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Abstract— In the design phase of the inductor required for 

the magnetization of  High Temperature Superconductor 

(HTS) bulks, modeling and simulation are necessary for the 

design of this inductor. In this paper we have developed an 

analytical model to calculate the inductance for a coil of a 

ferromagnetic circuit with gap including a superconducting 

pellet. This model is based on the determination of the 

magnetic vector potential from solving the Laplace’s and 

Poisson’s equations in different regions of interest, using the 

separation of variables method in which the Cartesian 

coordinates are used. The boundary and continuity conditions 

between regions are considered to determine the global 

solution. This analytical resolution is carried out using a 

computation code developed under MATLAB. The results 

obtained are compared with those obtained by a numerical 

simulation based on the finite element method implemented 

under COMSOL. A remarkable concordance is observed 

between both approaches. 

Keywords—Analytical Model, Electromagnets, Inductance, 

Superconducting pellet. 

I. INTRODUCTION  

Superconductivity has been the subject of several theories 

and research works to unravel the mystery of this 

phenomenon. The magnetization of superconducting pellets 

is an interesting way to investigate the trapped field in 

superconducting machines. Several researches have been 

devoted to studying the possibility of taking advantage of 

the significant magnetic induction produced by magnetized 

pellets for applications in Electrical Engineering [1], [2]. 

The most widely used method for magnetizing 

superconductors bulk’s is to apply a pulsed magnetic field 

(PFM method). Since a long time, analytical models have 

been proposed to study the behavior of the magnetic field 

created by ironless circular coils [3], [4] and more recently 

for an axisymmetric coil in a ferromagnetic circuit [5].  

 In this paper, we extend a previous work [5] by adding a 

superconducting pellet in the gap area where a Cartesian 

coordinates are used to make the problem close to the real. 

The analytical solutions obtained using MATLAB are 

compared and validated with those obtained numerically 

through a finite element method implemented under 

COMSOL. 

II. PROBLEM DESCRIPTION AND ASSUMPTIONS 

The geometry of the studied problem is shown on Fig. 1. 

The regions I, III, IV, V, and VI correspond to the air and the 

region II corresponds to a circular coil of N turns with 

rectangular cross-section. The whole system was limited so 

that    5 70, and 0,y y x x  . The superconducting pellet 

is modeled as a perfect diamagnetic, which corresponds to a 

zero magnetic vector potential in the pellet and on its edges. 

However, the ferromagnetic circuit is modeled by an infinite 

permeability, this implies that the magnetic field is not 

calculated inside the ferromagnetic circuit.  

 

 
Fig. 1. Geometry of the studied problem: Open magnetic circuit 

with an air gap of a length e, where a superconducting pellet is 

implemented. 

 

The interface conditions are then used to obtain the 

tangential component of magnetic field to be null. The 

homogeneous Dirichlet boundary conditions are considered 

in regions I, II, III, V and VI. However, homogeneous 

Neumann boundary conditions are used in regions IV, V and 

VI. A magnetic vector potential formulation in Cartesian 

coordinate is used in this problem, where only the z-

component exists and it depends only on the x and y 

coordinates. 
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The expressions of magnetic vector potential are 

obtained by resolving a Poisson’s equation in the coil region 

and a Laplace’s equation in the other regions, as follows: 
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Then, the expressions of the magnetic vector potential in 

the different regions can be expressed as: 
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where n is a positive integer, and 
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A01 et A02 are integration constants due to the Neumann 

boundary conditions in region IV. It can be determined by 

applying the condition of continuity of the magnetic vector 

potential at the interfaces between regions as 
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, , , , , , , andI II II III III IV IV V VI

n n n n n n n n nb a b a b a b a a are the integration 

constants. The relations between those integration constants 

are determined by applying the interface conditions between 

the different regions. Finally, we have to solve here a system 

of nine linear equations with nine unknowns by rewriting 

this system in matrix and vectors format. 

III. RESULTS AND DISCUSSION 

Fig. 3 shows the radial and the axial components of the 

magnetic flux density along the x-axis in Region III 

obtained with analytical and numerical models where a true 

concordance is observed between these two approaches. 

 

 

Fig.2. Comparison of the distributions of the magnetic vector 

potential obtained from the analytical calculation (on the left) and 

the numerical calculation (on the right). 

 
Fig.3. Bx and By components of the magnetic flux density along the 

x-axis in the Region III at y = (y1+y2)/2. 

 

IV. CONCLUSION 

In this work and by using a Cartesian coordinates, we have 

demonstrate that results provide by the analytical model 

show a very good match with numerical ones. 
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