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Abstract. When people use recommender systems, they generally ex-
pect coherent lists of items. Depending on the application domain, it
can be a playlist of songs they are likely to enjoy in their favorite online
music service, a set of educational resources to acquire new competen-
cies through an intelligent tutoring system, or a sequence of exhibits to
discover from an adaptive mobile museum guide. To make these lists co-
herent from the users' perspective, recommendations must �nd the best
compromise between multiple objectives (best possible precision, need
for diversity and novelty). We propose to achieve that goal through a
multi-agent recommender system, called AntRS. We evaluated our ap-
proach with a music dataset with about 500 users and more than 13,000
sessions. The experiments show that we obtain good results as regards
to precision, novelty and coverage in comparison with typical state-of-
the-art single and multi-objective algorithms.

Keywords: Recommender systems · Multi-agent Systems · Multi-agent
reinforcement learning

1 Introduction

Recommending an appropriate list or sequence of items to a speci�c user can be
seen as a multi-objective problem. Let us illustrate this with a use case: Imagine a
user who enjoys listening to music while doing sport through a mobile app. Such
an online service should generate a playlist that is adapted to her preferences
(precision). The tempo and the energy of the proposed songs should �t the
context (similarity). The playlist should o�er an appropriate level of diversity

to avoid boredom. It could also bring novelty and serendipity according to her
desires. The scienti�c challenge thus consists in taking into account di�erent
constraints that are contextualized and potentially not compatible.

In this paper, we propose a new multi-objective recommender system, called
AntRS. Our model relies on a Multi-Agent System. The environment is a graph
whose nodes are the items in the item set and whose edges connect items that
have been co-consulted by several users. An Ant Colony Optimization algorithm
allows to explore this environment until the target state is reached for each ob-
jective. Our model is generic since it is possible to add as many colonies as the
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domain context requires. The paths generated by the di�erent colonies are then
merged to o�er a good compromise between the objectives. We have validated
our approach by choosing 4 objectives which can be antagonist (similarity vs.
diversity, preferences vs. novelty). We relied on a music dataset made of 180,000
songs and 500 users, and compared our approach to 4 state-of-the-art algo-
rithms. We measured the performances using several metrics (accuracy, novelty,
diversity, coverage...). Results show that AntRS achieves a better accuracy than
others, while o�ering a better compromise to users on other objectives.

This paper is organized as follows: Section 2 presents the related work on
multi-objective recommenders and the principle of the Ant Colony Systems from
which our system took inspiration. Section 3 describes our AntRS model. Sec-
tions 4 and 5 respectively describe the experiments carried out and the results
obtained. Finally Section 6 concludes this paper and presents our perspectives.

2 Related Work

2.1 Multi-Objective Recommender Systems

A recommender system can either propose a list of independent items at each
time step, or it can propose a sequence of items [20]. In Sequence-Aware Recom-
mender Systems, one can both consider the importance of the order of the past
events (by looking for co-occurrence patterns [4] or for sequential patterns [12]
in past sessions) and the expected order of the future recommendations (e.g.
continuation in playlists [13] or transitions between items [18]). In this paper,
we based our experiment on a music dataset. As recent research has found little
evidence that the exact order of songs actually matters to users [25], we limited
our state-of-the-art to the recommendations of lists.

Transversely a recommender system can be mono-objective or multi-objective.
Most recommenders solely focus on the accuracy (precision and recall) [23]. Oth-
ers attempt to �nd a compromise between precision, serendipity and novelty [15],
or between precision and diversity [32, 17] for example. There are several ways
to address a multi-objective optimization problem. One can either look for a set
of Pareto solutions, considering that a solution is optimal if it is not possible
to make any objective better o�, without making at least one objective worse
o� [33]. In that case, recommender systems aim at producing as many solutions
as possible in order to cover as much as possible of the problem's Pareto front.
Or one can rank the items in a single list by aggregating or reordering the results
of each single objective [21]. This list can be produced in one stage [10], or come
out of a 2-step process consisting in generating several lists of candidate items
for the active user and in merging them [9, 27�29, 22, 8]. Recommending several
Pareto solutions o�ers the advantage to leave the choice to the active user. It can
be interesting in some application domains such as e-commerce where an explicit
validation process from the user is mandatory. However, in the context of online
music services, it is not conceivable to request a user decision at each timestep.
The songs must come one after another without disturbing the user in his/her
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main current task. For this reason, we focused this paper on recommenders which
produce only one solution (i.e. only one list of recommendations).

The existing multi-objective single-list recommenders su�er from several lim-
itations: they are dependent from the application domain (any change in the set
of objectives has a drastic impact on the implementation of the model) and they
are very time-consuming. To bypass these di�culties, we propose a new approach
relying on a Multi-Agent System (MAS), and more precisely on an Ant Colony
System explained below. MAS have multiple advantages in our context:

� they have a relatively low computational complexity;
� they are e�cient at tackling multi-objective problems [1, 3];
� they can easily be adapted to new con�gurations and are resilient to changes.

2.2 Ant Colony Systems

The Ant system algorithm (AS) is inspired by the foraging behavior of ants,
speci�cally the pheromone communication between ants, to �nd shortest paths
in an environment between a starting node and a target node. Dorigo proposed
a few di�erent versions of this AS model [7]. Our model took inspiration from
one of those variants, the Ant Colony System (ACS) algorithm. In comparison
to the classic AS model, ACS proposes a di�erent way for the ants to deposit
pheromones. Instead of having all the ants deposit their pheromones at the end
of one iteration (i.e. after all the ants have �nished their tour), only the ant
that found the best path can deposit pheromones. Furthermore, ants perform
a so called local pheromone update where, after each construction step, they
deposit some pheromone on the last edge they visited. In other words, each time
an ant takes an edge, it deposits some pheromones along its way, regardless
of the quality of the path. As explained by Dorigo, this version of the ACO
algorithms is known to �diversify the search performed by subsequent ants during

an iteration: by decreasing the pheromone concentration on the traversed edges,

ants encourage subsequent ants to choose other edges and, hence, to produce

di�erent solutions. This makes it less likely that several ants produce identical

solutions during one iteration�. As our search space is large (there are millions
of songs on an online music service) and as we promote not only the precision
but other characteristics in the recommended lists, we chose the ACS algorithm.
In the rest of this subsection, we explain the main formulas of the ACS.

State transition rule - The state transition rule uses the pseudo-random
proportional rule where a random variable q ∈ [0; 1] is compared to a parameter
q0 to decide if the ant will explore the graph or if it will exploit the knowledge
collected by previous ants. q0 = 0 is equivalent to the AS model where ants
only explore the graph while q0 = 1 refers to a pure reinforcement behavior with
no exploration. The Equation 1 let the algorithm decide between knowledge
exploitation and biased exploration of the graph.{

Exploitation (Equation 2) if q ≤ q0
Biased exploration (Equation 3) if q ≥ q0

(1)
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The Equation 2 represents the direct exploitation of the knowledge in the graph
where the best edge is always chosen.

arg maxl∈Vi
{ταil · η

β
il}, (2)

where Vi is the set of available nodes from the node i, τil ∈ [0; 1] is the
amount of pheromones left on an edge (i, l) by previous ants, ηil is the heuristic
information on an edge (i, l), α and β are two parameters representing respec-
tively the weight of the pheromones and the weight of the heuristic.

The Equation 3 represents the biased exploration where best edges have more
chances to be picked and pij is the probability for an ant at the node i to choose
the edge (i, j).

pij =


ταij · η

β
ij∑

l∈Vi

ταil · η
β
il

, if j ∈ Vi,

0, otherwise,

(3)

Global pheromone update - After each iteration, only the ant who found
the best tour is allowed to update the pheromone level τij :

τij =

{
(1− ρ) · τij + ρ ·∆τij if (i, j) belongs to best tour,

τij otherwise,
(4)

where ρ is the evaporation rate of the pheromones and ∆τij = 1/Lbest where
Lbest is the length of the best tour.

Local pheromone update - Another addition of the ACS model over the
AS model is the local pheromone update performed after each step by each ant
described in Equation 5.

τij = (1− ρ) · τij + ρ · τ0, (5)

where τ0 is the pheromone level set on every edge at the initialization.
Heuristic information - the heuristic information ηij represents the in-

formation that ants possess a priori on an edge (i, j). In ACS, the heuristic
information is computed based on the distance between the two nodes of the
edge: the farther both nodes are from each other and the lower ηij will be.

ηij =
1

dij
,where dij is the distance between nodes i and j. (6)

3 Our model: AntRS

As previously stated, AntRS has been built with several goals in mind: (1) be
as generic as possible; (2) be able to include several competing objectives in a
single list; (3) be resilient to changes in the environment (new items, new pref-
erences,. . . ). Our model takes inspiration from the ACS algorithm because the
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latter gathers all the quality needed to satisfy those objectives. However, we want
to point out the di�erences between the classic ACS as described in Section 2.2
and our model AntRS. First of all, we had to develop our own method to create
a graph to model as best as possible the large environment we were working in
without hindering the execution time of the system. In Subsection 3.1 we present
our graph creation method. Secondly, we wanted to optimize many objectives
while the ACS optimizes only one attribute which is usually the distance. In
Subsection 3.2 we introduce more formally the objectives used in our model.
Thirdly, as we are generating several paths during the algorithm execution, a
merging procedure has to be executed at one point to be able to propose the
best possible recommendation list for each user. The Subsection 3.3 explains two
tactics we used to do so.

3.1 Graph creation

The �rst step of our model is the creation of the graph. This is often an overlooked
part in the literature as the datasets used are usually small and/or the links
between nodes of the graph are manually picked by a �eld expert. One of the
main di�erences between ACO simulations and real ants is the de�nition of
the search space. Real ants are evolving in a continuous search space without
any landmarks (or vertices) and are free to go everywhere whereas agents are
released in a discrete environment and have to follow predetermined paths (or
edges) between set landmarks. One of the ways to be as close as possible to real
ants' behavior would be to compute distances between each and every node of
the graph to build a complete graph. It is nonetheless an unpractical solution
for more than a few thousands vertices as the number of edges depends on the

number of vertices n with |E| = n(n−1)
2 . As our goal is to use our model in a

realistic situation with many potential items represented by vertices, we decided
to �nd a workaround without sacri�cing the quality in the solutions found. To
do so, we needed to select a few �best� edges between each vertex. At this point,
we formulated two hypotheses to help us construct the graph: (1) past sequences
created by previous users represent useful domain knowledge which should be
exploited; (2) past sequences done by previous users are not always the best
possible ones and could have been improved with clever recommendations.

To take into account those two hypotheses, we �rst computed the number of
transitions (i.e. co-consultations) between each pair of items in our dataset and
we added (1) all the transitions above a speci�c threshold, and (2) only some
of those below this threshold as edges. Finally, if a given connectivity degree
was not reached, we added new edges between items who were not connected in
our dataset to allow our model to discover new potential interesting paths not
known by users. The process of creating an edge is shown in Equation 7.

eij =


if tij ≥ m
or if tij < m and q < tij where q ∈ [min til; log(max til)]

or if tij = 0 and if deg(i) < d then pick a random

transition until deg(i) = d

(7)
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where eij is the presence of an edge between vertices i and j, tij is the number
of transitions performed from item i to item j by the users in the dataset, m
is the threshold where transitions are not directly added to the graph as edges,
q ∈ [min til; log(max til)] is a random variable uniformly distributed, min til is
the minimal number of transitions between the item i and all the others items
l ∈ Vi where at least one transition has been found, deg(i) is the current degree
of the node i in the graph and d is a parameter specifying the minimal degree
each vertex must have in the �nal graph.

3.2 Objectives

It is now widely admitted that the sole precision is not su�cient to produce
good recommendations to users. We thus propose to de�ne a set of 4 concurrent
objectives that have to often be considered in the literature while recommending
a list of items. The objectives we considered are all transposable in di�erent
application domains, guaranteeing the genericity of our approach.

Furthermore, the ability to add, to modulate the importance or to remove
objectives on the �y was essential for having an adaptive model. To address this
issue, we chose to integer as many colonies as objectives in our model, and each
colony is specialized in maximizing its own objective. To do so, we modi�ed the
way the ACS model computes the distance d between two nodes of the graph
while the calculation of the heuristic ηij was left untouched. The rest of this
Section describes the equations used to compute the distance for each colony.

Similarity - This is one of the main factor considered by nearly all the
recommender systems. The main goal of a recommender system is to propose
items similar to what the user liked before. Even if similarity is a well-known
and widely used characteristic, we think that a good recommender system cannot
overlook it. We also do consider that similarity should not be the cornerstone
of each and every recommender system anymore. The goal of this colony is to
�nd a list with items as similar as possible of what the user previously viewed
or is currently viewing. A lot of methods exist to compute the similarity of two
vectors and, based on our dataset and on the metadata available, we decided
to use a cosine similarity measure [24]. To compute the distance value on the
edges of the graph, we simply computed the cosine similarity between the two
items represented by the vertices. More formally, for an edge (i, j), its associated
distance dij is computed with the cosine similarity between the vectors of the
descriptive characteristics of the items i and j.

dij =
1

sim(Ci, Cj)
(8)

where Ci are the characteristics of the item i. The item characteristics de-
pend obviously on the dataset and on the meta-information available but, we
can formalize that each item of the dataset is described by n characteristics as
follow Ci = {c1, c2, . . . , cn}. We used the multiplicative inverse to transform the
similarity metric sim ∈ [0; 1] into a distance d ∈ [1; +∞]. Therefore, a distance
value near 1 on an edge (i, j) means that the two items i and j are similar.
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Diversity - This characteristic and the similarity are often described to-
gether as they are both related to the distance/correlation between the items
liked by the user and his/her recommendations. But unlike similarity, diversity
depicts how dissimilar two items are relatively to each other. Similarity and di-
versity are complementing each other in the sense that they are both needed to
adapt the system to the needs of di�erent users [14]. To compute this objective,
we chose to apply one of the classic diversity metric which is obtained by com-
puting the inverse of the similarity between two items, as shown in Equation 9.
As for the similarity, we used the multiplicative inverse of the diversity to obtain
a distance d ∈ [1; +∞].

dij =
1

1− sim(Ci, Cj)
(9)

Novelty - This characteristic represents the items that are not yet known
by the user. It could be new items recently added to the system or old but not
so popular items that the user missed. Novelty should not be confused with
diversity, since novel items could be either similar or dissimilar to what the user
usually likes. Novelty is an important characteristic of a recommender system to
avoid a potential lack of interest of users due to too much foreseeability in the
recommended items [26].

To determine if an item is novel or not relatively to a speci�c user, we used
the work of Zhang [31] who de�ned the novelty as a notion composed of three
characteristics: (1) Unknown: the item is unknown to the user; (2) Satisfactory:
the item is liked by the user; (3) Dissimilarity: the item is dissimilar to the other
items known by the user. The author proposed to evaluate the novelty of the
item i for the user u as follow:

novelty(i, u) = p(i|unknown, u) · dis(i, prefu) · p(i|like, u) (10)

where p(i|unknown, u) is the probability that the user u does not know the
item i, dis(i, prefu) is the dissimilarity between i and the set of items in the
users' pro�le and p(i|like, u) is the probability that u will like i. However, the
dissimilarity and the satisfaction of the user relatively to i are closely related to
other objectives in our model, respectively maximized by the diversity colony
and by both the preferences and the similarity colonies. Hence we decided to trim
down the Equation 10 to the probability p(i|unknown, u) only (see Equation 11).

p(i|unknown, u) = −log(1−popi), where popi is the popularity of item i. (11)

Preferences - The preferences characteristic corresponds to what the user
really likes. It intersects with the similarity notion but, again as with diversity
and novelty, we think that preferences express another aspect of a good rec-
ommendation for a user. The similarity characteristic allows the recommender
to propose items that are similar to the preferences of the user, but it is not
guaranteed that he will like those items. It is for example perfectly common to
both like and dislike some songs coming from the same album and artist, yet
those songs will probably be treated as very similar relative to each other. The
preferences characteristic favors items that are known to be liked by the user.
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The goal for this colony is to �nd a sequence in the graph prioritizing items
that are already known to be liked by the user. Thereby, items must have criteria
conveying how the user like an item or not. This can be done either with explicit
feedback (e.g. item rating,. . . ), with implicit feedback (e.g. number of times
the user viewed an item,. . . ) or with a combination of both. The nature of the
feedback will heavily depends on the domain, but we can formalize that each
collected information concerning the behavior of a user on an item must be taken
into account. Let Cu be the set of criteria representing all the actions that a user
u may perform on the items of the system, thus cu,i is the sum of all interactions
speci�c to a single criterion c that a user u performed on an item i (e.g. the
number of times a user u viewed i). To aggregate all the di�erent interactions
possible in a single value, we use the presumed interest formula proposed by
Castagnos et al. in [6] and described in the Equation 12.

presumed interestu,i = vmin +

∑
c∈C

(w(c) · c(u, i))∑
c∈C

w(c)
· (vmax − vmin)

cmax
(12)

where c(u, i) corresponds to normalized values given to the item i by the user
u to each criterion c, w(c) is the weight of the criterion c, vmin and vmax are
the minimal and maximal expected values for the presumed interest and cmax is
the maximal value that c(u, i) can take regardless of the criteria. In our case, we
considered the following criteria for each song: number of consultations, number
of skips, number of bans (when the user do not want to listen to the song ever
again) and number of likes.

3.3 Merging tactics

In the previous section, we described four objectives that could provide suitable
recommendations for users. Each of these four objectives is associated to a spe-
ci�c ant colony in our model. Thus, after this step, we are left with as many lists
of recommendations as colonies, where each one should represent a part of the
�nal recommended list. In order to build it, we needed a tactic to merge all the
colonies' lists into one. To do so, we propose two techniques described below.

Merging colony - The �rst merging tactic relies once more on the ACS
algorithm but with one additional colony that we called �merging colony�. Start-
ing from the set of items found by the other colonies (step 1), the merging
colony considers all the objectives at once with a weighted sum to calculate the
distances on the graph's edges (step 2), as shown in Equation 13.

dij =
∑

col∈colonies

w(col) · dij(col) (13)

where w(col) is the weight representing the expected importance of the colony's
objective in the �nal recommendation. To estimate those weights, we calculated
the average values of each objective (similarity, diversity, novelty and prefer-
ences) on the last n sessions processed of the user. This gave us the general
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importance of each objective while taking into account contextual information
and recent tendencies in the user's behavior. We also built a new graph for this
path of the algorithm. To construct it, we used all the items in the lists found by
the other colonies as vertices, we added edges to each consecutive pair of items
in the lists and �nally we added random edges in the same way that is described
in the last part of the Equation 7 to give the possibility of new paths to be found
and chosen by the merging colony's agents.

Lists merging - For the second merging tactic, we calculated the weight
w(col) of each objective in the same way that for the merging colony (see above).
We then built the list step by step by considering all the items found by the
di�erent colonies. We iterated through all the available items for each step of the
list construction and we added to the �nal recommended list the item which yield
the best amelioration towards the expected values. This process was stopped
either when the remaining items degraded the list's metrics, when there was no
items left or when the last item of the initial listened session was found.

4 Experimentation

4.1 Comparison algorithms

We compared the performances of AntRS with four state-of-the-art algorithms
capable of producing lists of items in the same conditions than our model. The
�rst three are classical techniques spanning most of the work in the recommender
systems domain: (1) UserKNN [5]; (2) TrustMF [30] and (3) SVD++ [16]. Those
three algorithms were implemented using the Java library librec [11]. We also
implemented a fourth hybrid multi-objective model named PEH described in [22]
to be able to compare AntRS to a state-of-the-art multi-objective recommender
system. We used the three algorithms described above in the hybridization pro-
cess. Furthermore, we also ran several version of AntRS to assess the strenghts
and the weaknesses of our model.

4.2 Dataset

For our experimentations, we decided to use a dataset from Deezer as they o�er
the possibility to get metadata and information on listened tracks with their
API. Our dataset spans one month of listenings starting from 5th Dec. 2016.

We split the dataset in listening sessions which corresponded to a listening
with a break not longer than 900+track_duration seconds. Among all 1,871,919
consultations, we were able to determine 91,468 unique sessions with a mean
length of 18.3 tracks each. The full dataset contains 3,561 unique users, 178,910
unique songs, and 1,871,919 listenings. However, as the PEH algorithm is not
highly scalable (similarly to most of multi-objective algorithms) and so as to
compare all algorithms in the same conditions, we limited the experiment to 500
randomly chosen users.

Each track is described by a number of metadata provided by Deezer, in-
cluding song name, artist name, album name, music genre, related artists and
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some numerical values like acousticness, danceability, energy, instrumentalness,
liveness, loudness, speechiness, tempo and valence. We used those characteristics
to implement the metrics of the four di�erent colonies described in Section 3.2.

Finally, so as to transform consultations (more precisely metadata such as
duration, frequency or recency of consultations) into ratings usable by collabora-
tive �ltering algorithms (UserKNN, TrustMF, SVD++), we used the Formula 12
proposed by [6]. We recall that this same formula was also used by our model
for the objective of preferences, taking no advantage on other algorithms.

4.3 Experimental protocol

We performed several evaluations of our model in diverse con�gurations to mea-
sure its performance relatively to itself and to other models. To guarantee a fair
chance for each model and con�guration, we set the same starting and stop-
ping conditions and we used the same data for all the experiments we did. For
each listening session of the test base users, each algorithm produced one rec-
ommended list and its performance was measured in comparison to the initial
listening session. The �rst item of each session was given to the algorithm as
starting point for the recommended list. The last item was not given but, if the
algorithm reached it during the recommendation process then it was stopped.
A minimum size was set for the recommended list which was half of the size of
the initial listened session. After the recommendation, the initial listened session
was added to the training base to simulate a real-case scenario where a system
�rst has no information on a new user and then gather more and more data on
him as he interacts with the system. Finally, all the tests were performed on a
cross-validation dataset with a training base of 400 users and a test base of 100
users each time. For each listening session composed of 5 items or more in the
test base, a recommended session was produced. The users of the training base
had listened to 10,621 sessions while there were 2,569 sessions in the test base.

We used di�erent metrics capturing all the aspects of what we consider a
good recommendation: Precision, Recall and F-measure [2], Similarity and Intra-
list Similarity [32], Diversity and Relative diversity [19, 26]. We also used the
preferences and the novelty metrics of Equations 11 and 12 as well as in [26]. We
empirically �xed the meta-parameters values of the baseline algorithm described
in 2.2 as follows: q0 = 0.3, α = 0.1, β = 0.9, ρ0 = 0.2, τ0 = 0.1.

5 Results

5.1 Single-objective AntRS

We �rst wanted to see how each of our objective performed alone. As our model
allows us to change the number of objectives on the �y, we performed four dif-
ferent tests for the four di�erent objectives without any merging step and we
measured how each of the tests performed considering the metrics described
above. The Table 1 presents those results. We measured the statistical signif-
icance of the score of the colony that was supposed to perform best on each



AntRS: Recommending Lists through a Multi-Objective Ant Colony System 11

Table 1. Experimentations with AntRS as a single-objective model

Precision Recall F-measure Similarity ILS Diversity RD Novelty Preferences

Similarity colony 0.317 0.126 0.165 0.952 0.923 0.048 *** 0.049 *** 0.72 *** 0.447 ***

Diversity colony 0.211 0.104 0.127 0.862 *** 0.77 *** 0.138 0.19 0.806 *** 0.393 ***

Novelty colony 0.132 0.112 0.114 0.895 *** 0.837 *** 0.105 *** 0.144 *** 0.909 0.379 ***

Preferences colony 0.296 0.159 0.191 0.946 *** 0.91 *** 0.054 *** 0.08 *** 0.695 *** 0.804

Signi�cance codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

metric in comparison with the results obtained by the other colonies. Thus, the
similarity and the intra-list similarity of the similarity colony were compared to
the similarity and intra-list similarity of the 3 others colonies and so on. As the
Shapiro-Wilk test revealed that our data did not follow a normal distribution, we
used the non-parametric Wilcoxon test which allowed us to compare the means
of two related samples (same users with di�erent algorithms). As expected, we
can see that each of our colonies produce lists that are specialized in a single
objective. Thus, the similarity colony produces lists that are the most similar
relatively to all the other colonies; the novelty colony produces lists that are the
most novel, and so on. Those experiments showed that our model was working
as intended and that we could combine the four objectives together.

5.2 Multi-objective AntRS

In Table 2, we present the summary of the results obtained for all the models
tested and their variations. We also measured the statistical signi�cance of the
results of our best performing model, AntRS with the lists merging, in compar-
ison with the results of all the other models. As for the previous subsection, the
statistical test used was Wilcoxon signed-rank test.

As explained in Section 3.3, we proposed and tested two merging tactics to
combine the results of our four objectives. We also tested to run the merging
colony alone, without the step 1 in the �rst merging tactic of Section 3.3: in
that scenario, the merging colony operates on the whole graph, rather than on
the subgraph of items recommended by the four colonies. We hypothesize that
running directly the merging colony without the step 1 will degrade the quality
of the �nal solutions found. This �rst step with the four colonies gave our model
the ability to �nd very specialized lists of items, which are associated to optimal
solutions in a Pareto front, and this process was supposed to help the merging
colony to �nd a better compromise between those solutions. This hypothesis has
been con�rmed in Table 2 since the two variants of AntRS with the 4 colonies
got better results than the sole merging colony on each metric, except for the
similarity, thus o�ering a better deal. The �rst merging tactic of our model
outperforms the second one in terms of precision, but the latter obtains the best
relative diversity of all the AntRS variants.

We can also see that both AntRS variations obtain the best precision (up
to +78.23%), recall (up to +29.05%) and F-measure (up to +31.28%) of all
the models tested, which means that our model was the best to capture the
preferences from the lists initially listened by the users in the training set. AntRS
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Table 2. Experimentations with AntRS as a multi-objective model

Precision Recall F-measure Similarity ILS Diversity RD Novelty Preferences Coverage

AntRS (4 colonies +
lists merging)

0.344 0.131 0.1838 0.947 0.908 0.053 0.069 0.741 0.61 96.92%

AntRS (4 colonies +
merging colony)

0.288 *** 0.151 *** 0.1836 ** 0.945 0.905 *** 0.055 0.082 *** 0.702 *** 0.612 ** 96.92%

AntRS (merging
colony alone)

0.197 *** 0.118 *** 0.141 *** 0.953 *** 0.93 *** 0.047 *** 0.068 0.324 *** 0.389 *** 96.92%

UserKNN 0.224 *** 0.138 0.162 *** 0.95 *** 0.905 *** 0.05 *** 0.081 *** 0.68 *** 0.541 61.39%

TrustMF 0.195 *** 0.117 *** 0.14 *** 0.95 *** 0.894 *** 0.058 *** 0.09 *** 0.697 *** 0.458 *** 68.17%

SVD++ 0.195 *** 0.12 *** 0.14 *** 0.941 *** 0.892 *** 0.06 *** 0.093 *** 0.70 *** 0.455 *** 68.17%

PEH 0.193 *** 0.118 *** 0.14 *** 0.941 *** 0.892 *** 0.059 *** 0.096 *** 0.697 *** 0.452 *** 97,52%

Signi�cance codes (compared to AntRS with 4 colonies + lists merging): 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

also outperformed the other models for the preferences and the novelty metrics,
while still managing to maintain a correct level of similarity and diversity. Let
us remind that we deliberately chose non-compatible objectives (Similarity vs.
Diversity, Novelty vs. Preferences), which makes the task harder for the multi-
objective algorithms (AntRS and PEH) compared to others. Despite a lower
diversity, AntRS o�ers a better compromise between all the objectives than PEH,
and in a much shorter execution time. Within the frame of this experiment, we
considered that all the objectives had an equal importance. However, it would be
easy to weight the di�erent objectives in AntRS according to user expectations,
like they did in [8]. Finally, we can notice that AntRS and PEH got a much
better coverage compared to other algorithms.

6 Conclusion and Perspectives

In this paper, we showed that our model, AntRS, is able to generate lists with
a higher precision than other methods, while still o�ering a good compromise
between similarity, diversity, novelty and preferences. AntRS o�ers many ad-
vantages compared to the state-of-the-art models: (1) the multi-agents part of
our model guarantees that it is highly adaptable to changes in the environment,
(2) the objective-oriented colonies can be added or removed on the �y, (3) it is
generic enough to be adapted in all the domains where a list recommender is
relevant, and (4) it is highly parallelizable and resilient to the cold-start problem.

We have some interesting ideas on how to pursue our work in the future. First,
we would like to improve the quality of the recommended lists by personalizing
the construction of the graph. At the moment, a unique graph is created for all
the users while the distances on the edges are recalculated for each user. We
would like to improve the personalization by creating a unique graph for each
user, and even a unique graph for each colony.

Secondly, we would like to work on the notion of sequence. Instead of rec-
ommending simple lists to user, we think that o�ering a coherent sequence of
items with a start, an end and a good progressivity could be bene�cial in other
domains (a path in a museum, a sequence of courses for a student. . . ). This
could be achieved by adding a colony dedicated to the progressivity.
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