
HAL Id: hal-02472118
https://hal.science/hal-02472118v1

Submitted on 10 Feb 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

QUERY PERFORMANCE EVALUATION OVER
HEALTH DATA

Ozgun Pinarer, Sultan Turhan

To cite this version:
Ozgun Pinarer, Sultan Turhan. QUERY PERFORMANCE EVALUATION OVER HEALTH
DATA. International Conference on e-Health 2019, Jul 2019, Porto, Portugal. pp.102-108,
�10.33965/eh2019_201910L013�. �hal-02472118�

https://hal.science/hal-02472118v1
https://hal.archives-ouvertes.fr

QUERY PERFORMANCE EVALUATION

OVER HEALTH DATA

Sultan Turhan and Ozgun Pinarer
Galatasaray University Ciragan Cad. No:36 34349 Istanbul, Turkey

ABSTRACT

In recent years, there has been a significant increase in the number and variety of application scenarios studied under the
e-health. Each application generates an immense data that is growing constantly. In this context, it becomes an important
challenge to store and analyze the data efficiently and economically via conventional database management tools. The
traditional relational database systems may sometimes not answer the requirements of the increased type, volume,

velocity and dynamic structure of the new datasets. Effective healthcare data management and its transformation into
information/knowledge are therefore challenging issues. So, organizations especially hospitals and medical centers that
deal with immense data, either have to purchase new systems or re-tool what they already have. The new data models
so-called NOSQL, its management tool Hadoop Distributed File Systems is replacing RDBMs especially in real-time
healthcare data analytics processes. It becomes a real challenge to perform complex reporting in these applications as the
size of the data grows exponentially. Along with that, there is customers demand complex analysis and reporting on those
data. Compared to the traditional DBs, Hadoop Framework is designed to process a large volume of data. In this study,
we examine the query performance of a traditional DBs and Big Data platforms on healthcare data. In this paper, we try

to explore whether it is really necessary to invest on big data environment to run queries on the high volume data or this
can also be done with the current relational database management systems and their supporting hardware infrastructure.
We present our experience and a comprehensive performance evaluation of data management systems in the context of
application performance.

KEYWORDS

Healthcare Data Analysis, e-Health, SQL, HiveQL, Hadoop, Relational Databases

1. INTRODUCTION

Aging world population and increasing hospital care costs have lead to allocation of large resources for
e-health research studies. In today’s world, healthcare data becomes the most valuable asset for the health

organizations. To fulfill the customer requirements, researchers focus on analyzing the immense data: Big

Data. Big Data has changed the way we manage, analyze and leverage data in any industry. One of the most

promising areas where it can be applied to make a change is healthcare. Healthcare analytics have the

potential to reduce costs of treatment, predict outbreaks of epidemics, avoid preventable diseases and

improve the quality of life in general. Not only in health sector but, according to the new business world’s

dynamics, any organization may become one of the leading organizations in their sector, if they transform

this infinite volume of data to fit their interests and transform it into added value for their management

(Loebbecke, 2015).

As the volume of data is becoming increasingly large, it poses a challenge to executives in the analysis

area. All the decision makers want to process and analyze this voluminous data in order to reveal the valuable
knowledge for the healthcare data management. Capturing, storing, managing, retrieving and processing

large scale data in an acceptable time frame (often real time) is one of the crucial challenges in health

domain. Besides, there are several different ways of analyzing data; from querying on a traditional relational

database system to machine learning algorithms. Of course each of them requires its own infrastructure

investment of different sizes. As the complexity of analysis that the executives want to get increase, needs for

specific data storage and processing infrastructure increase also (Wixom, 2014).

International Conference e-Health 2019

101

https://www.datapine.com/healthcare-analytics

The digitization of the healthcare industry is happening fast. A major result of this transformation from

paper to electronic records is the proliferation of healthcare data. It is really hard to choose the right database

and business analytics systems to satisfy the organization’s needs and working scenario. Various database

management systems are in use today. Majority of the systems relies on the high-end hardware and/or
special-purpose architecture to deliver the desired performance. Health organizations are faced to finance

higher capital expenditure for the acquisition of infrastructure and higher licensing cost because of the

competition in the market, even they don’t really need them.

Proper database system choice has a great impact on user friendliness and scalability of data analytics

applications (Chen, 2014). The traditional relational database model (RDBM) is the most common and

proven approach to storing and querying data in various forms. However, the major disadvantage is the need

to pre-design the exact field structures of the data, which is necessary in the normalization process of the

database to ensure data consistency. A relational database storing this type of data will contain many empty

fields, which will result in inefficient storage and poor query performance On the other hand, querying high

level normalized data on real time basis is a highly costly operation. For this reason, database programmers

denormalize the data before running the queries but this may result sometimes with data inconsistency.
Besides, tackling the large scale data require a distinct approach that sometimes runs counter to traditional

models of storage which provides good scalability and desired level of performance with insignificant or

little cost (Zhao, 2017).

Limitations of the traditional relational database system gave birth to a new concept called “NOSQL

database”. There are a substantial number of projects as an alternative to traditional database system.

Google’s BigTable (Chang, 2008), Amazon’s Dynamo (Giuseppe, 2007) Apache’s Cassandra (Cassandra,

2014), Hypertable (Judd, 2008), Apache’s CouchDB (Anderson, 2009), LinkedIn’s Project Voldermort

(Sumbaly, 2012), MongoDB (Kristina, 2010) are just to name a few. The Apache Hadoop-based

project - HBase (Team, 2016) is one such approach. These applications are mainly served on big data

analytics projects.

In this study, we try to explore whether it is really necessary to invest on a NOSQL database environment

to run the queries on the high volume data or this can also be done with the traditional relational database
management systems and their supporting hardware infrastructure? In order to answer this question, a bunch

of queries are run on two well-known databases, one from NOSQL domain; Hadoop and one from the

domain of relational databases SQL Server 2014 and their performances are evaluated. For NOSQL domain,

the queries are written with HiveQL and for the relational database domain with SQL. The databases are

populated with actual depersonalized prescriptions’ record from a public hospital, written between

2015 – 2016.

Rest of the paper is organized as follows: Section 2 describes the methodology and the database platforms

and working environment compared in this study. Section 3 describes the dataset, queries used for

performance evaluation and presents the experiment results. Finally, Section 4 discusses the results and

presents the future works.

2. METHODOLOGY

2.1 Experimental Setup

In order to evaluate the performance of the queries, two environments are set up. To simulate the traditional

relational database environment, SQL Server 2014 is used. The hardware infrastructure on which SQL Server

2014 is running, consists of a virtual server equipped with a 2.6 GHz Intel Xenon E5-2690 v4 processor,

16.00 GB of RAM. The queries are written with SQL []. For NOSQL database environment, Apache

Hadoop-based project and its database HBase are chosen. HBase is a distributed, fault-tolerant, highly

scalable, NOSQL database, built on top of Hadoop Distributed File System (HDFS). The hardware

infrastructure supporting the system with Hadoop architecture, includes 9 physical servers and a total of 1 TB

of RAM. The queries are written with HiveQL (Lydia, 2015).
As all these NOSQL environment’s products mentioned here, have recently entered the market and

become prevalent, following subsections give brief technical details about them.

ISBN: 978-989-8533-89-0 © 2019

102

https://www.healthcatalyst.com/insights/5-reasons-healthcare-data-is-difficult-to-measure

2.2 NOSQL DATABASES

2.2.1 Hadoop

Hadoop is an open-source distributed processing framework for large-scale distributed data storage and

high-performance computation on a clustered system network of inexpensive pieces of commodity hardware

(Khetrapal, 2006, Dorin, 2010, Taylor, 2010). It is at the center of a growing ecosystem of leading data

technologies that are primarily used to support advanced analytics initiatives, including predictive analytics,
data mining, and machine learning applications. It can handle various forms of structured and unstructured

data, giving users more flexibility in collecting, processing, and analyzing data than relational databases and

data warehouses. Hadoop framework developed in java programming language rely on two major

components: Hadoop Distributed File System (HDFS) and Map/Reduce.

2.2.2 Hadoop Distributed File System (HDFS)

The Hadoop Distributed File System is the primary data storage system used by Hadoop applications. It uses

a NameNode and DataNode architecture to implement a distributed file system that provides

high-performance data access through highly scalable Hadoop clusters (Narayan, 2012). In HDFS, data is

organized into files and directories. Files are divided into uniform sized blocks and distributed across cluster
nodes and thereby removing the file size restriction. Also blocks are significantly larger than block sizes in

standard file systems to minimize the cost of seeks and thereby enhancing the application-performance.

HDFS adopts a master-slave architecture. NameNode has the master role and it maintains the file namespace

including metadata, directory structure, files’ list, blocks’ list for each file, location for each block, attributes,

authorization and authentication information. DataNodes play the slaves’ role. They are responsible of

creating, deleting or replicating the actual data blocks based on the instructions received from the NameNode

and they report back periodically to NameNode (Narayan, 2012).

The Hadoop Distributed File System is specially designed to be highly fault-tolerant. The NameNode is a

single point of failure for the HDFS cluster and a DataNode stores data in the Hadoop file management

system. The file system replicates, or copies, each piece of data multiple times and distributes the copies to

individual nodes, placing at least one copy on a different server rack than the others. As a result, the data on
nodes that crash can be found elsewhere within a cluster. This ensures that processing can continue while

data is recovered.

2.2.3 Map/Reduce

Map/Reduce a linearly scalable programming model to process large scale data stored in Hadoop File

Distribution System (Pol, 2016). As it can be easily understood from the title, the model consists of two

phase; The map phase corresponds to the map operation, whereas reduce phase corresponds to the fold

operation. Data may be structured or unstructured. Map/Reduce performs two essential functions: it filters

and distributes the work between the different nodes of the cluster or the map. The operation logic is based

on “divide & conquer” principle and it partitions the large problem into smaller subproblems to the extent
that the sub-problems are independent and they can be tackled in parallel by different slaves. To process the

data, the programmer writes two functions; a function sometimes called mapper, and it organizes and reduces

the results of each node in a coherent response to a request, called reducer. Each of these functions defines a

mapping from one set of key-value pairs to another. The same functions can be used for a small as well as for

a large-scale database without any modification since these functions are written in a fashion that is

independent from data size as well from the cluster-size.

2.2.4 HBase

HBase is an Apache open-source project which presents a new data model similar to Google’s big table. It is

a column-oriented, distributed fault-tolerant and highly scalable database management systems, running on
HDFS. To realize real-time read/write operations on a large scale database, HBase is a powerful tool [19].

The data in HBase is organized in labeled tables with rows and columns. Each row has absolutely one sorting

key but the number of columns that it owns may differentiate.

International Conference e-Health 2019

103

Each cell in the table are versioned by a timestamp auto-assigned at the time of insertion. Its content is

uniquely identified with a special set consisting of Table Name, Row-Key, Column Family, Column Name

and the Timestamp. Each table uses the Row Key as primary key and they are easily accessible via this

primary key. Thanks to this table structure, parallel scan in terms of Map/Reduce operations results into
faster query response time and better overall throughput. Similar to HDFS and Map/Reduce, HBase also

adopts master/slave architecture (Team, 2016).

2.2.5 Apache Hive – HiveQL

Apache Hive is a data warehouse solution for Hadoop environment (Huai, 2014). Hive provides data analysis

operations, data summarization operations and querying while managing large datasets residing in distributed

storage. It is one of the easiest to use of the high-level MapReduce (MR) frameworks. The Hive queries is

written with a SQL-like language called HiveQL which runs over Hadoop Map/Reduce framework itself but

hides complexity from the developer. HiveQL is composed of a subset of SQL features. It has also special

extensions which are useful for batch processing systems. Hive supports analysis of large datasets stored in
Hadoop's HDFS as well as easily compatible file systems and perfectly fits low level interface requirement of

Hadoop.

Apache Hive supports a SQL-like query language known as the Hive query language over one or multiple

data files located either in a local file system or in HDFS. Hive query language runs over Hadoop

map-reduce framework itself, but hides complexity from the developer, Hive query language (HiveQL)

supports SQL features of data definition language and data manipulation language. It supports also all types

of joint operations as well as aggregate functions and operations and provides always good results on

primitive as well as complex data types. HiveQL adds a dialect of SQL and JDBC bindings for HBase.

HiveQL does have some limitations compared with traditional RDBMS SQL. In Hive, HBase

automatically partitions tables horizontally into regions. Each region comprises a subset of a table’s rows

called partitions. Each table can have one or many partitions in Hive which allows insertion of data in single
or multiple tables but does not allow deletion of updating of data. For read operations (SELECT) the

complex filtering operations such as HAVING are not supported by HiveQL. SQL offers hundreds of built-in

functions whereas HiveQL has dozens which obliges the programmer to have more efforts while querying

the data. Besides, SQL supports the transactions and their management as well as indexes but HiveSQL does

not support neither transactions nor the indexes. Finally, latency can be measured by subseconds in SQL but

by minutes in HiveQL (Ahmed, 2017).

3. PERFORMANCE EVALUATION

3.1 Description of the Data

Actually this study is the preliminary work of the development of a web service designed to reveal the
interactions between the drugs written in a single prescription on a real time basis. During the development

of this web service, in order to measure the performance of the data on different environment, the queries of

this study are written and executed. The data subject to this study contains the prescription information

written for inpatients and outpatients in a public hospital between the years 2015 – 2016. For the patients

who undergo an outpatient treatment, minimum 1, maximum 5 medicine can be described per prescription.

However, for inpatients, dozens of medicine can be prescribed per prescription, or even hundreds of them can

be prescribed per patient. The datasets consist of text-based structured data. For the purpose of this

performance evaluation study, the datasets are stored in both the tables on SQL Server environment and the

files on Hadoop environment. Prescriptions contain 35 million records (approximately 3 GB of text). Figure

1 shows the relational table format and a brief example of records containing in them.

ISBN: 978-989-8533-89-0 © 2019

104

Figure 1. Data format on RDBS. (PatentID, PrescriptionID, PrescriptionDate, PrescriptionColor,PrescriptionType)
(PrescriptionID, DrugBarcode, DrugDosage, DrugPrice, DrugPeriodicity)

3.2 Hardware Features

Two database systems are developed respectively to implement the database approaches involved in the

study. The traditional database system is built using a virtual server equipped with an Intel Xenon E5-2690

v4 2.6 GHz processor, 16.00 GB of RAM. The system with Hadoop architecture includes 9 physical servers

and a total of 1 TB of RAM.

3.3 Queries

The query time of the two databases is evaluated by making three different queries with varied complexity.

The queries are designed to perform read operations. The first query is responsible to execute a single

SELECT operation on several tables with “inner join”. The second and third queries are also using aggregate

functions and group by clause which put a serious burden on the query runtime. Figure 2 shows the queries
executed in the study.

Figure 2. Queries

3.4 Results

The variation of the query time with the size of the database is also studied. For each of the two database
approaches, the time required to perform the queries with a variable complexity specified above is measured
with databases containing respectively 1.8, 10, 20, 30 and 37 million records. At each parameter, the query is
performed 10 times to calculate the average query time and the standard deviation. The query
synchronization performance is given in Figure 3 respectively.

International Conference e-Health 2019

105

Figure 3. Query Synchronization Performance

The query time on the first query (shown in Figure 4) in the SQL database of more than 30 million

records is quite disappointing. The reason is that the result of the query contains about 30 million records.

The database with the Hadoop architecture has a very good performance on the same query and the same

number of records. With Hadoop, parallel processing capability, query results can be returned faster than

traditional databases.

Figure 4. Query time according to row number for 1st Query

Although the amount of data in the second query was the same, the fact that the results contain about

15,000 records reduced the performance gap between the databases (see the Figure 5).

ISBN: 978-989-8533-89-0 © 2019

106

Figure 5. Query time according to row number for 2nd Query

In both queries, the Hadoop architecture has responded better to the increase in the amount of data. With
the reduced amount of data, the Hadoop architecture performance on the third query is worse than the SQL

database. The reason is that the result of the query contains about 800 records. The Map and Reduce

operations of the Hadoop architecture have become useless with the reduction of the amount of data

generated in the result of the query. So the performance of the Hadoop architecture in the third query is worse

than the SQL database as shown in Figure 6.

Figure 6. Query time according to row number for 3rd Query

4. CONCLUSION AND DISCUSSION

An examination of current approaches to prescription data storage indicates that the Hadoop approach is a

viable alternative to relational database design because it provides better query performance.

As seen in the results of the first and second queries, Hive is designed specifically for large dataset

analysis and works well for a range of complex queries. Hive is the most accessible way to quickly query and

inspect datasets already stored in Hadoop. But in the third query, we see that the performance of Hadoop

decreases when the amount of data decreases. Hive works ideally in large datasets, but MySQL works much

better with smaller datasets and can be optimized in a variety of ways.

International Conference e-Health 2019

107

This study attempts to explore the vast opportunities of Hadoop and Sql query technologies in the

management of prescription data. The prototype system developed is initially tested with a maximum of 30

million records only. Further evaluation using larger datasets, or even multiple databases and a data

warehouse, will provide a more complete results on the performance of the Sql and Hadoop databases.

ACKNOWLEDGEMENT

This work is supported by Galatasaray University Research Foundation under the Grant No. 19.401.002 and

Consortium of Galatasaray University.

REFERENCES

Ahmed, Nadeem, et al. 2017, "Data processing in Hive vs. SQL server: A comparative analysis in the query
performance." 2017 IEEE 3rd International Conference on Engineering Technologies and Social Sciences (ICETSS).

Anderson, J. et al., 2009, “CouchDB: The Definitive Guide” , 1st edition, O'Reilly Media.

Cassandra, A., 2014. Apache cassandra. Website. Available online at http://planetcassandra. org/what-is-apache-
cassandra, p.13.

Chang, F. et al., 2008. Bigtable: A distributed storage system for structured data. ACM Transactions on Computer

Systems (TOCS), 26(2), p.4.

Chen, C.P. and Zhang, C.Y., 2014. Data-intensive applications, challenges, techniques and technologies: A survey on Big
Data. Information sciences, 275, pp.314-347.

Dorin Carstoiu et al, 2010, "Hbase - non SQL Database, Performances Evaluation", International Journal of
Advancements in Computing Technology, 2(5).

Giuseppe De Candia et al., 2007 “Dynamo: Amazon's Highly Available Key-Value Store”, in the Proceedings of the 21st
ACM Symposium on Operating Systems Principles, Stevenson.

Huai, Y., et al., 2014, June. Major technical advancements in apache hive. In Proceedings of the 2014 ACM SIGMOD
international conference on Management of data (pp. 1235-1246). ACM.

Judd, D., 2008. Scale out with HyperTable. Linux magazine, August 7th, 1.

Khetrapal, A. and Ganesh, V., 2006. HBase and Hypertable for large scale distributed storage systems. Dept. of
Computer Science, Purdue University, 10(1376616.1376726).

Kristina Chodorow, Michael Dirolf, 2010, "MongoDB: The Definitive Guide", 1st edition, O'Reilly Media.

Loebbecke, C. and Picot, A., 2015. Reflections on societal and business model transformation arising from digitization
and big data analytics: A research agenda. The Journal of Strategic Information Systems, 24(3), pp.149-157.

Lydia, E.L. and Swarup, M.B., 2015. Big data analysis using hadoop components like flume, mapreduce, pig and hive.

International Journal of Science, Engineering and Computer Technology, 5(11), p.390.

Narayan, S. et al, 2012, Hadoop acceleration in an openflow-based cluster. 2012 SC Companion In High Performance
Computing, Networking, Storage and Analysis (SCC),(pp. 535-538). IEEE.

Pol, U.R., 2016. Big data analysis: comparison of hadoop mapreduce, pig and hive. Int. J. Innov. Res. Sci. Eng. Technol,
5(6).

Sumbaly, R. etal., 2012, February. Serving large-scale batch computed data with project voldemort. In Proceedings of the
10th USENIX conference on File and Storage Technologies (pp. 18-18). USENIX Association.

Taylor, R.C., 2010, December. An overview of the Hadoop/MapReduce/HBase framework and its current applications in
bioinformatics. In BMC bioinformatics (Vol. 11, No. 12, p. S1). BioMed Central.

Team, A.H., 2016. Apache hbase reference guide. Apache, version, 2(0).

Wixom, B. et al., 2014. The current state of business intelligence in academia: The arrival of big data. CAIS, 34(1),
pp.1-13.

Zhao, W. et al., 2017, November. Querying big data from a database perspective. In 2017 4th International Conference
on Systems and Informatics (ICSAI) (pp. 1433-1437). IEEE.

ISBN: 978-989-8533-89-0 © 2019

108

