0A/oT5TYAZx1nhOzyLDMKAhaCokzUT4+xEzZcxMecmlYvhglr1U/M/rRzi+GsTCDyMEn6dBKCRkQYZrkUwBdCQ0ILK0OVDhU840QwQtKOM8EaNkm4VAFUkUOniaL6pJuOcFMt3OWV5qlXTqNceuObeNSrORr1ggJ+SUnBOHXJImuSEt0iacKPJMXsir9Wa9Wx/W5+/pmpX/HJMFWN8/OFalog==</latexit>

{1, 3, 4}
<latexit sha1_base64="yFbvORIvZL6DqFXkqVZIfx47gpQ=">AAACJ3icbVDLTsJAFJ3iC/EFunQzkZi4IKRVEl2SuHGJiTwMEDIdLjhhpm1mbjWk6Ve41Q/wa9wZXfontrULAc/q5Jx7c06OG0hh0La/rMLa+sbmVnG7tLO7t39Qrhx2jB9qDm3uS1/3XGZACg/aKFBCL9DAlCuh686uU7/7CNoI37vDeQBDxaaemAjOMJHuB5FTu6g1BvGoXLXrdga6SpycVEmO1qhiFQdjn4cKPOSSGdN37ACHEdMouIS4NAgNBIzP2BT6CfWYAjOMssYxPQ0NQ58GoKmQNBPh70fElDFz5SaXiuGDWfZS8T+vH+LkahgJLwgRPJ4GoZCQBRmuRTIF0LHQgMjS5kCFRznTDBG0oIzzRAyTbRYCVShRaP8pXlSTcNf1Zbqds7zUKumc1x277tw2qs1GvmKRHJMTckYcckma5Ia0SJtwosgzeSGv1pv1bn1Yn7+nBSv/OSILsL5/ADvSpaQ=</latexit><latexit sha1_base64="yFbvORIvZL6DqFXkqVZIfx47gpQ=">AAACJ3icbVDLTsJAFJ3iC/EFunQzkZi4IKRVEl2SuHGJiTwMEDIdLjhhpm1mbjWk6Ve41Q/wa9wZXfontrULAc/q5Jx7c06OG0hh0La/rMLa+sbmVnG7tLO7t39Qrhx2jB9qDm3uS1/3XGZACg/aKFBCL9DAlCuh686uU7/7CNoI37vDeQBDxaaemAjOMJHuB5FTu6g1BvGoXLXrdga6SpycVEmO1qhiFQdjn4cKPOSSGdN37ACHEdMouIS4NAgNBIzP2BT6CfWYAjOMssYxPQ0NQ58GoKmQNBPh70fElDFz5SaXiuGDWfZS8T+vH+LkahgJLwgRPJ4GoZCQBRmuRTIF0LHQgMjS5kCFRznTDBG0oIzzRAyTbRYCVShRaP8pXlSTcNf1Zbqds7zUKumc1x277tw2qs1GvmKRHJMTckYcckma5Ia0SJtwosgzeSGv1pv1bn1Yn7+nBSv/OSILsL5/ADvSpaQ=</latexit><latexit sha1_base64="yFbvORIvZL6DqFXkqVZIfx47gpQ=">AAACJ3icbVDLTsJAFJ3iC/EFunQzkZi4IKRVEl2SuHGJiTwMEDIdLjhhpm1mbjWk6Ve41Q/wa9wZXfontrULAc/q5Jx7c06OG0hh0La/rMLa+sbmVnG7tLO7t39Qrhx2jB9qDm3uS1/3XGZACg/aKFBCL9DAlCuh686uU7/7CNoI37vDeQBDxaaemAjOMJHuB5FTu6g1BvGoXLXrdga6SpycVEmO1qhiFQdjn4cKPOSSGdN37ACHEdMouIS4NAgNBIzP2BT6CfWYAjOMssYxPQ0NQ58GoKmQNBPh70fElDFz5SaXiuGDWfZS8T+vH+LkahgJLwgRPJ4GoZCQBRmuRTIF0LHQgMjS5kCFRznTDBG0oIzzRAyTbRYCVShRaP8pXlSTcNf1Zbqds7zUKumc1x277tw2qs1GvmKRHJMTckYcckma5Ia0SJtwosgzeSGv1pv1bn1Yn7+nBSv/OSILsL5/ADvSpaQ=</latexit><latexit sha1_base64="yFbvORIvZL6DqFXkqVZIfx47gpQ=">AAACJ3icbVDLTsJAFJ3iC/EFunQzkZi4IKRVEl2SuHGJiTwMEDIdLjhhpm1mbjWk6Ve41Q/wa9wZXfontrULAc/q5Jx7c06OG0hh0La/rMLa+sbmVnG7tLO7t39Qrhx2jB9qDm3uS1/3XGZACg/aKFBCL9DAlCuh686uU7/7CNoI37vDeQBDxaaemAjOMJHuB5FTu6g1BvGoXLXrdga6SpycVEmO1qhiFQdjn4cKPOSSGdN37ACHEdMouIS4NAgNBIzP2BT6CfWYAjOMssYxPQ0NQ58GoKmQNBPh70fElDFz5SaXiuGDWfZS8T+vH+LkahgJLwgRPJ4GoZCQBRmuRTIF0LHQgMjS5kCFRznTDBG0oIzzRAyTbRYCVShRaP8pXlSTcNf1Zbqds7zUKumc1x277tw2qs1GvmKRHJMTckYcckma5Ia0SJtwosgzeSGv1pv1bn1Yn7+nBSv/OSILsL5/ADvSpaQ=</latexit>

{1, 2, 3, 4}
<latexit sha1_base64="/4LIg7NQkncIg/lDhO2f0BFj5/8=">AAACKXicbVDLTsJAFJ3iC/EFunQzkZi4IKRFEl2SuHGJiTwSSsh0uOCEaaeZudWQhs9wqx/g17hTt/6Ibe1CwLM6OefenJPjhVIYtO1Pq7CxubW9U9wt7e0fHB6VK8ddoyLNocOVVLrvMQNSBNBBgRL6oQbmexJ63uwm9XuPoI1QwT3OQxj6bBqIieAME2ngxk6tUbusNd3FqFy163YGuk6cnFRJjvaoYhXdseKRDwFyyYwZOHaIw5hpFFzCouRGBkLGZ2wKg4QGzAczjLPOC3oeGYaKhqCpkDQT4e9HzHxj5r6XXPoMH8yql4r/eYMIJ9fDWARhhBDwNAiFhCzIcC2SMYCOhQZEljYHKgLKmWaIoAVlnCdilKyzFOhHEoVWT4tlNQn3PCXT7ZzVpdZJt1F37Lpz16y2mvmKRXJKzsgFccgVaZFb0iYdwokiz+SFvFpv1rv1YX39nhas/OeELMH6/gEtU6YW</latexit><latexit sha1_base64="/4LIg7NQkncIg/lDhO2f0BFj5/8=">AAACKXicbVDLTsJAFJ3iC/EFunQzkZi4IKRFEl2SuHGJiTwSSsh0uOCEaaeZudWQhs9wqx/g17hTt/6Ibe1CwLM6OefenJPjhVIYtO1Pq7CxubW9U9wt7e0fHB6VK8ddoyLNocOVVLrvMQNSBNBBgRL6oQbmexJ63uwm9XuPoI1QwT3OQxj6bBqIieAME2ngxk6tUbusNd3FqFy163YGuk6cnFRJjvaoYhXdseKRDwFyyYwZOHaIw5hpFFzCouRGBkLGZ2wKg4QGzAczjLPOC3oeGYaKhqCpkDQT4e9HzHxj5r6XXPoMH8yql4r/eYMIJ9fDWARhhBDwNAiFhCzIcC2SMYCOhQZEljYHKgLKmWaIoAVlnCdilKyzFOhHEoVWT4tlNQn3PCXT7ZzVpdZJt1F37Lpz16y2mvmKRXJKzsgFccgVaZFb0iYdwokiz+SFvFpv1rv1YX39nhas/OeELMH6/gEtU6YW</latexit><latexit sha1_base64="/4LIg7NQkncIg/lDhO2f0BFj5/8=">AAACKXicbVDLTsJAFJ3iC/EFunQzkZi4IKRFEl2SuHGJiTwSSsh0uOCEaaeZudWQhs9wqx/g17hTt/6Ibe1CwLM6OefenJPjhVIYtO1Pq7CxubW9U9wt7e0fHB6VK8ddoyLNocOVVLrvMQNSBNBBgRL6oQbmexJ63uwm9XuPoI1QwT3OQxj6bBqIieAME2ngxk6tUbusNd3FqFy163YGuk6cnFRJjvaoYhXdseKRDwFyyYwZOHaIw5hpFFzCouRGBkLGZ2wKg4QGzAczjLPOC3oeGYaKhqCpkDQT4e9HzHxj5r6XXPoMH8yql4r/eYMIJ9fDWARhhBDwNAiFhCzIcC2SMYCOhQZEljYHKgLKmWaIoAVlnCdilKyzFOhHEoVWT4tlNQn3PCXT7ZzVpdZJt1F37Lpz16y2mvmKRXJKzsgFccgVaZFb0iYdwokiz+SFvFpv1rv1YX39nhas/OeELMH6/gEtU6YW</latexit><latexit sha1_base64="/4LIg7NQkncIg/lDhO2f0BFj5/8=">AAACKXicbVDLTsJAFJ3iC/EFunQzkZi4IKRFEl2SuHGJiTwSSsh0uOCEaaeZudWQhs9wqx/g17hTt/6Ibe1CwLM6OefenJPjhVIYtO1Pq7CxubW9U9wt7e0fHB6VK8ddoyLNocOVVLrvMQNSBNBBgRL6oQbmexJ63uwm9XuPoI1QwT3OQxj6bBqIieAME2ngxk6tUbusNd3FqFy163YGuk6cnFRJjvaoYhXdseKRDwFyyYwZOHaIw5hpFFzCouRGBkLGZ2wKg4QGzAczjLPOC3oeGYaKhqCpkDQT4e9HzHxj5r6XXPoMH8yql4r/eYMIJ9fDWARhhBDwNAiFhCzIcC2SMYCOhQZEljYHKgLKmWaIoAVlnCdilKyzFOhHEoVWT4tlNQn3PCXT7ZzVpdZJt1F37Lpz16y2mvmKRXJKzsgFccgVaZFb0iYdwokiz+SFvFpv1rv1YX39nhas/OeELMH6/gEtU6YW</latexit>

{2, 3, 4}
<latexit sha1_base64="i52Ze0P1vpEbjENz/nfj3ocaPq8=">AAACJ3icbVDLTsJAFJ36RHyBLt1MJCYuCGmRRJckblxiIg9DCZkOF5ww0zYztxrS8BVu9QP8GndGl/6Jbe1CwLM6OefenJPjhVIYtO0va219Y3Nru7BT3N3bPzgslY86Jog0hzYPZKB7HjMghQ9tFCihF2pgypPQ9abXqd99BG1E4N/hLISBYhNfjAVnmEj3blyvXlQb7nxYqtg1OwNdJU5OKiRHa1i2Cu4o4JECH7lkxvQdO8RBzDQKLmFedCMDIeNTNoF+Qn2mwAzirPGcnkWGYUBD0FRImonw9yNmypiZ8pJLxfDBLHup+J/Xj3B8NYiFH0YIPk+DUEjIggzXIpkC6EhoQGRpc6DCp5xphghaUMZ5IkbJNguBKpIodPA0X1STcM8LZLqds7zUKunUa45dc24blWYjX7FATsgpOScOuSRNckNapE04UeSZvJBX6816tz6sz9/TNSv/OSYLsL5/AD2TpaU=</latexit><latexit sha1_base64="i52Ze0P1vpEbjENz/nfj3ocaPq8=">AAACJ3icbVDLTsJAFJ36RHyBLt1MJCYuCGmRRJckblxiIg9DCZkOF5ww0zYztxrS8BVu9QP8GndGl/6Jbe1CwLM6OefenJPjhVIYtO0va219Y3Nru7BT3N3bPzgslY86Jog0hzYPZKB7HjMghQ9tFCihF2pgypPQ9abXqd99BG1E4N/hLISBYhNfjAVnmEj3blyvXlQb7nxYqtg1OwNdJU5OKiRHa1i2Cu4o4JECH7lkxvQdO8RBzDQKLmFedCMDIeNTNoF+Qn2mwAzirPGcnkWGYUBD0FRImonw9yNmypiZ8pJLxfDBLHup+J/Xj3B8NYiFH0YIPk+DUEjIggzXIpkC6EhoQGRpc6DCp5xphghaUMZ5IkbJNguBKpIodPA0X1STcM8LZLqds7zUKunUa45dc24blWYjX7FATsgpOScOuSRNckNapE04UeSZvJBX6816tz6sz9/TNSv/OSYLsL5/AD2TpaU=</latexit><latexit sha1_base64="i52Ze0P1vpEbjENz/nfj3ocaPq8=">AAACJ3icbVDLTsJAFJ36RHyBLt1MJCYuCGmRRJckblxiIg9DCZkOF5ww0zYztxrS8BVu9QP8GndGl/6Jbe1CwLM6OefenJPjhVIYtO0va219Y3Nru7BT3N3bPzgslY86Jog0hzYPZKB7HjMghQ9tFCihF2pgypPQ9abXqd99BG1E4N/hLISBYhNfjAVnmEj3blyvXlQb7nxYqtg1OwNdJU5OKiRHa1i2Cu4o4JECH7lkxvQdO8RBzDQKLmFedCMDIeNTNoF+Qn2mwAzirPGcnkWGYUBD0FRImonw9yNmypiZ8pJLxfDBLHup+J/Xj3B8NYiFH0YIPk+DUEjIggzXIpkC6EhoQGRpc6DCp5xphghaUMZ5IkbJNguBKpIodPA0X1STcM8LZLqds7zUKunUa45dc24blWYjX7FATsgpOScOuSRNckNapE04UeSZvJBX6816tz6sz9/TNSv/OSYLsL5/AD2TpaU=</latexit><latexit sha1_base64="i52Ze0P1vpEbjENz/nfj3ocaPq8=">AAACJ3icbVDLTsJAFJ36RHyBLt1MJCYuCGmRRJckblxiIg9DCZkOF5ww0zYztxrS8BVu9QP8GndGl/6Jbe1CwLM6OefenJPjhVIYtO0va219Y3Nru7BT3N3bPzgslY86Jog0hzYPZKB7HjMghQ9tFCihF2pgypPQ9abXqd99BG1E4N/hLISBYhNfjAVnmEj3blyvXlQb7nxYqtg1OwNdJU5OKiRHa1i2Cu4o4JECH7lkxvQdO8RBzDQKLmFedCMDIeNTNoF+Qn2mwAzirPGcnkWGYUBD0FRImonw9yNmypiZ8pJLxfDBLHup+J/Xj3B8NYiFH0YIPk+DUEjIggzXIpkC6EhoQGRpc6DCp5xphghaUMZ5IkbJNguBKpIodPA0X1STcM8LZLqds7zUKunUa45dc24blWYjX7FATsgpOScOuSRNckNapE04UeSZvJBX6816tz6sz9/TNSv/OSYLsL5/AD2TpaU=</latexit>

{1, 2, 4}
<latexit sha1_base64="GBneFQ9C1FWbbUaw26xpN4UhEWI=">AAACJ3icbVDLTsJAFJ3iC/EFunQzkZi4IKQlJLokceMSE3kYSsh0uOCEmbaZudWQhq9wqx/g17gzuvRPbGsXAp7VyTn35pwcL5TCoG1/WYWNza3tneJuaW//4PCoXDnumiDSHDo8kIHue8yAFD50UKCEfqiBKU9Cz5tdp37vEbQRgX+H8xCGik19MRGcYSLdu7FTa9Sa7mJUrtp1OwNdJ05OqiRHe1Sxiu444JECH7lkxgwcO8RhzDQKLmFRciMDIeMzNoVBQn2mwAzjrPGCnkeGYUBD0FRImonw9yNmypi58pJLxfDBrHqp+J83iHByNYyFH0YIPk+DUEjIggzXIpkC6FhoQGRpc6DCp5xphghaUMZ5IkbJNkuBKpIodPC0WFaTcM8LZLqds7rUOuk26o5dd26b1VYzX7FITskZuSAOuSQtckPapEM4UeSZvJBX6816tz6sz9/TgpX/nJAlWN8/OhOlow==</latexit><latexit sha1_base64="GBneFQ9C1FWbbUaw26xpN4UhEWI=">AAACJ3icbVDLTsJAFJ3iC/EFunQzkZi4IKQlJLokceMSE3kYSsh0uOCEmbaZudWQhq9wqx/g17gzuvRPbGsXAp7VyTn35pwcL5TCoG1/WYWNza3tneJuaW//4PCoXDnumiDSHDo8kIHue8yAFD50UKCEfqiBKU9Cz5tdp37vEbQRgX+H8xCGik19MRGcYSLdu7FTa9Sa7mJUrtp1OwNdJ05OqiRHe1Sxiu444JECH7lkxgwcO8RhzDQKLmFRciMDIeMzNoVBQn2mwAzjrPGCnkeGYUBD0FRImonw9yNmypi58pJLxfDBrHqp+J83iHByNYyFH0YIPk+DUEjIggzXIpkC6FhoQGRpc6DCp5xphghaUMZ5IkbJNkuBKpIodPC0WFaTcM8LZLqds7rUOuk26o5dd26b1VYzX7FITskZuSAOuSQtckPapEM4UeSZvJBX6816tz6sz9/TgpX/nJAlWN8/OhOlow==</latexit><latexit sha1_base64="GBneFQ9C1FWbbUaw26xpN4UhEWI=">AAACJ3icbVDLTsJAFJ3iC/EFunQzkZi4IKQlJLokceMSE3kYSsh0uOCEmbaZudWQhq9wqx/g17gzuvRPbGsXAp7VyTn35pwcL5TCoG1/WYWNza3tneJuaW//4PCoXDnumiDSHDo8kIHue8yAFD50UKCEfqiBKU9Cz5tdp37vEbQRgX+H8xCGik19MRGcYSLdu7FTa9Sa7mJUrtp1OwNdJ05OqiRHe1Sxiu444JECH7lkxgwcO8RhzDQKLmFRciMDIeMzNoVBQn2mwAzjrPGCnkeGYUBD0FRImonw9yNmypi58pJLxfDBrHqp+J83iHByNYyFH0YIPk+DUEjIggzXIpkC6FhoQGRpc6DCp5xphghaUMZ5IkbJNkuBKpIodPC0WFaTcM8LZLqds7rUOuk26o5dd26b1VYzX7FITskZuSAOuSQtckPapEM4UeSZvJBX6816tz6sz9/TgpX/nJAlWN8/OhOlow==</latexit><latexit sha1_base64="GBneFQ9C1FWbbUaw26xpN4UhEWI=">AAACJ3icbVDLTsJAFJ3iC/EFunQzkZi4IKQlJLokceMSE3kYSsh0uOCEmbaZudWQhq9wqx/g17gzuvRPbGsXAp7VyTn35pwcL5TCoG1/WYWNza3tneJuaW//4PCoXDnumiDSHDo8kIHue8yAFD50UKCEfqiBKU9Cz5tdp37vEbQRgX+H8xCGik19MRGcYSLdu7FTa9Sa7mJUrtp1OwNdJ05OqiRHe1Sxiu444JECH7lkxgwcO8RhzDQKLmFRciMDIeMzNoVBQn2mwAzjrPGCnkeGYUBD0FRImonw9yNmypi58pJLxfDBrHqp+J83iHByNYyFH0YIPk+DUEjIggzXIpkC6FhoQGRpc6DCp5xphghaUMZ5IkbJNkuBKpIodPC0WFaTcM8LZLqds7rUOuk26o5dd26b1VYzX7FITskZuSAOuSQtckPapEM4UeSZvJBX6816tz6sz9/TgpX/nJAlWN8/OhOlow==</latexit>

Fig. 1. Hasse diagram of the semilattice induced over the power set of
{1, 2, 3, 4} using the union operation as join. Taken two elements e, e′ of
the lattice if e < e′, then e appears lower in the diagram than e′ and there
is an “upward” path, going from lower points to upper points, connecting
e to e′ (e.g., {1} ≤ {1, 3, 4}, but {2} 6≤ {3}). Any two elements e, e′

of the semilattice have a join e ⊕ e′ = e ∪ e′ and e ⊕ e′ ≥ e, e′ (e.g.,
{1} ⊕ {2, 3} = {1, 2, 3}). The red edges indicate the chain (i.e., sequence
of increasing values) selected by the Lattice Agreement protocol.

Their construction is such that each scan or collect operation
requires O(1) executions of LA and uses O(n) read/write
registers. Then Faleiro [2] have shown that GLA is a very
interesting abstraction to build RSMs with strong consistency
properties, i.e., linearizability of its operations, and liveness
guarantees in asynchronous systems. Very recently Nowak
and Rybicki [10] have studied LA in presence of Byzantine
faults. Their specifications of LA is more restrictive than the
one we propose since it does not allow decisions to contain
values proposed by Byzantine processes. We argue that our
Lattice Agreement specification is more fit to build RSM on
top of the LA algorithm. Removing a value proposed by a
Byzantine process might not be desirable: think about an RSM
that implements an object shared by different organizations,
it could be a breach of contract to selectively avoid certain
updates even when the sender misbehaved. A second reason
is more technical and it stems from the interaction between the
impossibility result introduced by the specifications of [10] and
how an RSM is implemented using GLA [2]. Following [2]
to implement the RSM we take the power set of all possible
updates and we construct a lattice on it using as join the union
operation. As an example, let us suppose that we want to
build a set counter data type, and let us assume that clients
issue four update operations add(1), add(2), add(3), add(4)
interleaved with reads. In this case our semilattice is the one
in Figure 1, and a Lattice Agreement algorithm will ensure
that each read will see values on a single chain, the red one in
the figure. Thanks to this, different reads will see “growing”
versions of the counter that are consistent snapshots (e.g., if
someone reads {1}, the other could read {1, 4}, but it can not
read {4}). Such a semilattice has a breadth1 of 4, actually,
each semilattice obtained using as join operation the union
over the power set of a set of k different values has breadth
k. Therefore to satisfy the specifications of [10] using the
semilattice in Figure 1 we should have at least 5 processes
participating to Lattice Agreement. Unfortunately, it is often
the case that the number of possible update operations is larger

1Formally, the breadth of a semilattice L = (V,⊕) is the largest n, such
that taken any set of U ⊆ V of size n+1 we have

⊕
U =

⊕
K where K

is a proper subset of U .

than the processes running the LA. In the set counter data
type, we may have an add(x) for any x ∈ N, in such setting
the specifications of [10] is impossible to implement. Our
specifications circumvent such impossibility.

III. MODEL

We have a set P : {p0, p1, . . . , pn−1} of processes. They
communicate by exchanging messages over asynchronous au-
thenticated reliable point-to-point communication links (mes-
sages are never lost on links, but delays are unbounded). The
communication graph is complete: there is a communication
link between each pair of processes.

We have a set F ⊂ P of Byzantine processes, with |F | ≤
f . Byzantine processes deviate arbitrarily from the algorithm.
We assume |P | ≥ 3f + 1 (we show that this is necessary in
Section IV-A). The set of correct processes is C = P\F .

IV. THE BYZANTINE LATTICE AGREEMENT PROBLEM
AND THE NECESSITY OF 3f + 1

Each process pi ∈ C starts with an initial input value
proi ∈ E ⊆ V . Values in V form a join semi-lattice
L = (V,⊕) for some commutative join operation ⊕: for each
u, v ∈ V we have u ≤ v if and only if v = u ⊕ v. Given
V ′ = {v1, v2, . . . , vk} ⊆ V we have

⊕
V ′ = v1⊕v2⊕. . .⊕vk.

The task that processes in C want to solve is the one
of Lattice Agreement, and it is formalised by the following
properties:

• Liveness: Each process pi ∈ C eventually outputs a decision
value deci ∈ V ;

• Stability: Each process pi ∈ C outputs a unique decision
value deci ∈ V ;

• Comparability: Given any pair pi, pj ∈ C we have that
either deci ≤ decj or decj ≤ deci;

• Inclusivity: Given any correct process pi ∈ C we have that
proi ≤ deci;

• Non-Triviality: Given any correct process pi ∈ C we have
that deci ≤

⊕
(X ∪ B), where X is the set of proposed

values of all correct processes (X : {proi| with pi ∈ C}),
and B ⊆ E is |B| ≤ f .

In the rest of the paper we will assume that L is a semi-
lattice over sets (V is a set of sets) and ⊕ is the set union
operation. This is not restrictive, it is well known [11] that
any join semi-lattice is isomorphic to a semi-lattice of sets
with set union as join operation.

A. Necessity of at least 3f + 1 processes

We first show that our specification can only be satisfied
when there are at least 3f +1 processes. The proof is omitted
and it can be found in the extended version.

Theorem 1. Let A be any asynchronous distributed algorithm
that solves Byzantine Lattice Agreement when up to f are
Byzantine processes. We have that A needs at least 3f + 1
processes. This holds even if we drop the Inclusivity property
from the specification.

V. ALGORITHM Wait Till Safe (WTS)

The Wait Till Safe algorithm (Algorithms 1 and 2) is divided
in two phases: an initial Values Disclosure Phase where
processes are asked to declare to the whole system values they
intend to propose, and then a Deciding Phase where processes
agree on which elements of the lattice can be decided on the
basis of the proposed values. For the sake of clarity, processes
are divided in proposers that propose an initial value, and then
decide one decision value, and acceptors which help proposers
decide. This distinction does not need to be enforced during
deployment as each process can play both roles at the same
time.

The main idea in the Values Disclosure Phase is to make
any proposer disclose its proposed value by performing a
Byzantine reliable broadcast. The reliable broadcast prevents
Byzantine processes from sending different messages to pro-
cesses [12], [13]. The exact specification of this broadcast is
in [14]. In the pseudocode the broadcast primitive is repre-
sented by the RBCAST (used for reliably broadcast messages)
function and RBCASTDEL event (that indicates the delivery
of a message sent with the reliable broadcast).

Values delivered at each process are saved in a SvS (Safe-
values Set). A process moves to the next phase as soon as
he receives values from at least (n − f) proposers. Waiting
for (n − f) messages is not strictly necessary, but allows
us to show a bound of O(f) on the message delays of our
algorithm. Note that, from this point on, some operations
of Phase 1 could run in parallel with Phase 2. Thanks to
Value Disclosure Phase a process is committed to its value
and cannot change its proposal or introduce a new one during
the Deciding Phase. During this latter phase, correct processes
only handle messages that contain values in SvS, i.e. messages
for which the SAFE() predicate is true. Messages that do not
satisfy this condition are buffered for later use, i.e. if and when
all the values they contain will be in SvS.

The Deciding Phase is an extension of the algorithm de-
scribed in [2] with a Byzantine quorum and additional checks
used to thwart Byzantine attacks. Each correct proposer p
sends its Proposed value to acceptors in a request message
(Line 19). An acceptor receiving a request, sends an ack
if the previously Accepted set is a subset of the value
contained in the request, and updates its Accepted set using
the Proposed set in the request (initially, the Accepted set
of an acceptor is the empty set). Otherwise, the acceptor
sends a nack containing the Accepted set, and it updates its
Accepted set with the union of the value contained in p’s
request and its Accepted set. The proposer p decides if it
receives b(n+ f)/2c+1 acks. In case p receives a nack, then
p updates Proposed set by taking the union of it and the
value contained in the nack. Each time a proposer updates its
Proposed set it issues a new request.

A. Safety properties

Observation 1. Given any correct process pj its SvS contains
at most one value for each process in P .

Algorithm 1 WTS (Wait Till Safe) -Alg. for Proposer pi
1: proposed value = proi
2: init counter = ts = 0
3: Proposed = Ack set = SvS = Waiting msgs = ∅
4: state = disclosing

5: . Values Disclosure Phase
6: upon event proposed value 6= ⊥
7: Proposed = Proposed ∪ proposed value
8: proposed value = ⊥
9: RBCAST(< dis phase, proposed value >) to all

10: upon event RBCASTDEL FROM SENDER(< dis phase, value >)
11: if value is a element of E then
12: if state = disclosing then
13: Proposed = Proposed ∪ value

14: SvS = SvS ∪ value
15: init counter = init counter + 1

16: . Deciding Phase
17: upon event init counter ≥ n− f WHEN state = disclosing
18: state = proposing
19: BROADCAST(< ack req, Proposed, ts >) to all Acceptors

20: upon event DELIVERY FROM SENDER(m)
21: Waiting msgs = Waiting msgs ∪ {m}

22: upon event ∃m ∈ Waiting msgs |SAFE(m) ∧ state =
proposing ∧m =< ack, ·, ts′ > ∧ts′ = ts FROM SENDER

23: Waiting msgs = Waiting msgs \ {m}
24: Ack set = Ack set ∪ {< ack, sender >}

25: upon event ∃m ∈ Waiting msgs |SAFE(m) ∧ state =
proposing ∧m =< nack,Rcvd, ts′ > ∧ts′ = ts FROM SENDER

26: Waiting msgs = Waiting msgs \ {m}
27: if Rcvd ∪ Proposed 6= Proposed then
28: Proposed = Rcvd ∪ Proposed
29: Ack set = ∅
30: ts = ts+ 1
31: BROADCAST(< ack req, Proposed, ts >) to all Acceptors

32: upon event |Ack set| ≥ b(n+ f)/2c+ 1 WHEN state = proposing
33: state = decided
34: decisioni = Proposed
35: DECIDE(decisioni)

36: function SAFE(m)
37: if the lattice element contained in m is a subset of SvS then
38: return True
39: else
40: return False

Algorithm 2 WTS (Wait Till Safe) - Algorithm for Acceptor
process pi
1: Accepted set = Waiting msgs = ∅
2: SvS . Reference to SvS in the corresponding Proposer (Each process

is a Proposer and an Acceptor)
3: upon event DELIVERY FROM SENDER(m)
4: Waiting msgs = Waiting msgs ∪ {m}

5: upon event ∃m ∈ Waiting msgs |SAFE(m) ∧ m =<
ack req,Rcvd, x > FROM SENDER

6: Waiting msgs = Waiting msgs \ {m}
7: if Accepted set ⊆ Rcvd then
8: Accepted set = Rcvd
9: SEND TO SENDER (< ack,Accepted set, x >)

10: else
11: SEND TO SENDER (< nack,Accepted set, x >)
12: Accepted set = Accepted set ∪Rcvd

The above observation derives from the specification of
reliable broadcast, and the fact that in the disclosure phase
each participating process broadcasts a single value. We say
that a message m containing a set of proposed values is “safe”
for a process pi if such set of values is contained in SvS. It is
immediate from function at Lines 36-40 that proposers (in state
proposing) change their Proposed only when they receive
safe messages. The analogous holds for the Accepted set of
acceptors.

We say that a value v receives m acks if it is contained in
a Proposed, that is in turn contained in ack messages in the
form < ack, ·, ts > sent by m acceptors. The same meaning
is intended when we say that Proposed receives acks.

Definition 1. (Committed value) A value v is committed if it
received b(n+ f)/2c+ 1 acks.

Definition 2. (Committed proposal) A Proposed is committed
if it received b(n+ f)/2c+ 1 acks.

Lemma 1. Let t be the first time at which a value v is
committed, we have that any Proposed committed after t
contains v.

Proof. Value v received at least b(n − f)/2c + 1 acks from
acceptors in C (see Alg. 1 Line 32). These acceptors have
inserted v in their Accepted set (see Alg. 2 Line 8). Thus
by time t a quorum of acceptors Q1 ⊆ C has v in their
Accepted set. Let Proposed be a value committed after t,
then, by the same above reasoning, we have that Proposed
received acks from a set of correct acceptors Q2 ⊆ C, with
|Q2| ≥ b(n − f)/2c + 1. Since ∃p ∈ Q1 ∩ Q2 (recall that
|C| = (n− f)) we have that Proposed contains v: p sent an
ack, thus has passed the if at Line 7 of Alg 2.

Observation 2. Given any correct process pj its decisionj

has been committed.

Theorem 2. Let us consider a set of processes, of size at least
(3f +1), executing WTS algorithm. Algorithm WTS enforces:
(1) Comparability; (2) Inclusivity; (3) Non-Triviality; (4)
Stability.

Proof. We prove each property separately.
1) is implied by Lemma 1 and Observation 2.
2) derives from the fact that a proposer never removes a value

from Proposed and from Line 7.
3) the bound on B derives from the safety of messages and

Observation 1, the fact that deci ≤
⊕

(X ∪ B) derives
from the fact that a correct process insert in its proposal
only values received by messages and its initial proposed
value.

4) is ensured by Line 33 in proposers.

Note that the Inclusivity and the Comparability imply that,
when all correct proposers decide, then each value proposed
by some correct will be in a decision and that there exists
a proposer whose decision includes all values proposed by
correct proposers.

B. Liveness properties

Lemma 2. Each message sent by a correct process is even-
tually safe for any other correct process.

Proof. If a correct process pi sent a message m then the set of
values contained in m is a subset of SvS of pi. Note that SvS
is only updated as result of the reception of a message reliably
broadcast in the disclosure phase (Line 14). For the properties
of the broadcast eventually each other correct process will
obtain a SvS that contains the set of values in m, making m
safe.

Lemma 3. A correct proposer refines its proposal (executing
Line 31) at most f times.

Proof. Each time the proposer executes Line 31 it passes the if
at Line 27, thus increasing its proposed set. However, its first
proposal, in Line 19, contains at least |X∪B|−f values. Since
there are at most |X ∪B| safe values (from Oservation 1), the
claim follows.

Lemma 4. If there is a time t after which a correct proposer pi
in state proposing cannot execute Line 31, then pi eventually
decides.

Proof. Let < ack req, Proposed, ts > be the last ack request
message sent by pi. Since pi does not execute Line 31 it means
that either it does not receive any nack, or that any nack it
receives does not allow him to pass the if Line 27. Since pi
is correct its message < ack req, Proposed, ts > will reach
each correct acceptor. By hypothesis each of them will send
a ack, otherwise pi should be able to execute Line 31 (they
all handle the ack request by Lemma 2). Once pi receives the
acks from the set of correct acceptors, it will handle them,
Lemma 2, and decide.

In the next Theorem (Th. 3) we show that each correct
process eventually commits and decides, we also bound the
number of delays needed, by each correct proposer, to reach
a decision.

Theorem 3. Let us consider a set of processes, of size at
least 3f+1, executing WTS algorithm. Every correct proposer
decides in at most 2f + 5 message delays.

Proof. The Byzantine reliable broadcast at Line 9 takes at
most 3 message delays. Therefore after three rounds each
correct process starts its first proposal. Each refinement takes
at most 2 message delays, the time needed to broadcast and
receive a response. There are f refinements, see Lemma 3,
executed in at most 2f + 2 message delays, and thus by
Lemma 4 after 2f + 5 message delays a correct decides.

Note that Theorem 3 implies the Liveness property of our
Lattice Agreement specification.

1) Message complexity: The Byzantine Reliable broadcast
used at Line 9 costs O(n2) messages [14], this cost dominates
the other algorithm operations: in the 2f +5 delays needed to
reach the decision at most O(f · n) messages are generated.

Algorithm 3 GWTS -Algorithm for proposer process pi
1: proposed value = proi
2: Batch[∀r ∈ N] = SvS[∀k ∈ N] = ∅ . Array of value sets, one batch

for each round
3: Counter[∀r ∈ N] = 0 . Array of numbers, one for each round
4: r = −1
5: ts = 0
6: Proposed = Decided = Waiting msgs = Ack history = ∅
7: state = newround

8: upon event NEW VALUE(v)
9: Batch[r + 1] = Batch[r + 1] ∪ {v}

10: . Values Disclosure Phase
11: upon event state = newround
12: state = disclosing
13: r = r + 1
14: Proposed = Proposed ∪Batch[r]
15: RBCAST(< dis phase,Batch[r], r >) to all

16: upon event RBCASTDEL FROM SENDER(< dis phase, Set, round >)
17: if state = disclosing ∧ Set is an element of the lattice then
18: Proposed = Proposed ∪ Set

19: SvS[round] = SvS[round] ∪ Set
20: Counter[round] = Counter[round] + 1

21: . Deciding Phase
22: upon event Counter[r] ≥ n− f WHEN state = disclosing
23: state = proposing
24: ts = ts+ 1
25: BROADCAST(< ack req, Proposed, ts, r >) to all Acceptors
26: upon event DELIVERY OR RBCASTDEL FROM SENDER(m)
27: Waiting msgs = Waiting msgs ∪ {m}

28: upon event ∃m ∈Waiting msgs|SAFE(m)∧state = proposing∧
m =< nack,Rcvd, ts′, r′ > ∧ts = ts′ ∧ r = r′

29: Waiting msgs = Waiting msgs \ {m}
30: if Rcvd ∪ Proposed 6= Proposed then
31: Proposed = Rcvd ∪ Proposed
32: ts = ts+ 1
33: BROADCAST(< ack req, Proposed, ts, r >) to all Acceptors

34: upon event ∃m ∈Waiting msgs|SAFE(m)∧state = proposing∧
m =< ack,Accepted set, dst, snd, ts′, r′ > ∧m WAS DELIVERED
WITH RBCASTDEL

35: Waiting msgs = Waiting msgs \ {m}
36: Ack history = Ack history ∪ {m}

37: upon event < ack,Accepted set, destination, ·, timestamp, r′ >
APPEARS b(n+ f)/2c+ 1 TIMES IN Ack history

38: if Decided ⊆ Accepted set ∧ state = proposing ∧ r′ = r then
39: DECIDE(Accepted set)
40: Decided = Accepted set
41: state = newround
42: function SAFE(m)
43: if the lattice element contained in m is a subset of SvS[r] then
44: return True
45: else
46: return False

VI. ALGORITHM Generalized Wait Till Safe (GWTS)

A. The Generalised Byzantine Lattice Agreement Problem

In the generalised version of our problem, each pro-
cess pi receives, asynchronously, input values from an in-
finite sequence Proi = 〈pro0, pro1, pro2, . . .〉 and it must
output an infinite number of decision values Deci =
〈dec0, dec1, dec2, . . .〉. The sequence of decisions has to sat-
isfy the following properties:

• Liveness: each correct process pi ∈ C performs an infinite
sequence of decisions Deci = 〈dec0, dec1, dec2, . . .〉;

Algorithm 4 GWTS - Algorithm for Acceptor process pi
1: Accepted set = Waiting msgs = Ack history = ∅
2: SvS[] . Reference to SvS in the corresponding Proposer
3: Safe r = 0 . Max round for which it is safe to process messages
4: upon event DELIVERY OR RBCASTDEL FROM SENDER(m)
5: Waiting msgs = Waiting msgs ∪ {m}

6: upon event ∃m ∈Waiting msgs|SAFEA(m) ∧ r ≤ Safe r ∧m =< ack req,Rcvd, ts, r >
7: Waiting msgs = Waiting msgs \ {m}
8: if Accepted set ≤ Rcvd then
9: Accepted set = Rcvd

10: RBCAST(< ack,Accepted set, sender, pi, ts, r >) to all
11: else
12: SEND TO SENDER (< nack,Accepted set, ts, r >)
13: Accepted set = Accepted set ∪Rcvd

14: upon event ∃m ∈ Waiting msgs|SAFEA(m) ∧ r ≤ Safe r ∧m =< ack,Accepted set, destination, sender, ts, r > ∧m WAS DELIVERED
WITH RBCASTDEL

15: Waiting msgs = Waiting msgs \ {m}
16: Ack history = Ack history ∪ {< ack,Accepted set, destination, sender, ts, r,>}

17: upon event < ack,Accepted set, destination, ·, ts, r > APPEARS b(n+ f)/2c+ 1 TIMES IN Ack history
18: if r = Safe r then
19: Safe r = Safe r + 1

20: function SAFEA(m)
21: if ∃r such that lattice element contained in m is a subset of SvS[r] then
22: return True
23: else
24: return False

• Local Stability: For each pi ∈ C its sequence of decisions is
non decreasing (i.e., dech ⊆ dech+1, for any dech ∈ Deci);

• Comparability: Any two decisions of correct processes are
comparable, even when they happen on different processes;

• Inclusivity: Given any correct process pi ∈ C, if Proi
contains a value prok, then prok is eventually included in
dech ∈ Deci;

• Non-Triviality: Given any correct process pi ∈ C if pi
outputs some decision deck at time t, then
deck ≤

⊕
(Prop[0 : h] ∪ B[0 : b]), where, Prop[0 : h]

is the union of the prefixes, until index h, of all sequences
Proi of correct processes; and, B[0 : b] is the union of all
prefixes, until index b, of f infinite sequences Bi, one for
each Byzantine process.
Intuitively, with Non-Triviality we are bounding the number

of values that the Byzantine processes could insert in any
decision to a finite number of values.

B. Algorithm Description

The pseudocode of GWTS is in Algorithms 3-4. Gener-
alized Wait Till Safe algorithm is an extension of the WTS
algorithm based on the same batching approach proposed
in [2]. Input values at proposers are batched until a new
decision round starts. Each decision round follows the two-
phases approach of WTS. Note that rounds are executed
asynchronously at each proposer.2

Compared to WTS, an additional challenge to be faced is to
prevent adversarial processes from indefinitely postponing the
decision of correct processes. A uncareful design could allow

2The Byzantine reliable broadcast primitive used in [14] is designed to avoid
possible confusion of messages in round based algorithms. That is exactly
what we need.

Byzantine proposers to continuously pretend to have decided,
thus jumping to new rounds, and clogging the proposers with a
continuous stream of new values. This would make acceptors
to continuously nack proposals of correct processes. We solve
this problem through the acceptors. Acceptors will hep a new
proposal to be decided in round r ≥ 1 when, and if, in round
(r−1) a proposal has been accepted by at least a (Byzantine)
quorum of acceptors (i.e., safe r = r). In order for this
to work we make acceptors to reliably broadcast their ack
messages, in this way the acceptance of proposals is made
public. Any correct proposer can decide, in a round r, any
proposal that has been correctly accepted in round r, even
if it was not proposed by itself (provided that such decision
preserves the Local Stability).

C. Safety properties

The proof of the safety properties of GWTS is analogous
to the proof contained in Section V-A. From the properties of
reliable broadcast we have the following:

Observation 3. For each correct process pi and each round
r, the set SvS[r] contains at most n sets.

Theorem 4. Let us consider a set of processes, of size 3f +
1, executing GWTS algorithm. Algorithm GWTS enforces: (1)
Comparability; (2) Non-Triviality; (3) Stability.

Proof. We prove each property separately.
1) is implied by Lemma 1 and Observation 2.
2) For the Non-Triviality we have to show that for each

correct proposer pi and each dect ∈ Deci it holds dect ≤⊕
(Prop[0 : h] ∪ B[0 : b]). First notice that dect may

only contain values that are present in
⋃

r′∈[0,r] SvS[r
′]

with r rounds in which deck happens. This derives from

the fact that a correct process, at a given round, only
handles messages that contain safe values. Let Wr =⋃

r′∈[0,r] SvS[r
′], it is immediate to see that Wr contains

at most the union of all values in the prefixes Propi[0 : h]
from some index h, which correspond precisely to all
values proposed by correct processes until round r. It is
also immediate that Wr contains at most the union of all
values that Byzantine proposers have reliably broadcast in
the first r disclosure phases: this is equivalent to say that it
contains a prefix of all the infinite sequences of values that
Byzantine cumulatively broadcast in the disclosure phases
of our algorithm. From these arguments the Non-Triviality
follows.

3) is ensured by line 38 in proposers.

D. Liveness properties

We say that a correct process pi joins a round r if it sends
a message < disclosure phase, ·, r >. Similarly a correct
process pi proposes a Set at round r if it sends a message
< ack req, Set, ·, r >.

We say that a message m is safe for a process pi at round
r, if SvS[r] of pi contains of all values contained in m.

Lemma 5. Each message sent by a correct process at round
r is eventually safe, at round r, for any other correct process.

Proof. Same as Lemma 2

Definition 3. We say that a round r has a “legitimate end”
if there exists a proposal that has been committed at round r.

(See Definition 2 of committed proposal)

Definition 4. Round r is a legit round, at time t, if, either, r
is 0 or r − 1 had a legitimate end before time t.

Definition 5. An acceptor trusts round r if its Safe r ≥ r.

Lemma 6. If r is a legit round, then eventually any correct
acceptor will trust round r.

Proof. The proof is by induction on r.
• Base case: for round r = 0 each acceptor has Safe r

initialized to 0.
• Inductive case: By inductive hypothesis we have that even-

tually any acceptor sets Safe r = r−1. Moreover, we have
that, by definition of legit, round (r − 1) had a legitimated
end. This means that 2f + 1 acceptors reliably broadcast
< ack,Accepted set, destination, ·, ts, r − 1 >, and at
least one of them is correct process p, thus the message
< ack,Accepted set, destination, ·, ts, r− 1 > is safe for
p at round r− 1. Any acceptor with Safe r = r− 1 upon
receipt of these messages will eventually process them, by
Lemma 5, and it will set Safe r = r, see procedure starting
at line 17.

Note that by Lemma 6 we have that any legit round will
be eventually trusted by all acceptors. Moreover, we can show
that if r is a non-legit round at time t than it will not be
trusted, at time t, by any correct acceptor.

Lemma 7. If r is a non-legit round, at time t, that is, r 6= 0
and (r − 1) has not had a legitimate end before time t, then
any correct acceptor has Safe r < r.

Proof. The proof derives immediately from the definition of
legitimate end and from line 17 in the acceptor code.

Definition 6. A value v has been disseminated, by time t, if,
by time t, it was contained in a safe ack req message for
some round r and it has been received by b(n + f)/2c + 1
correct acceptors that trusted round r.

The observation below is a strengthen version of Lemma 1.

Observation 4. If a value v has been disseminated by time t,
then any proposal committed after time t will contain v.

Proof. The proof is immediate by observing that a dissemi-
nated value is in the Accepted set of b(n−f)/2c+1 correct
acceptors (either by line 9 or 13 of Algorithm 4), and by using
an argument similar of Lemma 1 proof.

Lemma 8. If round r has a legitimate end and at least (n−f)
correct proposers joined round r, then eventually any correct
proposer, that joined round r, will decide in round r, and join
round (r + 1).

Proof. The proof is by contradiction. Let pi be a correct
process that joined round r but has not yet decided in round
r. Note that pi has to be in state proposing: by hypothesis
(n − f) correct proposers joined r, thus the guard at line 22
of Alg 3 has to be eventually triggered.

Since r has a legitimate end then there are
b(n + f)/2c + 1 reliable broadcast of messages
< ack,Accepted set, destination, ·, ts, r >, and at least
one of them has been generated by a correct process p, thus
it is safe for p at round r. By Observation 4 we have that
Decided ⊆ Accepted set, and, by Lemma 5, upon receipt
of these messages pi decides and joins round r + 1.

Lemma 9. If r is a legit round, then any correct proposer
eventually joins it.

Proof. The proof is by induction on round number.
• Base case: round r = 0, by assumption it is a legit round,

and by algorithm construction each correct proposer joins
r = 0.

• Inductive case: The inductive hypothesis is that (r − 1)
is a legit round and that each correct proposer joined it.
We assume that r is a legit round, thus round (r− 1) had a
legitimate end. Lemma 8 and the inductive hypothesis imply
that any correct proposer joins r.

Lemma 10. If r is a legit round, then it will eventually have a
legitimate end. Moreover, each correct proposer executes line
31, while its round variable is r, at most f times (that is it
refines its proposal at most f times during its participation to
round r).

Proof. First observe, by Lemma 6 that each correct acceptor
eventually trusts round r. Then observe that, until r does not

have a legitimate end, by Lemma 7, no correct acceptor will
trust any round r′ > r. Thus they will not process any message
coming from round r′.

The above and Observation 3 bound the number of
changes that correct acceptors perform in round r on their
Accepted set to a finite number. Therefore, there exists a time
t after which each correct acceptor does not change anymore
its Accepted set.

If a correct proposer, that joined round r, issues an ack req
after time t, then, by Lemma 5, and the above reasoning we
have that such request will be committed. Once committed
round r has a legitimate end. Now by Lemma 9 we have that
eventually any correct proposer joins round r. It remains to
show that some correct process issues a request after time
t. Note that, when joining a new round, each correct process
proposes its value. This proposal either is committed or refined
(upon execution of line 31). In case of refinement a new set
is immediately proposed. This ensures that either something
was committed in round r before time t, or that something
will be proposed after t. In both cases round r will have a
legitimate end. Recall that all correct proposers eventually join
round r (by Lemma 9), each of them only proposes the value
constituted by Batch[r], by the property of the Byzantine
reliable broadcast and the safety of messages also Byzantine
processes are constrained to propose at most f different values
in round r. This means that a decision in round r can contain
at most n new values with respect to the decision at round
(r − 1). Since when a correct proposer executes line 25 it
passed the guard at line 22, it is obvious that there at most f
values missing in its proposal. From this Lemma 10, and thus
the bound on the number of executions of line 31, follows
immediately.

Lemma 11. if a correct process pi joins a round r at time t, it
also proposes, in round r, all values in Proi received before
time t.

Proof. Observe that a correct process joins a round r only if
(r− 1) had a legitimate end. From Lemma 9 we have that all
correct processes will eventually join round r, thus the if at
line 22 will be passed. From the above, the atomicity of the
local procedures, and the fact that a correct process cumulates
in its Proposed set all previous batches never removing any
value (see line 18), our claim follows.

From Lemma 11 we have the following observation:

Observation 5. Given any correct process pi ∈ C and any
value v ∈ Proi, we have that v is eventually disseminated.

Theorem 5. Let us consider a set of processes, of size 3f+1,
executing GWTS algorithm. We have that any run of GWTS
ensures Liveness and Inclusivity.

Proof. We prove each property separately:

1) Liveness: It is enough to show that there is an infinite
sequence of legit rounds. This derives from Lemma 10,
combining it with Lemma 8 and a simple induction on

the round number. Lemmas 8, 9 ensure that in each round
of such sequence all correct proposers decide.

2) Inclusivity: it derives from Observations 5, 4 and the fact
that the sequence of decisions is infinite (see above).

E. Message Complexity

GWTS executes a possibly infinite sequence of decisions.
Thus, we restrict our message complexity analysis to the
number of messages needed for each decision. The messages
are counted per proposer, we include messages created by cor-
rect acceptors in response to proposer actions. Each proposer
decides exactly once for each algorithm round. Therefore,
we count messages from start to end of a generic round.
A proposer has to reliably broadcast its batch (line 15 -cost
O(n2)), it has to broadcast its proposal (line 25 - cost O(n)),
then, in the worst case, it refines its proposal at most f times
(see Lemma 10 -line 33 - cost O(n)), however each ack from
a correct acceptor has to be reliably broadcast (line 10 - cost
O(n2)). The total cost is therefore upper-bounded byO(f ·n2).

VII. BYZANTINE TOLERANT RSM

We are interested in wait-free implementations of lineariz-
able replicated state machines for commutative update opera-
tions in the Byzantine model.

A. Specification of the Byzantine tolerant RSM

The replicated state machine is composed of n replicas,
which start in the initial empty state s0. Among them, up
to f ≤ (n − 1)/3 replicas may exhibit Byzantine failures.
The RSM exposes two operations, update and read, such that
the update operation with command cmd modifies the current
state s of the RSM by applying cmd to s but does not return
any value, while the read operation returns the current state of
the RSM. The state of the RSM at time t is a set of update
commands applied to the initial state s0 until time t. Note
that being the RSM commutative the order in which updates
are applied does not matter. Clients may trigger an infinite
number of read and update operations. We assume that each
command is unique (which can be easily done by tagging
it with the identifier of the client and a sequence number).
We do not make any assumptions regarding clients behavior:
they can exhibit arbitrary behaviors (e.g., invoke an update
operation with some arbitrary command, or modify the read
and update code). We do not limit the number of Byzantine
clients. Hence, to prevent Byzantine clients from jeopardizing
the state of the RSM through arbitrary commands, commands
are locally executed by clients: the RSM provides clients
with a set of updates and clients locally execute them. For
readibility reasons, the value returned by the execution of a set
of commands is equal to the set of commands. The following
properties formalise the behavior of read and update operations
during any execution run by correct clients:
• Liveness Any update and read operation completes;
• Read Validity: Any value returned by a read reflects a

state of the RSM;

• Read Consistency: Any two values returned by any two
reads are comparable;

• Read Monotonicity: For any two reads r1 and r2 returning
value v1 and v2 respectively, if r1 completes before r2 is
triggered then v1 ⊆ v2;

• Update Stability: If update u1 completes before update u2

is triggered then every read that returns a value that includes
the command of u2 also include the command of u1;

• Update Visibility: If update u completes before read r is
triggered then the value returned by r includes the command
of u.

B. Implementation of the Byzantine tolerant RSM

As previously introduced, our general idea to implement
a wait-free and linearizable replicated state machine resilient
to Byzantine failures in an asynchronous system is to apply
Generalized Lattice Agreement on the power set of all the
update commands. GWTS is executed by the replicas of the
state machine (for simplicity reasons replicas play the role of
both proposers and acceptors). The update and read operations
are presented in Algorithms 5 and 6 respectively. The update
operation consists in submitting the new command cmd to
generalized Lattice Agreement so that eventually the new
state of each (correct) replica includes cmd. This is achieved
by triggering the execution of NEW VALUE with {cmd} as
parameter at any subset of (f + 1) replicas (so that at least
one correct replica will execute it), see Line 3. The update
operation completes when some correct replica modifies its
local state with cmd, that is, decides a decision value that
includes cmd (Line 4). This preserves the order of non-
overlapping update operations. The read operation consists
in an update operation followed by a confirmation step. The
update is triggered with a special value nop that locally
modifies a replica’s state as for an ordinary command cmd
but is equivalent to a nop operation when executed. When
the update completes, any decision value decided by a correct
replica can be returned by the read operation. Since up to
f Byzantine replicas may provide any value, a confirmation
request for each of these (f + 1) decision values is sent to
all replicas (Line 8). A replica acknowledges Accepted set
if Accepted set has been accepted by b(n + f)/2c + 1
acceptors, which ensures that Accepted set has effectively
been decided in GWTS. The value returned by the read
operation is the result of the execution of the first decision
value confirmed by (f + 1) replicas, i.e, the first decision
value confirmed by at least one correct replica. This ensures
that a read operation will return a value that reflects the effect
of the last update operation. From an implementation point
of view, the confirmation step requires to add two lines of
code in Algorithm 3. Specifically, when a proposer receives a
confirmation request for decision value Accepted set, then it
acknowledges the request if < ack,Accepted set, ·, ·, ts, r >
appears b(n + f)/2c + 1 times in its Ack history set for a
fixed combination of ts and round r. The pseudocode of this
modification is in the full version.

Algorithm 5 RSM - Update algorithm at a client
1: procedure UPDATE(cmd)
2: DecSet = ∅
3: NEW VALUE ({cmd}) at (f + 1) REPLICAS
4: wait until |DecSet| ≥ f + 1

5: upon event RECEIPT FROM
replica < DECIDE, Accepted set, replica > WITH
cmd ∈ Accepted set

6: DecSet = DecSet ∪ < DECIDE, Accepted set, replica >

Algorithm 6 RSM - Read algorithm at client c
1: procedure READ
2: DecSet = ConfSet = ∅
3: NEW VALUE ({nopc,r}) at (f + 1) REPLICAS

4: upon event RECEIPT FROM replica <
DECIDE, Accepted set, replica > WITH nopc,r ∈ Accepted set

5: DecSet = DecSet ∪ < DECIDE, Accepted set, replica >

6: upon event |DecSet| ≥ f + 1
7: for all Accepted set ∈ DecSet do
8: SEND(< CNFREQ, Accepted set >) to all replicas

9: upon event RECEIPT FROM replica <
CNFREP, Accepted set, replica >

10: ConfSet = ConfSet ∪ < CNFREP, Accepted set, replica >

11: upon event < CNFREP, Accepted set, . > APPEARS f+1 TIMES IN
ConfSet

12: return EXECUTE (Accepted set)

Theorem 6. Given the wait-free Byzantine generalized Lattice
Agreement (GLA) algorithm whose pseudocode is given in
Alg. 3, 4, the above transformation yields a wait-free lin-
earizable replicated state machine for commutative update
operations. This transformation requires one execution of the
Byzantine GLA algorithm.

Proof. The proof consists in showing that (1) liveness, (2)
read validity, (3) read consistency, (4) update stability, (5) read
monotonicity, and (6) update visibility properties holds. We
prove each property separately.

• (1) Liveness of the update operation is straightforward from
Theorem 5. For the read operation, liveness holds from
update liveness and from the fact that among the (f + 1)
received values, at least one is the decision value of a correct
replica, which by Lines 37- 39 of Algorithm 3, has been
accepted and reliably broadcast to all proposers by (2f +1)
acceptors, and thus reliably delivered by all proposers (by
Liveness of Reliable Broadcast);

• (2) Straightforward from the fact that the value returned by
a read is a decision value.

• (3) Straightforward from Theorem 4;
• (4) By Observation 4 and by the fact that a read operation

begins with an update operation;
• (5) By applying the same argument as for update stability,

read monotonicity holds.
• (6) By applying the same argument as for update stability,

update visibility holds.

The proof of the following Lemma is omitted and can be
found in the full version.

Lemma 12. The above transformation is resilient to Byzantine
clients.

VIII. SAFETY BY SIGNATURE ALGORITHM - AN
ALGORITHM WITH IMPROVED MESSAGE COMPLEXITY

In this Section we will discuss how to decrease the mes-
sage complexity using signatures, as usual we assume that
signatures cannot be forged by Byzantine processes. Our Safe
by Signature (SbS) algorithm has a message complexity of
O(n) when f = O(1). Details and proofs can be found in the
extended version of the paper. SbS is divided in three phases:
• Init:in this phase each process broadcasts a signed version of

its initial proposed value. A process collects these messages
until it sees n− f of it.

• Safetying: At the end of the init phase a correct process
has a certain set of values. The purpose of the safetying
phase is to make at least |X ∪B| − 2f such values safe. A
value v is safe if we are sure that no other process can see
a different value v′ that is also safe and has been initially
sent by the same sender. Safetying is done by performing
a broadcast of signed values obtained in the init phase
towards the acceptors. Each acceptor keeps a set of values
candidates to be safe. Once an acceptor receives a set of
values from a proposer, it examines each value contained.
If for a value v it has value sent by the same sender in
its candidate set(check done using signature), it adds v to
its candidate set. Otherwise, if it exists a v′ from the same
sender, it adds (v, v′) to a temporary set of conflicts. The
acceptor replies back to the proposer by sending a signed
message containing the set received, and the set of conflicts.
A proposer possesses a proof of safety for a value v if it
receives b(n+ f)/2c+1 messages from different acceptors
in which v never appears as a conflict. The intuition behind
this phase is that if the same Byzantine process injects two
(or more) values signed by him in the init phase, then at
most one of them could manage to get a correct proof of
safety.

• Proposing: This phase is identical to the corresponding in
WTS. The only difference is that correct proposers and
acceptors refuse to process a message that contains a value
without an attached proof of safety.

a) Message Complexity: The asymptotical complexity
of our algorithm is the same of WTS once the cost of
the Byzantine Reliable Broadcast has been removed, that is
O(f · n).
A. Generalising SbS

Adapting the SbS algorithm to its generalised version,
while keeping the message complexity improvement, needs
a special attention to substitute the reliable broadcast used
to acknowledge in the GWTS (line 10 of Algorithm 4). We
would like to replace such broadcast with a single point-to-
point message. We do this by forcing an acceptor to sign
its, now poin-to-point, ack. Intuitively, a proposer is able to
prove others that it received an ack for its proposal. Each
correct proposer broadcasts a special decided message before

deciding, such message has attached all the acks used to
decide. This would allow proposers and acceptors that receive
a decided message to know that the sender of such message
was allowed to decide by the algorithm rules (recall that acks
are now signed). Additional details can be found in the full
version.

a) Message Complexity: The message complexity fol-
lows the same analysis of Section VI-E, the removal of the
Byzantine reliable broadcast leads to O(f · n) messages per
decision.

IX. CONCLUSIONS

We investigated Byzantine Lattice Agreement and we used it
to build a byzantine tolerant RSM with commutative updated.
Our main future line of investigation is to understand whether
a message delay of O(f) is necessary or not. In the crash-stop
model O(log f) delays are sufficient [15]. A first step would
be to investigate if the technique in [15] could be “Byzantined”
while preserving the desirable delay. A final target is to
understand the necessary number of message delays: even in
the crash-stop model such knowledge is still missing.

REFERENCES

[1] M. J. Fischer, N. A. Lynch, and M. S. Paterson, “Impossibility of
distributed consensus with one faulty process,” J. ACM, vol. 32, no. 2,
1985.

[2] J. Faleiro, S. Rajamani, K. Rajan, G. Ramalingam, and K. Vaswani,
“Generalized lattice agreement,” in PODC, 2012.

[3] N. M. Preguiça, C. Baquero, and M. Shapiro, “Conflict-free replicated
data types crdts,” in Encyclopedia of Big Data Technologies, 2019.

[4] H. Attiya, M. Herlihy, and O. Rachman, “Atomic snaphots using lattice
agreement,” Dist. Comp., vol. 8, pp. 121–132, 1995.

[5] X. Zheng, C. Hu, and V. K. Garg, “Lattice agreement in message passing
systems,” in DISC, 2018.

[6] J. Skrzypczak, F. Schintke, and T. Schuütt, “Brief announcement:
Linearizable state machine replication of state-based crdts without logs,”
in PODC, 2019.

[7] G. Di Luna, E. Anceaume, and L. Querzoni, “Byzantine generalized
lattice agreement,” https://arxiv.org/abs/1910.05768.

[8] A. J. H., “Composite registers,” Dist. Comp., vol. 6, no. 3, pp. 141–154,
1993.

[9] Y. Afek, H. Attiya, D. Dolev, E. Gafni, M. Merritt, and N. Shavit,
“Atomic snapshots of shared memory,” J. ACM, vol. 40, no. 3, pp. 973–
890, 1993.

[10] T. Nowak and J. Rybicki, “Byzantine approximate agreement on graphs,”
in DISC, 2019.

[11] J. B. Nation, “Notes on lattice theory,” http://math.hawaii.edu/∼jb/
math618/Nation-LatticeTheory.pdf.

[12] G. Bracha, “Asynchronous byzantine agreement protocols,” Inf. Com-
put., vol. 75, no. 2, 1987.

[13] T. K. Srikanth and S. Toueg, “Simulating authenticated broadcasts to
derive simple fault-tolerant algorithms,” Dist. Comp., vol. 2, no. 2, 1987.

[14] H. Mendes, M. Herlihy, N. H. Vaidya, and V. K. Garg, “Multidimen-
sional agreement in byzantine systems,” Dist. Comp., vol. 28, no. 6, pp.
423–441, 2015.

[15] X. Zheng, V. K. Garg, and J. Kaippallimalil, “Linearizable replicated
state machines with lattice agreement,” https://arxiv.org/abs/1810.05871,
2018, arXiv:1810.05871.

https://arxiv.org/abs/1910.05768
http://math.hawaii.edu/~jb/math618/Nation-LatticeTheory.pdf
http://math.hawaii.edu/~jb/math618/Nation-LatticeTheory.pdf

	Introduction
	Related Work
	Model
	The Byzantine Lattice Agreement Problem and The Necessity of 3f+1
	Necessity of at least 3f+1 processes

	Algorithm Wait Till Safe (WTS)
	Safety properties
	Liveness properties
	Message complexity

	 Algorithm Generalized Wait Till Safe (GWTS)
	The Generalised Byzantine Lattice Agreement Problem
	Algorithm Description
	Safety properties
	Liveness properties
	Message Complexity

	Byzantine tolerant RSM
	Specification of the Byzantine tolerant RSM
	Implementation of the Byzantine tolerant RSM

	Safety by Signature Algorithm - An algorithm with improved message complexity
	Generalising SbS

	Conclusions
	References

