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Abstract: In this paper, we compare different order of statistical moments to blindly estimate the propagation channel in an OFDM 

based wireless network. We first derive the theoretical expression of the channel estimation error and we compare it to simulation 

results in different scenarios. These simulation results show a good agreement with the theoretical expression. Furthermore, we show 

that blind channel identification algorithms, based on different moment’s order, exhibit similar performance in terms of the 

Normalized Mean Square Error (NMSE) and in terms of the Bit Error Rate (BER). We conclude that the choice of the moment’s 

order is uniquely based on the ambiguity solving stage in the algorithm. The proposed study shows that the choice of the 4th moment 

is a trade-off between channel estimation performance and ambiguity solving complexity. 

 

Keywords: Blind channel, High order moment. 

1. INTRODUCTION 

Orthogonal Frequency Division Multiplexing 

(OFDM) [1], [2] has generated considerable interest as a 

highly suitable technique for high-bit-rate transmission. 

It has been adopted in modern wireless access networks 

such as LTE [3], [4], TEDS [5], WiFi [6]. In an OFDM 

waveform based transmission, a great number of 

subcarriers are generally devoted to pilot symbols which 

reduces the spectral efficiency. To overcome this 

problem, blind channel identification and equalization 

have attracted considerable interests during the past few 

years. Thus, many algorithms have initially been 

proposed using the subspace approach [7], the ML 

estimation [8], the adaptive tracking [9], and a constant 

modulus algorithm [10]. Furthermore, several works 

have also focused on using second-order statistics 

techniques [11] based on over-sampling or on spatial 

diversity. Higher order statistics were also investigated in 

blind channel estimation and shown good performances 

[12]–[15]. Thus, a relevant question arises in the case of 

algorithms investigated in [14], [15]: Is there an optimum 

moment’s order for blind channel estimation? According 

to the author’s best knowledge; there is no study about 

comparison of the impact of this moment’s order on the 

blind channel estimation. To this end, in this paper, we 

compare both estimation errors and BER results between 

the 4
th

, 8
th

 and 12
th

 moment’s order in OFDM 

transmissions using respectively 4-QAM, 16-QAM and 

64-QAM modulation schemes; we derive analytical 

expressions of an approximation of the power of the 

estimation error and the BER for different moment’s 

order. The obtained theoretical results are compared to 

the simulation results. The paper is organized as follows. 

Section II is dedicated to system model and some recalls 

about p
th

 order statistics. In section III, estimation 

channel algorithm is presented and derivation of the 

estimation error and the BER are detailed. Numerical 

results are presented and discussed in section IV. Finally, 

section V concludes this paper.  
 

2. SYSTEM MODEL 

A. Data and Channel Model 

Consider a SISO (Simple input Simple Output) 
transmission system with one transmit antenna and one 
receive antenna. Let’s 𝑠𝑖,𝑘  be the M-QAM symbols 

transmitted over the 𝑖 𝑡ℎ  OFDM symbol and the 𝑘𝑡ℎ 
subcarrier of an OFDM frame. Consider that the 

frequency response of the propagation channel at the 𝑘𝑡ℎ 
subcarrier ℎ𝑘 is constant over 𝑁 > 𝑀 OFDM consecutive 
symbols. Assume also well time frequency 
synchronization at the receiver and cyclic prefix correctly 
sized to contain the channel impulse response. Thus, the 

http://dx.doi.org/10.12785/ijcds/080501 



 

 

438       Rabah Maoudj, et. al.:  Performance comparison of high Order Moments …   
 

 

https://journal.uob.edu.bh 

transmission can be modeled according to the following 
equation, 

     𝑟𝑖,𝑘 = ℎ𝑘𝑠𝑖,𝑘 + 𝑛𝑖,𝑘 .                                                (1)                 

Where 𝑛𝑖,𝑘  is the circular AWGN (Additive White 

Gaussian Noise) at the 𝑖𝑡ℎ  OFDM symbol and 𝑘𝑡ℎ 
subcarrier. 

B. p
th

 order statistics 

In this section we present some statistics concepts 
used in our blind channel estimation algorithm. This latter 
is based on high order statistic of the M-QAM received 
signal. 

 We define the (p, q) order moment of an complex 
variable x as follows,  

      𝜇𝑥,(𝑝)
(𝑞)

= 𝐸[𝑥𝑝𝑥∗𝑞].                                            (2) 

𝐸[−] denotes the mathematical expectation. 

If 𝑥 is a circular complex variable, like it is the case for 

the AWGN in our system model, then ∀ 𝑝 ≠

𝑞  ,   𝜇𝑥,(𝑝)
(𝑞)

= 0. 

If we assume that the distribution of the complex M-
QAM symbols x is uniform, we can define (p, q) order 
moment as: 

∀ 𝑝 ≠ 𝑞  𝑒𝑡 𝑝 + 𝑞 ≤ 𝑀,   𝜇𝑥,(𝑝)
(𝑞)

= {
𝐸[𝑥𝑀]   , 𝑝 = 𝑀 𝑜𝑟 𝑞 = 𝑀 

0   , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
    

(3) 

In the sequel of this paper we use (p, 0) order moment of 
the received M-QAM signal. For 4-QAM symbols 
uniformly distributed, (p, 0) order moment is given by:  

     𝜇𝑥,(𝑝)
(0)

= {
𝑎𝑝𝑒𝑗𝑝𝜑 , 𝑝 = 4𝑙, ∀𝑙 ∈ ℕ∗

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 .
                            (4) 

Where 𝑎  and 𝜑  are respectively magnitude and initial 
phase of the constellation. 

We can easily observe that each M_QAM constellation 
can be seen as a set of 4-QAM constellations weighted by 
a magnitude 𝑎i and shifted by a phase  𝜑i. For example, 

if  𝑥  is a 16_QAM symbol therefore ∈ {4 − 𝑄𝐴𝑀
√2,

𝜋

4
,

4 − 𝑄𝐴𝑀
√10,

𝜋

9.764
, 4 − 𝑄𝐴𝑀

√10,
𝜋

2.515
, 4 − 𝑄𝐴𝑀

√18,
𝜋

4
} , as 

shown in figure 1. 

 

Figure 1. 16-QAM constellation 

 

The p
th

 order moment of x is given by the expression 

hereafter, 

       𝜇
𝑥,(𝑝)

(0)
= {𝜇

𝑥0,(𝑝)

(𝟎) ∑ 𝑎𝑖
𝑝

𝑒𝑗𝑝𝜑𝑖

𝑀

4
 

𝑖=1
, 𝑝 = 4𝑙, ∀𝑙 ∈ ℕ∗

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

            (5)  

Where  𝜇𝑥0,(𝑝)
(0)

 is the moment of 𝑥0 ∈ 4_𝑄𝐴𝑀1,0  

We note that the unbiased estimator of  𝜇𝑥,(𝑝)
(0)

 over N 

samples is given by the following equation, 

 �̂�𝑥,(𝑝)
(0) =

1

𝑁
∑ 𝑥𝑖

𝑃𝑁−1
𝑖=0 .                                                   (6) 

TABLE I.  P
TH ORDER MOMENT WITH P = 14, 8 AND 12 

 𝝁𝒙,(𝟒)
(𝟎)

 𝝁𝒙,(𝟖)
(𝟎)

 𝝁𝒙,(𝟏𝟐)
(𝟎)

 

4-QAM -1 1 -1 

16-QAM -0.68 2.203 -8.879 

64-QAM -0.619 1.911 -8.662 

128-QAM -0.181 -0.653 4.488 

 

C. Blind Channel Identification Algorithm 

The present blind channel identification method 
exploits the fact that the p

th
 order moment of the M-QAM 

symbols is no-null however the first p
th

 moment of the 
AWGN is null. Therefore from equations (1 to 5), the 

frequency channel response at the 𝑘𝑡ℎ  subcarrier is 
estimated as follows, 

        ℎ̃𝑘𝑒
𝑗

2𝑙𝜋

𝑝 = ℎ̂𝑘 = (
1

𝑁

∑ 𝑟𝑖,𝑘
𝑝𝑁−1

𝑖=0

𝜇
𝑠,(𝑝)
(0) )

1

𝑝

,     𝑙 ∈ ℕ.               (7)

With, 𝜇𝑠,(𝑝)
(0)

 is given by equation (5) and 𝑒
𝑗

2𝑙𝜋

𝑝  is the 

ambiguity resulting from the p
th
 root of 1, like  𝑒

𝑗
2𝑙𝜋

𝑝 =

√1
𝑝

. This ambiguity term is assumed well corrected with 
dedicated algorithm [13]. 
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D. Estimation error derivation 

Merging equation (1) into (7), we obtain, 

ℎ̂𝑘 = (ℎ𝑘
𝑝

+
1

N𝜇
𝑠,(𝑝)
(0) ∑ ∑ (

𝑝
𝑚

) ℎ𝑘
𝑝−𝑚

𝑠𝑖,𝑘
𝑝−𝑚

n𝑖,𝑘
𝑚𝑝

𝑚=1
N−1
𝑖=0 )

1

𝑝

. (8) 

By setting 𝜀ℎ𝑘

(𝑝)
=

1

N𝜇
𝑠,(𝑝)
(0) ∑ ∑ (

𝑝
𝑚

) ℎ𝑘
𝑝−𝑚

𝑠𝑖,𝑘
𝑝−𝑚

n𝑖,𝑘
𝑚𝑝

𝑚=1
N−1
𝑖=0  

equation (8) becomes, 

   ℎ̂𝑘 = (ℎ𝑘
𝑝

+ 𝜀ℎ𝑘

(𝑝)
)

1

𝑝
= ℎ𝑘 (1 +

𝜀ℎ𝑘

(𝑝)

ℎ𝑘
𝑝 )

1

𝑝

.                    (9) 

Consider that |
𝜀ℎ𝑘

(𝑝)

ℎ𝑘
𝑝 | < 1, this assumption may be widely 

admitted since we consider that the element of noise ni,k
m  

is AWGN and this leads to consider 

∑ (
p
m

) hk
p−m

si,k
p−m

ni,k
mp

m=1  also as AWGN. We know in 

this case that the first moment of an AWGN is null, 

therefore E [∑ (
p
m

) hk
p−m

si,k
p−m

ni,k
mp

m=1 ] = 0 . In 

conclusion, |∑ ∑ (
𝑝
𝑚

) ℎ𝑘
𝑝−𝑚

𝑠𝑖,𝑘
𝑝−𝑚

n𝑖,𝑘
𝑚𝑝

𝑚=1
N−1
𝑖=0 | ≪ 1, when 

N ≫ 1. 

Therefore equation (9) can be approximated by the first 
order Taylor series [14], as given by the following 
equation, 

    ℎ̂𝑘 ≅ ℎ𝑘 +
1

𝑝ℎ𝑘
𝑝−1 𝜀ℎ𝑘

(𝑝)
.                                           (10) 

By setting, 𝜀ℎ𝑘
=

1

𝑝ℎℎ
𝑝−1 𝜀ℎ𝑘

(𝑝)
, the last equation becomes, 

    ℎ̂𝑘 ≅ ℎ𝑘 + 𝜀ℎ𝑘
.                                                     (11) 

With 𝜀ℎ𝑘
 is the channel estimation error. Using equation 

(8) we can write:  

 𝜀ℎ𝑘
ℎ𝑘

𝑝−1
=

1

𝑝N𝜇
𝑠,(𝑝)
(0) ∑ ∑ (

𝑝
𝑚

) ℎ𝑘
𝑝−𝑚

𝑠𝑖,𝑘
𝑝−𝑚

𝑛𝑖,𝑘
𝑚𝑝

𝑚=1
N−1
𝑖=0 .   (12) 

To evaluate the channel estimation accuracy we have to 

calculate error power defined as E [|𝜀ℎ𝑘
|

2
]. For this aim 

and to reduce calculation complexity, we admit some 

assumptions: 

First we consider that ∑ ℎ𝑘
1−𝑗1𝑠𝑖,𝑘

𝑝−𝑚1𝑛𝑖,𝑘
𝑚1N−1

𝑖=0  and 

∑ ℎ𝑘
1−𝑚2𝑠𝑖,𝑘

𝑝−𝑚
𝑛𝑖,𝑘

𝑚2N−1
𝑖=0  are independent for 𝑚1 ≠ 𝑚2 . We 

also assume that ℎ𝑘
𝑝−𝑚

 and  𝑛𝑖,𝑘
𝑚  are not correlated and 

𝜀ℎ𝑘
 and ℎ𝑘

𝑝−1
 are independent. Therefore, 

E [|𝜀ℎ𝑘
|

2
] =

1

(𝑝N𝜇𝑠,(𝑝)
(0)

)
2

∑ (
𝑝
𝑚

)
2

E[|𝑠𝑝−𝑚|2]E[|ℎ𝑘
𝑝−𝑚

|
2

]E[|∑ 𝑛𝑖,𝑘
𝑚N−1

𝑖=0 |
2

]
𝑝
𝑚=1

E[|ℎℎ
𝑝−1

|
2

]
.

In the sequel, we focus on the derivation of this 

estimation error in the case of Rayleigh propagation 

channel. This latter can be written as ℎ𝑘 = ℎ𝑅𝑘 + 𝑗ℎ𝐼𝑘  

with, (ℎ𝑅𝑘 , ℎ𝐼𝑘) ~ 𝒩 (0,
𝜎ℎ

2

2
) . Following the system 

model defined by equation (2), the noise is also written 

as 𝑛𝑖,𝑘 = 𝑛𝑅𝑖,𝑘 + 𝑗𝑛𝐼𝑖,𝑘 and (𝑛𝑅𝑖,𝑘, 𝑛𝐼𝑖,𝑘) ~ 𝒩 (0,
𝜎𝑛

2

2
) .  

Since 𝑛𝑖,𝑘
𝑚  is an uncorrelated centered complex Gaussian 

variable of variance 𝜎𝑛
2 then, 

         E [|∑ 𝑛𝑖,𝑘
𝑚N−1

𝑖=0 |
2

] = ∑ E [|𝑛𝑖,𝑘
𝑚 |

2
]N−1

𝑖=0 .                       

Based on [15] the expectation E [|𝑛𝑖,𝑘
𝑚 |

2
]  is expressed 

according to the following equations, 

         𝐸 [|𝑛𝑖,𝑘
𝑚 |

2
] = ∑ (

𝑚
𝑙

) 𝐸[𝑛𝑅𝑖,𝑘
2𝑙 ]𝐸[𝑛𝐼𝑖,𝑘

2(𝑚−𝑙)
]𝑚

𝑙=0 .

This equation can be rewritten also as, 

         𝐸 [|𝑛𝑖,𝑘
𝑚 |

2
] = ∑ (

𝑚
𝑙

) 𝜇|2𝑙|𝜇|2(𝑚−𝑙)|
𝑚
𝑙=0  .                (16)  

With, 𝜇|𝑞|  is the central absolute 𝑞𝑡ℎ  moment of a real 

random Gaussian variable  𝑛𝑅𝑖,𝑘 . 𝜇|𝑞|  is given as 

follows [16, 17], 

          𝜇|𝑞| = 𝜎𝑛
𝑞  𝛤(

𝑞+1

2
)

√𝜋


Thus, 

          E [|∑ 𝑛𝑖,𝑘
𝑚𝑁−1

𝑖=0 |
2

] =

          N ∑ (
𝑚
𝑙

) 𝜎𝑛
2𝑚

 𝛤(
2𝑙+1

2
)𝛤(

2(𝑚−𝑙)+1

2
)

𝜋

𝑚
𝑙=0 . 

Similarly, E[|ℎ𝑘
𝑚|2] is obtained, 

          E [|ℎ𝑘
𝑝−𝑚

|
2

] =

          ∑ (
𝑝 − 𝑚

𝑙
)

 𝛤(
2𝑙+1

2
)𝛤(

2(𝑝−𝑚−𝑙)+1

2
)

𝜋
.

𝑝−𝑚
𝑙=0 

Finally and using equation (18), (19) and Table I, 

estimation error can be written as equation (20) (at the 

end of the sixth page of this article). 

3. NUMERICAL ANALYSIS 

For simulations, we consider an OFDM transmission. 
The studied M-QAM constellations are 16-QAM and 64-
QAM. For each constellation, we investigated the 
encoded Bit Error Rate BER and Normalized Mean 
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Square Error  𝑁𝑀𝑆𝐸 =
‖𝒉−�̂�‖

2

‖𝒉‖2 . We evaluated the 

performance on blind channel estimation as function of p, 
the moment order and N, the number of OFDM symbol 
used for channel estimation. The theoretical result 
obtained in equation (20) is compared to Monte Carlo 
simulation. The channel modulus is chosen as a Rayleigh 
random complex value drawn each iteration. 

Figure 2 shows the NMSE respect to Eb/N0 for 16-

QAM constellation and using N = 64 OFDM symbols for 

channel estimation. NMSE is estimated theoretically and 

with simulations for 4
th

, 8
th
 and 12

th
 order moment 

channel estimation algorithm.  

 

Figure 2. NMSE vs Eb/N0 for 16-QAM and 64 OFDM symbols. 

As illustrated in figure. 2 the channel estimation error 
obtained in equation (20) is in good agreement with the 
simulated result whatever the moment order. Furthermore, 
the estimation error does not significantly decrease when 
the moment order increases. 

Regarding BER, Figure 3 shows it as a function of 
Eb/N0. The simulation results are obtained for a 16-QAM 
constellation, and using N = 64 OFDM symbols for 
channel estimation. The BER is steel following the 
estimated error power given by the equation (20) and 
illustrated by the figure 2 at high Eb/N0. This joined the 
hypothesis token in section III of the high number of the 
averaged OFDM symbols to justify the validity of the 
Taylor linearization. 

However, when the number of averaged OFDM 
symbols is not sufficient to guarantee this hypothesis 
therefore we observe a divergence in results with the 
predicted estimation error power.  

 

Figure 3. BER vs Eb/N0 for 16-QAM and 64 OFDM symbols. 

   We investigated also in this paper 4-QAM transmission. 
Figures 4 and 5 shown respectively NMSE and BER with 
16 OFDM symbols used for the channel estimation.  

 

Figure 4. NMSE vs Eb/N0 for 64-QAM and 128 OFDM symbols. 
 

 
Figure 5. BER vs Eb/N0 for 4-QAM and 16 OFDM symbols. 
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From figure 4, we can easily see that a significant 

degradation is bringing by increasing the moment order 

in channel estimation. The fourth order moment 

algorithm performs better than the others in term of 

theoretical NMSE illustrated by figure 4 or uncoded BER 

given in figure 5. 

Finally, the estimation error is widely acceptable in 

both studied scenarios with small number of OFDM 

symbols witch is suitable for fast varying channel 

estimation in 4-QAM.  
In light of these results concerning NMSE and BER, it 

is difficult to make a choice to use a moment order despite 
other for a given QAM modulation order. For 16-QAM a 
high order seems more appropriate while for 4-QAM it is 
the turn of a weak order to give a better result. However, 
in all cases, the different moment orders provide nearly 
similar performance.  

In section III.A, we introduced the ambiguity term 

resulting from the p
th

 root of 1, like  𝑒
𝑗

2𝑙𝜋

𝑝 = √1
𝑝

. 

A. Removing the 
2𝑙𝜋

𝑝
 Ambiguity 

An overview of the inter subcarrier ambiguity 
removing which is included [13] in given below. 

Consider an OFDM waveform transmission with an 
OFDM symbol length equal to 𝐾  and a guard interval 
length of 𝐿 then, we can write: 

       𝒉 = 𝑭𝐾,𝐿𝒂.                                                           (21) 

Where:  

𝑭𝐾,𝐿 is the discrete Fourier transform matrix with 𝐾lines 

and 𝐿 first columns. The elements k, l of the matrix 𝑭𝐾,𝐿 

are given by the following formula: 

𝐅K,L(k, l) =
1

√K
exp (−j

2πkl

K
) , 0 ≤ k < 𝐾 𝑎𝑛𝑑 0 ≤ 𝑙 < 𝐿  

𝒂  is the finite impulse response of the propagation 

channel represented by the (𝐿 × 1) vector: 

        𝒂 = (

𝑎0

⋮
𝑎𝐿−1

). 

Consider the vector 𝒗  of the discrete Fourier 

transform of the propagation channel ℎ: 
       𝑭𝐾,𝐾

𝐻 𝒉 = 𝒗.                                                            (22) 

Where 𝑭𝑲,𝑲 is the discrete Fourier transform matrix and 𝒗 

is a (𝐾 × 1) vector obtained by the concatenation of the 𝒂 
vector and a (𝐾 − 𝐿 × 1)  null vector: 

      𝒗 = (
𝒂
𝟎

).                                                              (23) 

We introduce the (𝐾 × 𝐾) diagonal 𝑰ℎ̂  matrix defined 

as  𝑑𝑖𝑎𝑔(𝑰ℎ̂) = �̂�. The ambiguity correction can then be 
obtained by the identification of the vector 𝒄: 

   𝒄 = (

𝑐0

⋮
𝑐𝐾−1

) , ∀𝑖 ∈ [0 ⋯ 𝐾 − 1], 𝑐𝑖 ∈ 𝑒
𝑗

2𝑙𝜋

𝑝 , 𝑙 = 1 ⋯ 𝑝.  

(24)         

Such that: 

     𝑰ℎ̂𝒄 = 𝒉 + 𝜺ℎ.                                                             (25) 

The 𝒄 vector has to represent the conjugates of the 
ambiguity terms on each subcarrier and 𝜺𝒉 stands for an 
estimation noise.  

Left multiplying equation (25) by 𝑭𝐾,𝐾
𝐻  and taking 

into account equation (22) we arrive to: 

     𝑭𝐾,𝐾
𝐻 𝑰ℎ̂𝒄 =  𝒗 + 𝜺𝑣 .                                                  (26) 

Notice that: 𝜺𝑣 = 𝑭𝐾,𝐾
𝐻 𝜺ℎ 

Equation (26) can be written as following: 

       𝑩𝒄 = 𝒗 + 𝜺𝑣.                                                          (27) 

𝑩 is given by: 𝑩 = 𝑭𝐾,𝐾
𝐻 𝑰ℎ̂. This matrix can itself be split 

in two matrices namely a (𝐿 × 𝐾)  matrix 𝑩1  and in a 
(𝐾 − 𝐿 × 𝐾) matrix 𝑩2 defined as follows: 

       [
𝑩𝟏

𝑩𝟐
] 𝒄 =

                           [
𝒂 + 𝜺𝒗𝟏

𝜺𝒗𝟐
].                                                  (28) 

Like the matrix 𝑩, the error vector 𝜺𝑣is split as following: 

𝜺𝑣 = [
𝜺𝒗𝟏

𝜺𝒗𝟐
], the dimensions of 𝜺𝒗𝟏 and 𝜺𝒗𝟐 are 𝐿 × 1 and 

𝐾 − 𝐿 × 1 respectively. 

Assuming the hypothesis of low rank channel, the 

length of the channel impulse response is at most equal to 

𝐿 so as not to exceed the guard interval of the OFDM 

symbol. With this hypothesis, we can consider that the 𝒄 

vector has to minimize the quadratic 2-norm of the 

(𝐾 − 𝐿 × 1)  𝜺𝑣2 = 𝑩2𝒄  vector. We will then take in 

consideration the following criterion: 

   𝒄 = arg𝒄 min  (‖𝜺𝒗𝟐‖𝟐) .                                       (29) 

In order to avoid the trivial null solution for 𝒄 and to 

be compliant with equation (24), we introduce the 

constraint ‖𝒄‖2 = 𝐾. The 𝒄 vector is then proportional to 

the eigenvector associated to the minimal eigenvalue of 

the (𝐾 × 𝐾) 𝑩2
𝐻𝑩2 matrix. 

Nevertheless, by construction we 

have  𝑟𝑎𝑛𝑘(𝑩2
𝐻𝑩2) = 𝐾 − 𝐿 , hence, we have 𝒄 ∈

ker  (𝑩2) meaning that this vector belongs to the space 

spanned by eigenvectors linked to null eigenvalues 

of 𝑩𝟐
𝑯𝑩2. 

In order to find a solution, we propose to reduce the 

dimension of the 𝑩2
𝐻𝑩2  matrix. For that purpose, we 

propose to discard the 𝐿 smallest (modulus) values of the 
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�̂�  vector. Discarding these 𝐿  smallest components, we 

obtain a new (𝐾 − 𝐿 × 1) vector �̂�'. 
Following then same steps as previously, we introduce 

the (𝐾 − 𝐿 × 𝐾 − 𝐿)  diagonal 𝑰ℎ̂′  matrix defined as: 

𝑑𝑖𝑎𝑔(𝑰ℎ̂′) = 𝒉′̂  and the (𝐾 × 𝐾 − 𝐿)  𝑩 ' matrix defined 

as: 𝑩′ = 𝑭𝐾,𝐾−𝐿
𝐻 𝑰�̂�′. The 𝑩′ matrix can itself be split in a 

(𝐿 × 𝐾 − 𝐿)  𝑩′1  matrix and in a (𝐾 − 𝐿 × 𝐾 − 𝐿)  𝑩′2 
matrix. Equation (18) becomes then: 

      [
𝑩′1
𝑩′2

] 𝒄′ = [
𝒂′ + 𝜺′

𝑣1

𝜺′
𝑣2

].                                            (30) 

And the 𝒄′  vector is now defined as the minimum 

eigenvector of the 𝑩′2
𝐻𝑩′2 matrix multiplied by √𝐾 − 𝐿. 

𝒄′  is then viewed as an ambiguity plus noise 
multiplicative correction vector, but we have to constraint 

it to be in the set {𝑐𝑖 ∈ 𝑒
𝑗

2𝑙𝜋

𝑝 , 𝑙 = 1 ⋯ 𝑝}. It can be done 

by a Maximum Likelihood (ML) demodulation. In the 
proposed algorithm each components of 𝒄′  are just 

rounded to the closest neighbor among: {𝑐𝑖 ∈ 𝑒
𝑗

2𝑙𝜋

𝑝 , 𝑙 =

1 ⋯ 𝑝}. Once 𝒄′ obtained, the final step of the algorithm 

leads to estimate the channel impulse response. From 
equation (30) we write: 

 �̂� = 𝑩′1𝒄′.                                                               (31) 

Once �̂� estimated, the channel frequency estimation, 
including intrinsically the smoothing stage is finally given 
by: 

 �̂̂� = 𝑭𝐾,𝐿�̂�.                                                              (32) 

We have to notice that the main numerical complexity 
resides in the minimal eigenvector estimation, other steps 
being relatively easy to implement on hardware targets. 

In term of overall error probability of the blind 
estimation of the propagation channel performed with the 
presented algorithm, can be given by the product of the 

error probability estimated from |𝜺ℎ𝑘
|

2
 obtained in the 

equation (20) and the power probability of the inter 
subcarrier ambiguity resolving derivated from the 
quantity |𝒄 − 𝒄′|2. 

As we can observe the vector 𝒄 is composed of the 

elements  𝑐𝑖 ∈ 𝑒
𝑗

2𝑙𝜋

𝑝 , 𝑙 = 1 ⋯ 𝑝 . Globally we can easily 
estimate the relative error probability of the ambiguity 
resolving of the use of an 𝑀 − 𝑄𝐴𝑀 compared to the use 
of a 𝑀’ − 𝑄𝐴𝑀. This relative error probability is inverse 
proportional  to the ratio of the minimum  distance  of  the 

 

 

 

elements of the 𝑀 − 𝑄𝐴𝑀 to the minimum distance of the 
elements of the 𝑀′ − 𝑄𝐴𝑀. Therefore, we can conclude 

that for p = 4, the error probability of the ambiguity 𝑒𝑗
𝑙𝜋

2  
resolving will be 3dB less than the error probability of 

the ambiguity 𝑒𝑗
𝑙𝜋

4  in the case of p = 8. In another hand 
computing 4

th
-root is less complex than computing 8

th
-

root or 12
th

-root. In addition of the ambiguity resolving 
power error, taking in consideration the low complexity 
of channel estimation algorithm, 4

th
 order moment is 

more suitable than the higher moments.  

B. Simulation results of the 4
th

 order moment estimation 

algorithms versus some well-known algorithms 

Before threating of performance results algorithms 
obtained by simulation of the 4

th
 order moment estimation 

algorithm and some well-known other blind estimation 
algorithms, we have simulated the error probability versus 

NMSE of the 
𝜋

2
 ambiguity resolving algorithm discussed 

in section A. the simulations are performed in the case of 
use of the 4

th
 order moment algorithm. Figure 5 shows 

this error probability in the case of an OFDM waveform 
transmission with a guard interval length L=4 and L = 8. 

 

Figure 5. Error probability of  
π

2
 ambiguity resolving versus NMSE. 

The results showed by figures 6 and 7 are obtained by 
simulating the 4

th
 order moment algorithm, the subspace 

based algorithm [6] and the autocorrelation matrix based 
algorithm for 4-QAM and 16-QAM modulation 
consecutively in the propagation conditions described by 
Hilly terrain channel [20]. The generation of the 
propagation channel is done according to the Jakes Model 
[21]. The number of averaged OFDM symbols is 
𝑁 = 200. We have obtained approximatively the same 
performance for our algorithm and the subspace based 
algorithm. 

  [|𝜀ℎ𝑘
|

2
] ≅

1

𝑁𝜋(𝑝𝜇
𝑥,(𝑝)
(0)

)
2

∑ [(
𝑝
𝑚

)
2

𝐸[|𝑥𝑝−𝑚|2](∑ (
𝑝−𝑚

𝑙
)𝛤(

2𝑙+1

2
)𝛤(

2(𝑝−𝑚−𝑙)+1

2
)

𝑝−𝑚
𝑙=0 )(∑ (

𝑚
𝑙

)𝜎𝑛
2𝑚𝛤(

2𝑙+1

2
)𝛤(

2(𝑚−𝑙)+1

2
)𝑚

𝑙=0 )]
𝑝
𝑚=1

∑ (
𝑝−1

𝑙
)𝛤(

2𝑙+1

2
)𝛤(

2(𝑝−1−𝑙)+1

2
)

𝑝−1
𝑙=0

.             (20) 



 

 

 Int. J. Com. Dig. Sys. 8, No.5, 437-444 (Sep-2019)                        443 

 

 

http://journals.uob.edu.bh 

 

Figure 6. BER comparison vs EbN0 of blind estimation algorithms in the 
case of 4-QAM and HT propagation channel 

 

Figure 7. BER comparison vs EbN0 of blind estimation algorithms in the 
case of 16-QAM and HT propagation channel 

4. CONCLUSION 

We proposed in this paper a comparison between 

different orders of moment used for high order moments 

blind channel estimation. We derived a theoretical 

expression of estimation error power which is function of 

the QAM modulation order, the moment order and the 

number of OFDM symbols used to estimate the channel. 

We notice that this expression can be applied also to the 

FBMC waveform which structurally well accepts the 

high order moment estimation as showed in [18]. 
This theoretical value was compared to simulation 

results with different Eb/N0 and shows a good agreement.  
Furthermore, obtained results show that 4

th
, 8

th
 order 

moment estimation algorithms exhibit outperformance of 
the 4

th
 order moments performance in term of BER for the 

4-QAM and better performance at high Eb/N0 for the 8
th
 

order moments and 8-QAM configuration. These results 
comfirm the theritical expression of the estimation error 
given by (20). A slightly different performance on NMSE 
is observed. This latter is too small to prefer an order to 
another one.  However based on the complexity of the 

algorithm it seems clear that forth order is the good trade-
off in blind channel estimation. 
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